summaryrefslogtreecommitdiffstats
path: root/mm
diff options
context:
space:
mode:
authorArnd Bergmann <arnd@arndb.de>2009-06-12 09:53:47 +0200
committerArnd Bergmann <arnd@arndb.de>2009-06-12 11:32:58 +0200
commit5b02ee3d219f9e01b6e9146e25613822cfc2e5ce (patch)
tree7ce9126738c3cf4b37d67170d0e4b34818c057a9 /mm
parent26a28fa4fea5b8c65713aa50c124f76a88c7924d (diff)
parent8ebf975608aaebd7feb33d77f07ba21a6380e086 (diff)
downloadlinux-5b02ee3d219f9e01b6e9146e25613822cfc2e5ce.tar.bz2
asm-generic: merge branch 'master' of torvalds/linux-2.6
Fixes a merge conflict against the x86 tree caused by a fix to atomic.h which I renamed to atomic_long.h. Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Diffstat (limited to 'mm')
-rw-r--r--mm/Kconfig19
-rw-r--r--mm/Makefile2
-rw-r--r--mm/bootmem.c12
-rw-r--r--mm/bounce.c9
-rw-r--r--mm/kmemleak-test.c111
-rw-r--r--mm/kmemleak.c1498
-rw-r--r--mm/mlock.c51
-rw-r--r--mm/mmap.c8
-rw-r--r--mm/mprotect.c2
-rw-r--r--mm/nommu.c3
-rw-r--r--mm/page_alloc.c80
-rw-r--r--mm/page_cgroup.c12
-rw-r--r--mm/percpu.c141
-rw-r--r--mm/shmem.c2
-rw-r--r--mm/slab.c119
-rw-r--r--mm/slob.c9
-rw-r--r--mm/slub.c24
-rw-r--r--mm/util.c11
-rw-r--r--mm/vmalloc.c33
19 files changed, 1874 insertions, 272 deletions
diff --git a/mm/Kconfig b/mm/Kconfig
index c2b57d81e153..71830ba7b986 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -226,6 +226,25 @@ config HAVE_MLOCKED_PAGE_BIT
config MMU_NOTIFIER
bool
+config DEFAULT_MMAP_MIN_ADDR
+ int "Low address space to protect from user allocation"
+ default 4096
+ help
+ This is the portion of low virtual memory which should be protected
+ from userspace allocation. Keeping a user from writing to low pages
+ can help reduce the impact of kernel NULL pointer bugs.
+
+ For most ia64, ppc64 and x86 users with lots of address space
+ a value of 65536 is reasonable and should cause no problems.
+ On arm and other archs it should not be higher than 32768.
+ Programs which use vm86 functionality would either need additional
+ permissions from either the LSM or the capabilities module or have
+ this protection disabled.
+
+ This value can be changed after boot using the
+ /proc/sys/vm/mmap_min_addr tunable.
+
+
config NOMMU_INITIAL_TRIM_EXCESS
int "Turn on mmap() excess space trimming before booting"
depends on !MMU
diff --git a/mm/Makefile b/mm/Makefile
index ec73c68b6015..e89acb090b4d 100644
--- a/mm/Makefile
+++ b/mm/Makefile
@@ -38,3 +38,5 @@ obj-$(CONFIG_SMP) += allocpercpu.o
endif
obj-$(CONFIG_QUICKLIST) += quicklist.o
obj-$(CONFIG_CGROUP_MEM_RES_CTLR) += memcontrol.o page_cgroup.o
+obj-$(CONFIG_DEBUG_KMEMLEAK) += kmemleak.o
+obj-$(CONFIG_DEBUG_KMEMLEAK_TEST) += kmemleak-test.o
diff --git a/mm/bootmem.c b/mm/bootmem.c
index daf92713f7de..282df0a09e6f 100644
--- a/mm/bootmem.c
+++ b/mm/bootmem.c
@@ -532,6 +532,9 @@ static void * __init alloc_arch_preferred_bootmem(bootmem_data_t *bdata,
unsigned long size, unsigned long align,
unsigned long goal, unsigned long limit)
{
+ if (WARN_ON_ONCE(slab_is_available()))
+ return kzalloc(size, GFP_NOWAIT);
+
#ifdef CONFIG_HAVE_ARCH_BOOTMEM
bootmem_data_t *p_bdata;
@@ -662,6 +665,9 @@ static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata,
void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
unsigned long align, unsigned long goal)
{
+ if (WARN_ON_ONCE(slab_is_available()))
+ return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
+
return ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0);
}
@@ -693,6 +699,9 @@ void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
{
void *ptr;
+ if (WARN_ON_ONCE(slab_is_available()))
+ return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
+
ptr = alloc_arch_preferred_bootmem(pgdat->bdata, size, align, goal, 0);
if (ptr)
return ptr;
@@ -745,6 +754,9 @@ void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
unsigned long align, unsigned long goal)
{
+ if (WARN_ON_ONCE(slab_is_available()))
+ return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
+
return ___alloc_bootmem_node(pgdat->bdata, size, align,
goal, ARCH_LOW_ADDRESS_LIMIT);
}
diff --git a/mm/bounce.c b/mm/bounce.c
index e590272fe7a8..4ebe3ea83795 100644
--- a/mm/bounce.c
+++ b/mm/bounce.c
@@ -14,16 +14,15 @@
#include <linux/hash.h>
#include <linux/highmem.h>
#include <linux/blktrace_api.h>
-#include <trace/block.h>
#include <asm/tlbflush.h>
+#include <trace/events/block.h>
+
#define POOL_SIZE 64
#define ISA_POOL_SIZE 16
static mempool_t *page_pool, *isa_page_pool;
-DEFINE_TRACE(block_bio_bounce);
-
#ifdef CONFIG_HIGHMEM
static __init int init_emergency_pool(void)
{
@@ -192,7 +191,7 @@ static void __blk_queue_bounce(struct request_queue *q, struct bio **bio_orig,
/*
* is destination page below bounce pfn?
*/
- if (page_to_pfn(page) <= q->bounce_pfn)
+ if (page_to_pfn(page) <= queue_bounce_pfn(q))
continue;
/*
@@ -284,7 +283,7 @@ void blk_queue_bounce(struct request_queue *q, struct bio **bio_orig)
* don't waste time iterating over bio segments
*/
if (!(q->bounce_gfp & GFP_DMA)) {
- if (q->bounce_pfn >= blk_max_pfn)
+ if (queue_bounce_pfn(q) >= blk_max_pfn)
return;
pool = page_pool;
} else {
diff --git a/mm/kmemleak-test.c b/mm/kmemleak-test.c
new file mode 100644
index 000000000000..d5292fc6f523
--- /dev/null
+++ b/mm/kmemleak-test.c
@@ -0,0 +1,111 @@
+/*
+ * mm/kmemleak-test.c
+ *
+ * Copyright (C) 2008 ARM Limited
+ * Written by Catalin Marinas <catalin.marinas@arm.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/list.h>
+#include <linux/percpu.h>
+#include <linux/fdtable.h>
+
+#include <linux/kmemleak.h>
+
+struct test_node {
+ long header[25];
+ struct list_head list;
+ long footer[25];
+};
+
+static LIST_HEAD(test_list);
+static DEFINE_PER_CPU(void *, test_pointer);
+
+/*
+ * Some very simple testing. This function needs to be extended for
+ * proper testing.
+ */
+static int __init kmemleak_test_init(void)
+{
+ struct test_node *elem;
+ int i;
+
+ printk(KERN_INFO "Kmemleak testing\n");
+
+ /* make some orphan objects */
+ pr_info("kmemleak: kmalloc(32) = %p\n", kmalloc(32, GFP_KERNEL));
+ pr_info("kmemleak: kmalloc(32) = %p\n", kmalloc(32, GFP_KERNEL));
+ pr_info("kmemleak: kmalloc(1024) = %p\n", kmalloc(1024, GFP_KERNEL));
+ pr_info("kmemleak: kmalloc(1024) = %p\n", kmalloc(1024, GFP_KERNEL));
+ pr_info("kmemleak: kmalloc(2048) = %p\n", kmalloc(2048, GFP_KERNEL));
+ pr_info("kmemleak: kmalloc(2048) = %p\n", kmalloc(2048, GFP_KERNEL));
+ pr_info("kmemleak: kmalloc(4096) = %p\n", kmalloc(4096, GFP_KERNEL));
+ pr_info("kmemleak: kmalloc(4096) = %p\n", kmalloc(4096, GFP_KERNEL));
+#ifndef CONFIG_MODULES
+ pr_info("kmemleak: kmem_cache_alloc(files_cachep) = %p\n",
+ kmem_cache_alloc(files_cachep, GFP_KERNEL));
+ pr_info("kmemleak: kmem_cache_alloc(files_cachep) = %p\n",
+ kmem_cache_alloc(files_cachep, GFP_KERNEL));
+#endif
+ pr_info("kmemleak: vmalloc(64) = %p\n", vmalloc(64));
+ pr_info("kmemleak: vmalloc(64) = %p\n", vmalloc(64));
+ pr_info("kmemleak: vmalloc(64) = %p\n", vmalloc(64));
+ pr_info("kmemleak: vmalloc(64) = %p\n", vmalloc(64));
+ pr_info("kmemleak: vmalloc(64) = %p\n", vmalloc(64));
+
+ /*
+ * Add elements to a list. They should only appear as orphan
+ * after the module is removed.
+ */
+ for (i = 0; i < 10; i++) {
+ elem = kmalloc(sizeof(*elem), GFP_KERNEL);
+ pr_info("kmemleak: kmalloc(sizeof(*elem)) = %p\n", elem);
+ if (!elem)
+ return -ENOMEM;
+ memset(elem, 0, sizeof(*elem));
+ INIT_LIST_HEAD(&elem->list);
+
+ list_add_tail(&elem->list, &test_list);
+ }
+
+ for_each_possible_cpu(i) {
+ per_cpu(test_pointer, i) = kmalloc(129, GFP_KERNEL);
+ pr_info("kmemleak: kmalloc(129) = %p\n",
+ per_cpu(test_pointer, i));
+ }
+
+ return 0;
+}
+module_init(kmemleak_test_init);
+
+static void __exit kmemleak_test_exit(void)
+{
+ struct test_node *elem, *tmp;
+
+ /*
+ * Remove the list elements without actually freeing the
+ * memory.
+ */
+ list_for_each_entry_safe(elem, tmp, &test_list, list)
+ list_del(&elem->list);
+}
+module_exit(kmemleak_test_exit);
+
+MODULE_LICENSE("GPL");
diff --git a/mm/kmemleak.c b/mm/kmemleak.c
new file mode 100644
index 000000000000..58ec86c9e58a
--- /dev/null
+++ b/mm/kmemleak.c
@@ -0,0 +1,1498 @@
+/*
+ * mm/kmemleak.c
+ *
+ * Copyright (C) 2008 ARM Limited
+ * Written by Catalin Marinas <catalin.marinas@arm.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ *
+ *
+ * For more information on the algorithm and kmemleak usage, please see
+ * Documentation/kmemleak.txt.
+ *
+ * Notes on locking
+ * ----------------
+ *
+ * The following locks and mutexes are used by kmemleak:
+ *
+ * - kmemleak_lock (rwlock): protects the object_list modifications and
+ * accesses to the object_tree_root. The object_list is the main list
+ * holding the metadata (struct kmemleak_object) for the allocated memory
+ * blocks. The object_tree_root is a priority search tree used to look-up
+ * metadata based on a pointer to the corresponding memory block. The
+ * kmemleak_object structures are added to the object_list and
+ * object_tree_root in the create_object() function called from the
+ * kmemleak_alloc() callback and removed in delete_object() called from the
+ * kmemleak_free() callback
+ * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
+ * the metadata (e.g. count) are protected by this lock. Note that some
+ * members of this structure may be protected by other means (atomic or
+ * kmemleak_lock). This lock is also held when scanning the corresponding
+ * memory block to avoid the kernel freeing it via the kmemleak_free()
+ * callback. This is less heavyweight than holding a global lock like
+ * kmemleak_lock during scanning
+ * - scan_mutex (mutex): ensures that only one thread may scan the memory for
+ * unreferenced objects at a time. The gray_list contains the objects which
+ * are already referenced or marked as false positives and need to be
+ * scanned. This list is only modified during a scanning episode when the
+ * scan_mutex is held. At the end of a scan, the gray_list is always empty.
+ * Note that the kmemleak_object.use_count is incremented when an object is
+ * added to the gray_list and therefore cannot be freed
+ * - kmemleak_mutex (mutex): prevents multiple users of the "kmemleak" debugfs
+ * file together with modifications to the memory scanning parameters
+ * including the scan_thread pointer
+ *
+ * The kmemleak_object structures have a use_count incremented or decremented
+ * using the get_object()/put_object() functions. When the use_count becomes
+ * 0, this count can no longer be incremented and put_object() schedules the
+ * kmemleak_object freeing via an RCU callback. All calls to the get_object()
+ * function must be protected by rcu_read_lock() to avoid accessing a freed
+ * structure.
+ */
+
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/list.h>
+#include <linux/sched.h>
+#include <linux/jiffies.h>
+#include <linux/delay.h>
+#include <linux/module.h>
+#include <linux/kthread.h>
+#include <linux/prio_tree.h>
+#include <linux/gfp.h>
+#include <linux/fs.h>
+#include <linux/debugfs.h>
+#include <linux/seq_file.h>
+#include <linux/cpumask.h>
+#include <linux/spinlock.h>
+#include <linux/mutex.h>
+#include <linux/rcupdate.h>
+#include <linux/stacktrace.h>
+#include <linux/cache.h>
+#include <linux/percpu.h>
+#include <linux/hardirq.h>
+#include <linux/mmzone.h>
+#include <linux/slab.h>
+#include <linux/thread_info.h>
+#include <linux/err.h>
+#include <linux/uaccess.h>
+#include <linux/string.h>
+#include <linux/nodemask.h>
+#include <linux/mm.h>
+
+#include <asm/sections.h>
+#include <asm/processor.h>
+#include <asm/atomic.h>
+
+#include <linux/kmemleak.h>
+
+/*
+ * Kmemleak configuration and common defines.
+ */
+#define MAX_TRACE 16 /* stack trace length */
+#define REPORTS_NR 50 /* maximum number of reported leaks */
+#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
+#define MSECS_SCAN_YIELD 10 /* CPU yielding period */
+#define SECS_FIRST_SCAN 60 /* delay before the first scan */
+#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
+
+#define BYTES_PER_POINTER sizeof(void *)
+
+/* scanning area inside a memory block */
+struct kmemleak_scan_area {
+ struct hlist_node node;
+ unsigned long offset;
+ size_t length;
+};
+
+/*
+ * Structure holding the metadata for each allocated memory block.
+ * Modifications to such objects should be made while holding the
+ * object->lock. Insertions or deletions from object_list, gray_list or
+ * tree_node are already protected by the corresponding locks or mutex (see
+ * the notes on locking above). These objects are reference-counted
+ * (use_count) and freed using the RCU mechanism.
+ */
+struct kmemleak_object {
+ spinlock_t lock;
+ unsigned long flags; /* object status flags */
+ struct list_head object_list;
+ struct list_head gray_list;
+ struct prio_tree_node tree_node;
+ struct rcu_head rcu; /* object_list lockless traversal */
+ /* object usage count; object freed when use_count == 0 */
+ atomic_t use_count;
+ unsigned long pointer;
+ size_t size;
+ /* minimum number of a pointers found before it is considered leak */
+ int min_count;
+ /* the total number of pointers found pointing to this object */
+ int count;
+ /* memory ranges to be scanned inside an object (empty for all) */
+ struct hlist_head area_list;
+ unsigned long trace[MAX_TRACE];
+ unsigned int trace_len;
+ unsigned long jiffies; /* creation timestamp */
+ pid_t pid; /* pid of the current task */
+ char comm[TASK_COMM_LEN]; /* executable name */
+};
+
+/* flag representing the memory block allocation status */
+#define OBJECT_ALLOCATED (1 << 0)
+/* flag set after the first reporting of an unreference object */
+#define OBJECT_REPORTED (1 << 1)
+/* flag set to not scan the object */
+#define OBJECT_NO_SCAN (1 << 2)
+
+/* the list of all allocated objects */
+static LIST_HEAD(object_list);
+/* the list of gray-colored objects (see color_gray comment below) */
+static LIST_HEAD(gray_list);
+/* prio search tree for object boundaries */
+static struct prio_tree_root object_tree_root;
+/* rw_lock protecting the access to object_list and prio_tree_root */
+static DEFINE_RWLOCK(kmemleak_lock);
+
+/* allocation caches for kmemleak internal data */
+static struct kmem_cache *object_cache;
+static struct kmem_cache *scan_area_cache;
+
+/* set if tracing memory operations is enabled */
+static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
+/* set in the late_initcall if there were no errors */
+static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
+/* enables or disables early logging of the memory operations */
+static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
+/* set if a fata kmemleak error has occurred */
+static atomic_t kmemleak_error = ATOMIC_INIT(0);
+
+/* minimum and maximum address that may be valid pointers */
+static unsigned long min_addr = ULONG_MAX;
+static unsigned long max_addr;
+
+/* used for yielding the CPU to other tasks during scanning */
+static unsigned long next_scan_yield;
+static struct task_struct *scan_thread;
+static unsigned long jiffies_scan_yield;
+static unsigned long jiffies_min_age;
+/* delay between automatic memory scannings */
+static signed long jiffies_scan_wait;
+/* enables or disables the task stacks scanning */
+static int kmemleak_stack_scan;
+/* mutex protecting the memory scanning */
+static DEFINE_MUTEX(scan_mutex);
+/* mutex protecting the access to the /sys/kernel/debug/kmemleak file */
+static DEFINE_MUTEX(kmemleak_mutex);
+
+/* number of leaks reported (for limitation purposes) */
+static int reported_leaks;
+
+/*
+ * Early object allocation/freeing logging. Kkmemleak is initialized after the
+ * kernel allocator. However, both the kernel allocator and kmemleak may
+ * allocate memory blocks which need to be tracked. Kkmemleak defines an
+ * arbitrary buffer to hold the allocation/freeing information before it is
+ * fully initialized.
+ */
+
+/* kmemleak operation type for early logging */
+enum {
+ KMEMLEAK_ALLOC,
+ KMEMLEAK_FREE,
+ KMEMLEAK_NOT_LEAK,
+ KMEMLEAK_IGNORE,
+ KMEMLEAK_SCAN_AREA,
+ KMEMLEAK_NO_SCAN
+};
+
+/*
+ * Structure holding the information passed to kmemleak callbacks during the
+ * early logging.
+ */
+struct early_log {
+ int op_type; /* kmemleak operation type */
+ const void *ptr; /* allocated/freed memory block */
+ size_t size; /* memory block size */
+ int min_count; /* minimum reference count */
+ unsigned long offset; /* scan area offset */
+ size_t length; /* scan area length */
+};
+
+/* early logging buffer and current position */
+static struct early_log early_log[200];
+static int crt_early_log;
+
+static void kmemleak_disable(void);
+
+/*
+ * Print a warning and dump the stack trace.
+ */
+#define kmemleak_warn(x...) do { \
+ pr_warning(x); \
+ dump_stack(); \
+} while (0)
+
+/*
+ * Macro invoked when a serious kmemleak condition occured and cannot be
+ * recovered from. Kkmemleak will be disabled and further allocation/freeing
+ * tracing no longer available.
+ */
+#define kmemleak_panic(x...) do { \
+ kmemleak_warn(x); \
+ kmemleak_disable(); \
+} while (0)
+
+/*
+ * Object colors, encoded with count and min_count:
+ * - white - orphan object, not enough references to it (count < min_count)
+ * - gray - not orphan, not marked as false positive (min_count == 0) or
+ * sufficient references to it (count >= min_count)
+ * - black - ignore, it doesn't contain references (e.g. text section)
+ * (min_count == -1). No function defined for this color.
+ * Newly created objects don't have any color assigned (object->count == -1)
+ * before the next memory scan when they become white.
+ */
+static int color_white(const struct kmemleak_object *object)
+{
+ return object->count != -1 && object->count < object->min_count;
+}
+
+static int color_gray(const struct kmemleak_object *object)
+{
+ return object->min_count != -1 && object->count >= object->min_count;
+}
+
+/*
+ * Objects are considered referenced if their color is gray and they have not
+ * been deleted.
+ */
+static int referenced_object(struct kmemleak_object *object)
+{
+ return (object->flags & OBJECT_ALLOCATED) && color_gray(object);
+}
+
+/*
+ * Objects are considered unreferenced only if their color is white, they have
+ * not be deleted and have a minimum age to avoid false positives caused by
+ * pointers temporarily stored in CPU registers.
+ */
+static int unreferenced_object(struct kmemleak_object *object)
+{
+ return (object->flags & OBJECT_ALLOCATED) && color_white(object) &&
+ time_is_before_eq_jiffies(object->jiffies + jiffies_min_age);
+}
+
+/*
+ * Printing of the (un)referenced objects information, either to the seq file
+ * or to the kernel log. The print_referenced/print_unreferenced functions
+ * must be called with the object->lock held.
+ */
+#define print_helper(seq, x...) do { \
+ struct seq_file *s = (seq); \
+ if (s) \
+ seq_printf(s, x); \
+ else \
+ pr_info(x); \
+} while (0)
+
+static void print_referenced(struct kmemleak_object *object)
+{
+ pr_info("kmemleak: referenced object 0x%08lx (size %zu)\n",
+ object->pointer, object->size);
+}
+
+static void print_unreferenced(struct seq_file *seq,
+ struct kmemleak_object *object)
+{
+ int i;
+
+ print_helper(seq, "kmemleak: unreferenced object 0x%08lx (size %zu):\n",
+ object->pointer, object->size);
+ print_helper(seq, " comm \"%s\", pid %d, jiffies %lu\n",
+ object->comm, object->pid, object->jiffies);
+ print_helper(seq, " backtrace:\n");
+
+ for (i = 0; i < object->trace_len; i++) {
+ void *ptr = (void *)object->trace[i];
+ print_helper(seq, " [<%p>] %pS\n", ptr, ptr);
+ }
+}
+
+/*
+ * Print the kmemleak_object information. This function is used mainly for
+ * debugging special cases when kmemleak operations. It must be called with
+ * the object->lock held.
+ */
+static void dump_object_info(struct kmemleak_object *object)
+{
+ struct stack_trace trace;
+
+ trace.nr_entries = object->trace_len;
+ trace.entries = object->trace;
+
+ pr_notice("kmemleak: Object 0x%08lx (size %zu):\n",
+ object->tree_node.start, object->size);
+ pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
+ object->comm, object->pid, object->jiffies);
+ pr_notice(" min_count = %d\n", object->min_count);
+ pr_notice(" count = %d\n", object->count);
+ pr_notice(" backtrace:\n");
+ print_stack_trace(&trace, 4);
+}
+
+/*
+ * Look-up a memory block metadata (kmemleak_object) in the priority search
+ * tree based on a pointer value. If alias is 0, only values pointing to the
+ * beginning of the memory block are allowed. The kmemleak_lock must be held
+ * when calling this function.
+ */
+static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
+{
+ struct prio_tree_node *node;
+ struct prio_tree_iter iter;
+ struct kmemleak_object *object;
+
+ prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
+ node = prio_tree_next(&iter);
+ if (node) {
+ object = prio_tree_entry(node, struct kmemleak_object,
+ tree_node);
+ if (!alias && object->pointer != ptr) {
+ kmemleak_warn("kmemleak: Found object by alias");
+ object = NULL;
+ }
+ } else
+ object = NULL;
+
+ return object;
+}
+
+/*
+ * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
+ * that once an object's use_count reached 0, the RCU freeing was already
+ * registered and the object should no longer be used. This function must be
+ * called under the protection of rcu_read_lock().
+ */
+static int get_object(struct kmemleak_object *object)
+{
+ return atomic_inc_not_zero(&object->use_count);
+}
+
+/*
+ * RCU callback to free a kmemleak_object.
+ */
+static void free_object_rcu(struct rcu_head *rcu)
+{
+ struct hlist_node *elem, *tmp;
+ struct kmemleak_scan_area *area;
+ struct kmemleak_object *object =
+ container_of(rcu, struct kmemleak_object, rcu);
+
+ /*
+ * Once use_count is 0 (guaranteed by put_object), there is no other
+ * code accessing this object, hence no need for locking.
+ */
+ hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
+ hlist_del(elem);
+ kmem_cache_free(scan_area_cache, area);
+ }
+ kmem_cache_free(object_cache, object);
+}
+
+/*
+ * Decrement the object use_count. Once the count is 0, free the object using
+ * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
+ * delete_object() path, the delayed RCU freeing ensures that there is no
+ * recursive call to the kernel allocator. Lock-less RCU object_list traversal
+ * is also possible.
+ */
+static void put_object(struct kmemleak_object *object)
+{
+ if (!atomic_dec_and_test(&object->use_count))
+ return;
+
+ /* should only get here after delete_object was called */
+ WARN_ON(object->flags & OBJECT_ALLOCATED);
+
+ call_rcu(&object->rcu, free_object_rcu);
+}
+
+/*
+ * Look up an object in the prio search tree and increase its use_count.
+ */
+static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
+{
+ unsigned long flags;
+ struct kmemleak_object *object = NULL;
+
+ rcu_read_lock();
+ read_lock_irqsave(&kmemleak_lock, flags);
+ if (ptr >= min_addr && ptr < max_addr)
+ object = lookup_object(ptr, alias);
+ read_unlock_irqrestore(&kmemleak_lock, flags);
+
+ /* check whether the object is still available */
+ if (object && !get_object(object))
+ object = NULL;
+ rcu_read_unlock();
+
+ return object;
+}
+
+/*
+ * Create the metadata (struct kmemleak_object) corresponding to an allocated
+ * memory block and add it to the object_list and object_tree_root.
+ */
+static void create_object(unsigned long ptr, size_t size, int min_count,
+ gfp_t gfp)
+{
+ unsigned long flags;
+ struct kmemleak_object *object;
+ struct prio_tree_node *node;
+ struct stack_trace trace;
+
+ object = kmem_cache_alloc(object_cache, gfp & ~GFP_SLAB_BUG_MASK);
+ if (!object) {
+ kmemleak_panic("kmemleak: Cannot allocate a kmemleak_object "
+ "structure\n");
+ return;
+ }
+
+ INIT_LIST_HEAD(&object->object_list);
+ INIT_LIST_HEAD(&object->gray_list);
+ INIT_HLIST_HEAD(&object->area_list);
+ spin_lock_init(&object->lock);
+ atomic_set(&object->use_count, 1);
+ object->flags = OBJECT_ALLOCATED;
+ object->pointer = ptr;
+ object->size = size;
+ object->min_count = min_count;
+ object->count = -1; /* no color initially */
+ object->jiffies = jiffies;
+
+ /* task information */
+ if (in_irq()) {
+ object->pid = 0;
+ strncpy(object->comm, "hardirq", sizeof(object->comm));
+ } else if (in_softirq()) {
+ object->pid = 0;
+ strncpy(object->comm, "softirq", sizeof(object->comm));
+ } else {
+ object->pid = current->pid;
+ /*
+ * There is a small chance of a race with set_task_comm(),
+ * however using get_task_comm() here may cause locking
+ * dependency issues with current->alloc_lock. In the worst
+ * case, the command line is not correct.
+ */
+ strncpy(object->comm, current->comm, sizeof(object->comm));
+ }
+
+ /* kernel backtrace */
+ trace.max_entries = MAX_TRACE;
+ trace.nr_entries = 0;
+ trace.entries = object->trace;
+ trace.skip = 1;
+ save_stack_trace(&trace);
+ object->trace_len = trace.nr_entries;
+
+ INIT_PRIO_TREE_NODE(&object->tree_node);
+ object->tree_node.start = ptr;
+ object->tree_node.last = ptr + size - 1;
+
+ write_lock_irqsave(&kmemleak_lock, flags);
+ min_addr = min(min_addr, ptr);
+ max_addr = max(max_addr, ptr + size);
+ node = prio_tree_insert(&object_tree_root, &object->tree_node);
+ /*
+ * The code calling the kernel does not yet have the pointer to the
+ * memory block to be able to free it. However, we still hold the
+ * kmemleak_lock here in case parts of the kernel started freeing
+ * random memory blocks.
+ */
+ if (node != &object->tree_node) {
+ unsigned long flags;
+
+ kmemleak_panic("kmemleak: Cannot insert 0x%lx into the object "
+ "search tree (already existing)\n", ptr);
+ object = lookup_object(ptr, 1);
+ spin_lock_irqsave(&object->lock, flags);
+ dump_object_info(object);
+ spin_unlock_irqrestore(&object->lock, flags);
+
+ goto out;
+ }
+ list_add_tail_rcu(&object->object_list, &object_list);
+out:
+ write_unlock_irqrestore(&kmemleak_lock, flags);
+}
+
+/*
+ * Remove the metadata (struct kmemleak_object) for a memory block from the
+ * object_list and object_tree_root and decrement its use_count.
+ */
+static void delete_object(unsigned long ptr)
+{
+ unsigned long flags;
+ struct kmemleak_object *object;
+
+ write_lock_irqsave(&kmemleak_lock, flags);
+ object = lookup_object(ptr, 0);
+ if (!object) {
+ kmemleak_warn("kmemleak: Freeing unknown object at 0x%08lx\n",
+ ptr);
+ write_unlock_irqrestore(&kmemleak_lock, flags);
+ return;
+ }
+ prio_tree_remove(&object_tree_root, &object->tree_node);
+ list_del_rcu(&object->object_list);
+ write_unlock_irqrestore(&kmemleak_lock, flags);
+
+ WARN_ON(!(object->flags & OBJECT_ALLOCATED));
+ WARN_ON(atomic_read(&object->use_count) < 1);
+
+ /*
+ * Locking here also ensures that the corresponding memory block
+ * cannot be freed when it is being scanned.
+ */
+ spin_lock_irqsave(&object->lock, flags);
+ if (object->flags & OBJECT_REPORTED)
+ print_referenced(object);
+ object->flags &= ~OBJECT_ALLOCATED;
+ spin_unlock_irqrestore(&object->lock, flags);
+ put_object(object);
+}
+
+/*
+ * Make a object permanently as gray-colored so that it can no longer be
+ * reported as a leak. This is used in general to mark a false positive.
+ */
+static void make_gray_object(unsigned long ptr)
+{
+ unsigned long flags;
+ struct kmemleak_object *object;
+
+ object = find_and_get_object(ptr, 0);
+ if (!object) {
+ kmemleak_warn("kmemleak: Graying unknown object at 0x%08lx\n",
+ ptr);
+ return;
+ }
+
+ spin_lock_irqsave(&object->lock, flags);
+ object->min_count = 0;
+ spin_unlock_irqrestore(&object->lock, flags);
+ put_object(object);
+}
+
+/*
+ * Mark the object as black-colored so that it is ignored from scans and
+ * reporting.
+ */
+static void make_black_object(unsigned long ptr)
+{
+ unsigned long flags;
+ struct kmemleak_object *object;
+
+ object = find_and_get_object(ptr, 0);
+ if (!object) {
+ kmemleak_warn("kmemleak: Blacking unknown object at 0x%08lx\n",
+ ptr);
+ return;
+ }
+
+ spin_lock_irqsave(&object->lock, flags);
+ object->min_count = -1;
+ spin_unlock_irqrestore(&object->lock, flags);
+ put_object(object);
+}
+
+/*
+ * Add a scanning area to the object. If at least one such area is added,
+ * kmemleak will only scan these ranges rather than the whole memory block.
+ */
+static void add_scan_area(unsigned long ptr, unsigned long offset,
+ size_t length, gfp_t gfp)
+{
+ unsigned long flags;
+ struct kmemleak_object *object;
+ struct kmemleak_scan_area *area;
+
+ object = find_and_get_object(ptr, 0);
+ if (!object) {
+ kmemleak_warn("kmemleak: Adding scan area to unknown "
+ "object at 0x%08lx\n", ptr);
+ return;
+ }
+
+ area = kmem_cache_alloc(scan_area_cache, gfp & ~GFP_SLAB_BUG_MASK);
+ if (!area) {
+ kmemleak_warn("kmemleak: Cannot allocate a scan area\n");
+ goto out;
+ }
+
+ spin_lock_irqsave(&object->lock, flags);
+ if (offset + length > object->size) {
+ kmemleak_warn("kmemleak: Scan area larger than object "
+ "0x%08lx\n", ptr);
+ dump_object_info(object);
+ kmem_cache_free(scan_area_cache, area);
+ goto out_unlock;
+ }
+
+ INIT_HLIST_NODE(&area->node);
+ area->offset = offset;
+ area->length = length;
+
+ hlist_add_head(&area->node, &object->area_list);
+out_unlock:
+ spin_unlock_irqrestore(&object->lock, flags);
+out:
+ put_object(object);
+}
+
+/*
+ * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
+ * pointer. Such object will not be scanned by kmemleak but references to it
+ * are searched.
+ */
+static void object_no_scan(unsigned long ptr)
+{
+ unsigned long flags;
+ struct kmemleak_object *object;
+
+ object = find_and_get_object(ptr, 0);
+ if (!object) {
+ kmemleak_warn("kmemleak: Not scanning unknown object at "
+ "0x%08lx\n", ptr);
+ return;
+ }
+
+ spin_lock_irqsave(&object->lock, flags);
+ object->flags |= OBJECT_NO_SCAN;
+ spin_unlock_irqrestore(&object->lock, flags);
+ put_object(object);
+}
+
+/*
+ * Log an early kmemleak_* call to the early_log buffer. These calls will be
+ * processed later once kmemleak is fully initialized.
+ */
+static void log_early(int op_type, const void *ptr, size_t size,
+ int min_count, unsigned long offset, size_t length)
+{
+ unsigned long flags;
+ struct early_log *log;
+
+ if (crt_early_log >= ARRAY_SIZE(early_log)) {
+ kmemleak_panic("kmemleak: Early log buffer exceeded\n");
+ return;
+ }
+
+ /*
+ * There is no need for locking since the kernel is still in UP mode
+ * at this stage. Disabling the IRQs is enough.
+ */
+ local_irq_save(flags);
+ log = &early_log[crt_early_log];
+ log->op_type = op_type;
+ log->ptr = ptr;
+ log->size = size;
+ log->min_count = min_count;
+ log->offset = offset;
+ log->length = length;
+ crt_early_log++;
+ local_irq_restore(flags);
+}
+
+/*
+ * Memory allocation function callback. This function is called from the
+ * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
+ * vmalloc etc.).
+ */
+void kmemleak_alloc(const void *ptr, size_t size, int min_count, gfp_t gfp)
+{
+ pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
+
+ if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
+ create_object((unsigned long)ptr, size, min_count, gfp);
+ else if (atomic_read(&kmemleak_early_log))
+ log_early(KMEMLEAK_ALLOC, ptr, size, min_count, 0, 0);
+}
+EXPORT_SYMBOL_GPL(kmemleak_alloc);
+
+/*
+ * Memory freeing function callback. This function is called from the kernel
+ * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
+ */
+void kmemleak_free(const void *ptr)
+{
+ pr_debug("%s(0x%p)\n", __func__, ptr);
+
+ if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
+ delete_object((unsigned long)ptr);
+ else if (atomic_read(&kmemleak_early_log))
+ log_early(KMEMLEAK_FREE, ptr, 0, 0, 0, 0);
+}
+EXPORT_SYMBOL_GPL(kmemleak_free);
+
+/*
+ * Mark an already allocated memory block as a false positive. This will cause
+ * the block to no longer be reported as leak and always be scanned.
+ */
+void kmemleak_not_leak(const void *ptr)
+{
+ pr_debug("%s(0x%p)\n", __func__, ptr);
+
+ if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
+ make_gray_object((unsigned long)ptr);
+ else if (atomic_read(&kmemleak_early_log))
+ log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0, 0, 0);
+}
+EXPORT_SYMBOL(kmemleak_not_leak);
+
+/*
+ * Ignore a memory block. This is usually done when it is known that the
+ * corresponding block is not a leak and does not contain any references to
+ * other allocated memory blocks.
+ */
+void kmemleak_ignore(const void *ptr)
+{
+ pr_debug("%s(0x%p)\n", __func__, ptr);
+
+ if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
+ make_black_object((unsigned long)ptr);
+ else if (atomic_read(&kmemleak_early_log))
+ log_early(KMEMLEAK_IGNORE, ptr, 0, 0, 0, 0);
+}
+EXPORT_SYMBOL(kmemleak_ignore);
+
+/*
+ * Limit the range to be scanned in an allocated memory block.
+ */
+void kmemleak_scan_area(const void *ptr, unsigned long offset, size_t length,
+ gfp_t gfp)
+{
+ pr_debug("%s(0x%p)\n", __func__, ptr);
+
+ if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
+ add_scan_area((unsigned long)ptr, offset, length, gfp);
+ else if (atomic_read(&kmemleak_early_log))
+ log_early(KMEMLEAK_SCAN_AREA, ptr, 0, 0, offset, length);
+}
+EXPORT_SYMBOL(kmemleak_scan_area);
+
+/*
+ * Inform kmemleak not to scan the given memory block.
+ */
+void kmemleak_no_scan(const void *ptr)
+{
+ pr_debug("%s(0x%p)\n", __func__, ptr);
+
+ if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
+ object_no_scan((unsigned long)ptr);
+ else if (atomic_read(&kmemleak_early_log))
+ log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0, 0, 0);
+}
+EXPORT_SYMBOL(kmemleak_no_scan);
+
+/*
+ * Yield the CPU so that other tasks get a chance to run. The yielding is
+ * rate-limited to avoid excessive number of calls to the schedule() function
+ * during memory scanning.
+ */
+static void scan_yield(void)
+{
+ might_sleep();
+
+ if (time_is_before_eq_jiffies(next_scan_yield)) {
+ schedule();
+ next_scan_yield = jiffies + jiffies_scan_yield;
+ }
+}
+
+/*
+ * Memory scanning is a long process and it needs to be interruptable. This
+ * function checks whether such interrupt condition occured.
+ */
+static int scan_should_stop(void)
+{
+ if (!atomic_read(&kmemleak_enabled))
+ return 1;
+
+ /*
+ * This function may be called from either process or kthread context,
+ * hence the need to check for both stop conditions.
+ */
+ if (current->mm)
+ return signal_pending(current);
+ else
+ return kthread_should_stop();
+
+ return 0;
+}
+
+/*
+ * Scan a memory block (exclusive range) for valid pointers and add those
+ * found to the gray list.
+ */
+static void scan_block(void *_start, void *_end,
+ struct kmemleak_object *scanned)
+{
+ unsigned long *ptr;
+ unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
+ unsigned long *end = _end - (BYTES_PER_POINTER - 1);
+
+ for (ptr = start; ptr < end; ptr++) {
+ unsigned long flags;
+ unsigned long pointer = *ptr;
+ struct kmemleak_object *object;
+
+ if (scan_should_stop())
+ break;
+
+ /*
+ * When scanning a memory block with a corresponding
+ * kmemleak_object, the CPU yielding is handled in the calling
+ * code since it holds the object->lock to avoid the block
+ * freeing.
+ */
+ if (!scanned)
+ scan_yield();
+
+ object = find_and_get_object(pointer, 1);
+ if (!object)
+ continue;
+ if (object == scanned) {
+ /* self referenced, ignore */
+ put_object(object);
+ continue;
+ }
+
+ /*
+ * Avoid the lockdep recursive warning on object->lock being
+ * previously acquired in scan_object(). These locks are
+ * enclosed by scan_mutex.
+ */
+ spin_lock_irqsave_nested(&object->lock, flags,
+ SINGLE_DEPTH_NESTING);
+ if (!color_white(object)) {
+ /* non-orphan, ignored or new */
+ spin_unlock_irqrestore(&object->lock, flags);
+ put_object(object);
+ continue;
+ }
+
+ /*
+ * Increase the object's reference count (number of pointers
+ * to the memory block). If this count reaches the required
+ * minimum, the object's color will become gray and it will be
+ * added to the gray_list.
+ */
+ object->count++;
+ if (color_gray(object))
+ list_add_tail(&object->gray_list, &gray_list);
+ else
+ put_object(object);
+ spin_unlock_irqrestore(&object->lock, flags);
+ }
+}
+
+/*
+ * Scan a memory block corresponding to a kmemleak_object. A condition is
+ * that object->use_count >= 1.
+ */
+static void scan_object(struct kmemleak_object *object)
+{
+ struct kmemleak_scan_area *area;
+ struct hlist_node *elem;
+ unsigned long flags;
+
+ /*
+ * Once the object->lock is aquired, the corresponding memory block
+ * cannot be freed (the same lock is aquired in delete_object).
+ */
+ spin_lock_irqsave(&object->lock, flags);
+ if (object->flags & OBJECT_NO_SCAN)
+ goto out;
+ if (!(object->flags & OBJECT_ALLOCATED))
+ /* already freed object */
+ goto out;
+ if (hlist_empty(&object->area_list))
+ scan_block((void *)object->pointer,
+ (void *)(object->pointer + object->size), object);
+ else
+ hlist_for_each_entry(area, elem, &object->area_list, node)
+ scan_block((void *)(object->pointer + area->offset),
+ (void *)(object->pointer + area->offset
+ + area->length), object);
+out:
+ spin_unlock_irqrestore(&object->lock, flags);
+}
+
+/*
+ * Scan data sections and all the referenced memory blocks allocated via the
+ * kernel's standard allocators. This function must be called with the
+ * scan_mutex held.
+ */
+static void kmemleak_scan(void)
+{
+ unsigned long flags;
+ struct kmemleak_object *object, *tmp;
+ struct task_struct *task;
+ int i;
+
+ /* prepare the kmemleak_object's */
+ rcu_read_lock();
+ list_for_each_entry_rcu(object, &object_list, object_list) {
+ spin_lock_irqsave(&object->lock, flags);
+#ifdef DEBUG
+ /*
+ * With a few exceptions there should be a maximum of
+ * 1 reference to any object at this point.
+ */
+ if (atomic_read(&object->use_count) > 1) {
+ pr_debug("kmemleak: object->use_count = %d\n",
+ atomic_read(&object->use_count));
+ dump_object_info(object);
+ }
+#endif
+ /* reset the reference count (whiten the object) */
+ object->count = 0;
+ if (color_gray(object) && get_object(object))
+ list_add_tail(&object->gray_list, &gray_list);
+
+ spin_unlock_irqrestore(&object->lock, flags);
+ }
+ rcu_read_unlock();
+
+ /* data/bss scanning */
+ scan_block(_sdata, _edata, NULL);
+ scan_block(__bss_start, __bss_stop, NULL);
+
+#ifdef CONFIG_SMP
+ /* per-cpu sections scanning */
+ for_each_possible_cpu(i)
+ scan_block(__per_cpu_start + per_cpu_offset(i),
+ __per_cpu_end + per_cpu_offset(i), NULL);
+#endif
+
+ /*
+ * Struct page scanning for each node. The code below is not yet safe
+ * with MEMORY_HOTPLUG.
+ */
+ for_each_online_node(i) {
+ pg_data_t *pgdat = NODE_DATA(i);
+ unsigned long start_pfn = pgdat->node_start_pfn;
+ unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
+ unsigned long pfn;
+
+ for (pfn = start_pfn; pfn < end_pfn; pfn++) {
+ struct page *page;
+
+ if (!pfn_valid(pfn))
+ continue;
+ page = pfn_to_page(pfn);
+ /* only scan if page is in use */
+ if (page_count(page) == 0)
+ continue;
+ scan_block(page, page + 1, NULL);
+ }
+ }
+
+ /*
+ * Scanning the task stacks may introduce false negatives and it is
+ * not enabled by default.
+ */
+ if (kmemleak_stack_scan) {
+ read_lock(&tasklist_lock);
+ for_each_process(task)
+ scan_block(task_stack_page(task),
+ task_stack_page(task) + THREAD_SIZE, NULL);
+ read_unlock(&tasklist_lock);
+ }
+
+ /*
+ * Scan the objects already referenced from the sections scanned
+ * above. More objects will be referenced and, if there are no memory
+ * leaks, all the objects will be scanned. The list traversal is safe
+ * for both tail additions and removals from inside the loop. The
+ * kmemleak objects cannot be freed from outside the loop because their
+ * use_count was increased.
+ */
+ object = list_entry(gray_list.next, typeof(*object), gray_list);
+ while (&object->gray_list != &gray_list) {
+ scan_yield();
+
+ /* may add new objects to the list */
+ if (!scan_should_stop())
+ scan_object(object);
+
+ tmp = list_entry(object->gray_list.next, typeof(*object),
+ gray_list);
+
+ /* remove the object from the list and release it */
+ list_del(&object->gray_list);
+ put_object(object);
+
+ object = tmp;
+ }
+ WARN_ON(!list_empty(&gray_list));
+}
+
+/*
+ * Thread function performing automatic memory scanning. Unreferenced objects
+ * at the end of a memory scan are reported but only the first time.
+ */
+static int kmemleak_scan_thread(void *arg)
+{
+ static int first_run = 1;
+
+ pr_info("kmemleak: Automatic memory scanning thread started\n");
+
+ /*
+ * Wait before the first scan to allow the system to fully initialize.
+ */
+ if (first_run) {
+ first_run = 0;
+ ssleep(SECS_FIRST_SCAN);
+ }
+
+ while (!kthread_should_stop()) {
+ struct kmemleak_object *object;
+ signed long timeout = jiffies_scan_wait;
+
+ mutex_lock(&scan_mutex);
+
+ kmemleak_scan();
+ reported_leaks = 0;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(object, &object_list, object_list) {
+ unsigned long flags;
+
+ if (reported_leaks >= REPORTS_NR)
+ break;
+ spin_lock_irqsave(&object->lock, flags);
+ if (!(object->flags & OBJECT_REPORTED) &&
+ unreferenced_object(object)) {
+ print_unreferenced(NULL, object);
+ object->flags |= OBJECT_REPORTED;
+ reported_leaks++;
+ } else if ((object->flags & OBJECT_REPORTED) &&
+ referenced_object(object)) {
+ print_referenced(object);
+ object->flags &= ~OBJECT_REPORTED;
+ }
+ spin_unlock_irqrestore(&object->lock, flags);
+ }
+ rcu_read_unlock();
+
+ mutex_unlock(&scan_mutex);
+ /* wait before the next scan */
+ while (timeout && !kthread_should_stop())
+ timeout = schedule_timeout_interruptible(timeout);
+ }
+
+ pr_info("kmemleak: Automatic memory scanning thread ended\n");
+
+ return 0;
+}
+
+/*
+ * Start the automatic memory scanning thread. This function must be called
+ * with the kmemleak_mutex held.
+ */
+void start_scan_thread(void)
+{
+ if (scan_thread)
+ return;
+ scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
+ if (IS_ERR(scan_thread)) {
+ pr_warning("kmemleak: Failed to create the scan thread\n");
+ scan_thread = NULL;
+ }
+}
+
+/*
+ * Stop the automatic memory scanning thread. This function must be called
+ * with the kmemleak_mutex held.
+ */
+void stop_scan_thread(void)
+{
+ if (scan_thread) {
+ kthread_stop(scan_thread);
+ scan_thread = NULL;
+ }
+}
+
+/*
+ * Iterate over the object_list and return the first valid object at or after
+ * the required position with its use_count incremented. The function triggers
+ * a memory scanning when the pos argument points to the first position.
+ */
+static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
+{
+ struct kmemleak_object *object;
+ loff_t n = *pos;
+
+ if (!n) {
+ kmemleak_scan();
+ reported_leaks = 0;
+ }
+ if (reported_leaks >= REPORTS_NR)
+ return NULL;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(object, &object_list, object_list) {
+ if (n-- > 0)
+ continue;
+ if (get_object(object))
+ goto out;
+ }
+ object = NULL;
+out:
+ rcu_read_unlock();
+ return object;
+}
+
+/*
+ * Return the next object in the object_list. The function decrements the
+ * use_count of the previous object and increases that of the next one.
+ */
+static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
+{
+ struct kmemleak_object *prev_obj = v;
+ struct kmemleak_object *next_obj = NULL;
+ struct list_head *n = &prev_obj->object_list;
+
+ ++(*pos);
+ if (reported_leaks >= REPORTS_NR)
+ goto out;
+
+ rcu_read_lock();
+ list_for_each_continue_rcu(n, &object_list) {
+ next_obj = list_entry(n, struct kmemleak_object, object_list);
+ if (get_object(next_obj))
+ break;
+ }
+ rcu_read_unlock();
+out:
+ put_object(prev_obj);
+ return next_obj;
+}
+
+/*
+ * Decrement the use_count of the last object required, if any.
+ */
+static void kmemleak_seq_stop(struct seq_file *seq, void *v)
+{
+ if (v)
+ put_object(v);
+}
+
+/*
+ * Print the information for an unreferenced object to the seq file.
+ */
+static int kmemleak_seq_show(struct seq_file *seq, void *v)
+{
+ struct kmemleak_object *object = v;
+ unsigned long flags;
+
+ spin_lock_irqsave(&object->lock, flags);
+ if (!unreferenced_object(object))
+ goto out;
+ print_unreferenced(seq, object);
+ reported_leaks++;
+out:
+ spin_unlock_irqrestore(&object->lock, flags);
+ return 0;
+}
+
+static const struct seq_operations kmemleak_seq_ops = {
+ .start = kmemleak_seq_start,
+ .next = kmemleak_seq_next,
+ .stop = kmemleak_seq_stop,
+ .show = kmemleak_seq_show,
+};
+
+static int kmemleak_open(struct inode *inode, struct file *file)
+{
+ int ret = 0;
+
+ if (!atomic_read(&kmemleak_enabled))
+ return -EBUSY;
+
+ ret = mutex_lock_interruptible(&kmemleak_mutex);
+ if (ret < 0)
+ goto out;
+ if (file->f_mode & FMODE_READ) {
+ ret = mutex_lock_interruptible(&scan_mutex);
+ if (ret < 0)
+ goto kmemleak_unlock;
+ ret = seq_open(file, &kmemleak_seq_ops);
+ if (ret < 0)
+ goto scan_unlock;
+ }
+ return ret;
+
+scan_unlock:
+ mutex_unlock(&scan_mutex);
+kmemleak_unlock:
+ mutex_unlock(&kmemleak_mutex);
+out:
+ return ret;
+}
+
+static int kmemleak_release(struct inode *inode, struct file *file)
+{
+ int ret = 0;
+
+ if (file->f_mode & FMODE_READ) {
+ seq_release(inode, file);
+ mutex_unlock(&scan_mutex);
+ }
+ mutex_unlock(&kmemleak_mutex);
+
+ return ret;
+}
+
+/*
+ * File write operation to configure kmemleak at run-time. The following
+ * commands can be written to the /sys/kernel/debug/kmemleak file:
+ * off - disable kmemleak (irreversible)
+ * stack=on - enable the task stacks scanning
+ * stack=off - disable the tasks stacks scanning
+ * scan=on - start the automatic memory scanning thread
+ * scan=off - stop the automatic memory scanning thread
+ * scan=... - set the automatic memory scanning period in seconds (0 to
+ * disable it)
+ */
+static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
+ size_t size, loff_t *ppos)
+{
+ char buf[64];
+ int buf_size;
+
+ if (!atomic_read(&kmemleak_enabled))
+ return -EBUSY;
+
+ buf_size = min(size, (sizeof(buf) - 1));
+ if (strncpy_from_user(buf, user_buf, buf_size) < 0)
+ return -EFAULT;
+ buf[buf_size] = 0;
+
+ if (strncmp(buf, "off", 3) == 0)
+ kmemleak_disable();
+ else if (strncmp(buf, "stack=on", 8) == 0)
+ kmemleak_stack_scan = 1;
+ else if (strncmp(buf, "stack=off", 9) == 0)
+ kmemleak_stack_scan = 0;
+ else if (strncmp(buf, "scan=on", 7) == 0)
+ start_scan_thread();
+ else if (strncmp(buf, "scan=off", 8) == 0)
+ stop_scan_thread();
+ else if (strncmp(buf, "scan=", 5) == 0) {
+ unsigned long secs;
+ int err;
+
+ err = strict_strtoul(buf + 5, 0, &secs);
+ if (err < 0)
+ return err;
+ stop_scan_thread();
+ if (secs) {
+ jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
+ start_scan_thread();
+ }
+ } else
+ return -EINVAL;
+
+ /* ignore the rest of the buffer, only one command at a time */
+ *ppos += size;
+ return size;
+}
+
+static const struct file_operations kmemleak_fops = {
+ .owner = THIS_MODULE,
+ .open = kmemleak_open,
+ .read = seq_read,
+ .write = kmemleak_write,
+ .llseek = seq_lseek,
+ .release = kmemleak_release,
+};
+
+/*
+ * Perform the freeing of the kmemleak internal objects after waiting for any
+ * current memory scan to complete.
+ */
+static int kmemleak_cleanup_thread(void *arg)
+{
+ struct kmemleak_object *object;
+
+ mutex_lock(&kmemleak_mutex);
+ stop_scan_thread();
+ mutex_unlock(&kmemleak_mutex);
+
+ mutex_lock(&scan_mutex);
+ rcu_read_lock();
+ list_for_each_entry_rcu(object, &object_list, object_list)
+ delete_object(object->pointer);
+ rcu_read_unlock();
+ mutex_unlock(&scan_mutex);
+
+ return 0;
+}
+
+/*
+ * Start the clean-up thread.
+ */
+static void kmemleak_cleanup(void)
+{
+ struct task_struct *cleanup_thread;
+
+ cleanup_thread = kthread_run(kmemleak_cleanup_thread, NULL,
+ "kmemleak-clean");
+ if (IS_ERR(cleanup_thread))
+ pr_warning("kmemleak: Failed to create the clean-up thread\n");
+}
+
+/*
+ * Disable kmemleak. No memory allocation/freeing will be traced once this
+ * function is called. Disabling kmemleak is an irreversible operation.
+ */
+static void kmemleak_disable(void)
+{
+ /* atomically check whether it was already invoked */
+ if (atomic_cmpxchg(&kmemleak_error, 0, 1))
+ return;
+
+ /* stop any memory operation tracing */
+ atomic_set(&kmemleak_early_log, 0);
+ atomic_set(&kmemleak_enabled, 0);
+
+ /* check whether it is too early for a kernel thread */
+ if (atomic_read(&kmemleak_initialized))
+ kmemleak_cleanup();
+
+ pr_info("Kernel memory leak detector disabled\n");
+}
+
+/*
+ * Allow boot-time kmemleak disabling (enabled by default).
+ */
+static int kmemleak_boot_config(char *str)
+{
+ if (!str)
+ return -EINVAL;
+ if (strcmp(str, "off") == 0)
+ kmemleak_disable();
+ else if (strcmp(str, "on") != 0)
+ return -EINVAL;
+ return 0;
+}
+early_param("kmemleak", kmemleak_boot_config);
+
+/*
+ * Kkmemleak initialization.
+ */
+void __init kmemleak_init(void)
+{
+ int i;
+ unsigned long flags;
+
+ jiffies_scan_yield = msecs_to_jiffies(MSECS_SCAN_YIELD);
+ jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
+ jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
+
+ object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
+ scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
+ INIT_PRIO_TREE_ROOT(&object_tree_root);
+
+ /* the kernel is still in UP mode, so disabling the IRQs is enough */
+ local_irq_save(flags);
+ if (!atomic_read(&kmemleak_error)) {
+ atomic_set(&kmemleak_enabled, 1);
+ atomic_set(&kmemleak_early_log, 0);
+ }
+ local_irq_restore(flags);
+
+ /*
+ * This is the point where tracking allocations is safe. Automatic
+ * scanning is started during the late initcall. Add the early logged
+ * callbacks to the kmemleak infrastructure.
+ */
+ for (i = 0; i < crt_early_log; i++) {
+ struct early_log *log = &early_log[i];
+
+ switch (log->op_type) {
+ case KMEMLEAK_ALLOC:
+ kmemleak_alloc(log->ptr, log->size, log->min_count,
+ GFP_KERNEL);
+ break;
+ case KMEMLEAK_FREE:
+ kmemleak_free(log->ptr);
+ break;
+ case KMEMLEAK_NOT_LEAK:
+ kmemleak_not_leak(log->ptr);
+ break;
+ case KMEMLEAK_IGNORE:
+ kmemleak_ignore(log->ptr);
+ break;
+ case KMEMLEAK_SCAN_AREA:
+ kmemleak_scan_area(log->ptr, log->offset, log->length,
+ GFP_KERNEL);
+ break;
+ case KMEMLEAK_NO_SCAN:
+ kmemleak_no_scan(log->ptr);
+ break;
+ default:
+ WARN_ON(1);
+ }
+ }
+}
+
+/*
+ * Late initialization function.
+ */
+static int __init kmemleak_late_init(void)
+{
+ struct dentry *dentry;
+
+ atomic_set(&kmemleak_initialized, 1);
+
+ if (atomic_read(&kmemleak_error)) {
+ /*
+ * Some error occured and kmemleak was disabled. There is a
+ * small chance that kmemleak_disable() was called immediately
+ * after setting kmemleak_initialized and we may end up with
+ * two clean-up threads but serialized by scan_mutex.
+ */
+ kmemleak_cleanup();
+ return -ENOMEM;
+ }
+
+ dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
+ &kmemleak_fops);
+ if (!dentry)
+ pr_warning("kmemleak: Failed to create the debugfs kmemleak "
+ "file\n");
+ mutex_lock(&kmemleak_mutex);
+ start_scan_thread();
+ mutex_unlock(&kmemleak_mutex);
+
+ pr_info("Kernel memory leak detector initialized\n");
+
+ return 0;
+}
+late_initcall(kmemleak_late_init);
diff --git a/mm/mlock.c b/mm/mlock.c
index cbe9e0581b75..ac130433c7d3 100644
--- a/mm/mlock.c
+++ b/mm/mlock.c
@@ -629,52 +629,43 @@ void user_shm_unlock(size_t size, struct user_struct *user)
free_uid(user);
}
-void *alloc_locked_buffer(size_t size)
+int account_locked_memory(struct mm_struct *mm, struct rlimit *rlim,
+ size_t size)
{
- unsigned long rlim, vm, pgsz;
- void *buffer = NULL;
+ unsigned long lim, vm, pgsz;
+ int error = -ENOMEM;
pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
- down_write(&current->mm->mmap_sem);
-
- rlim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
- vm = current->mm->total_vm + pgsz;
- if (rlim < vm)
- goto out;
+ down_write(&mm->mmap_sem);
- rlim = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
- vm = current->mm->locked_vm + pgsz;
- if (rlim < vm)
+ lim = rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
+ vm = mm->total_vm + pgsz;
+ if (lim < vm)
goto out;
- buffer = kzalloc(size, GFP_KERNEL);
- if (!buffer)
+ lim = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
+ vm = mm->locked_vm + pgsz;
+ if (lim < vm)
goto out;
- current->mm->total_vm += pgsz;
- current->mm->locked_vm += pgsz;
+ mm->total_vm += pgsz;
+ mm->locked_vm += pgsz;
+ error = 0;
out:
- up_write(&current->mm->mmap_sem);
- return buffer;
+ up_write(&mm->mmap_sem);
+ return error;
}
-void release_locked_buffer(void *buffer, size_t size)
+void refund_locked_memory(struct mm_struct *mm, size_t size)
{
unsigned long pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
- down_write(&current->mm->mmap_sem);
-
- current->mm->total_vm -= pgsz;
- current->mm->locked_vm -= pgsz;
-
- up_write(&current->mm->mmap_sem);
-}
+ down_write(&mm->mmap_sem);
-void free_locked_buffer(void *buffer, size_t size)
-{
- release_locked_buffer(buffer, size);
+ mm->total_vm -= pgsz;
+ mm->locked_vm -= pgsz;
- kfree(buffer);
+ up_write(&mm->mmap_sem);
}
diff --git a/mm/mmap.c b/mm/mmap.c
index 6b7b1a95944b..34579b23ebd5 100644
--- a/mm/mmap.c
+++ b/mm/mmap.c
@@ -28,6 +28,7 @@
#include <linux/mempolicy.h>
#include <linux/rmap.h>
#include <linux/mmu_notifier.h>
+#include <linux/perf_counter.h>
#include <asm/uaccess.h>
#include <asm/cacheflush.h>
@@ -87,6 +88,9 @@ int sysctl_overcommit_ratio = 50; /* default is 50% */
int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
struct percpu_counter vm_committed_as;
+/* amount of vm to protect from userspace access */
+unsigned long mmap_min_addr = CONFIG_DEFAULT_MMAP_MIN_ADDR;
+
/*
* Check that a process has enough memory to allocate a new virtual
* mapping. 0 means there is enough memory for the allocation to
@@ -1219,6 +1223,8 @@ munmap_back:
if (correct_wcount)
atomic_inc(&inode->i_writecount);
out:
+ perf_counter_mmap(vma);
+
mm->total_vm += len >> PAGE_SHIFT;
vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
if (vm_flags & VM_LOCKED) {
@@ -2305,6 +2311,8 @@ int install_special_mapping(struct mm_struct *mm,
mm->total_vm += len >> PAGE_SHIFT;
+ perf_counter_mmap(vma);
+
return 0;
}
diff --git a/mm/mprotect.c b/mm/mprotect.c
index 258197b76fb4..d80311baeb2d 100644
--- a/mm/mprotect.c
+++ b/mm/mprotect.c
@@ -23,6 +23,7 @@
#include <linux/swapops.h>
#include <linux/mmu_notifier.h>
#include <linux/migrate.h>
+#include <linux/perf_counter.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/cacheflush.h>
@@ -299,6 +300,7 @@ SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
error = mprotect_fixup(vma, &prev, nstart, tmp, newflags);
if (error)
goto out;
+ perf_counter_mmap(vma);
nstart = tmp;
if (nstart < prev->vm_end)
diff --git a/mm/nommu.c b/mm/nommu.c
index b571ef707428..2fd2ad5da98e 100644
--- a/mm/nommu.c
+++ b/mm/nommu.c
@@ -69,6 +69,9 @@ int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
int heap_stack_gap = 0;
+/* amount of vm to protect from userspace access */
+unsigned long mmap_min_addr = CONFIG_DEFAULT_MMAP_MIN_ADDR;
+
atomic_long_t mmap_pages_allocated;
EXPORT_SYMBOL(mem_map);
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index fe753ecf2aa5..17d5f539a9aa 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -46,6 +46,7 @@
#include <linux/page-isolation.h>
#include <linux/page_cgroup.h>
#include <linux/debugobjects.h>
+#include <linux/kmemleak.h>
#include <asm/tlbflush.h>
#include <asm/div64.h>
@@ -149,10 +150,6 @@ static unsigned long __meminitdata dma_reserve;
static int __meminitdata nr_nodemap_entries;
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
-#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
- static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
- static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
-#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
static unsigned long __initdata required_kernelcore;
static unsigned long __initdata required_movablecore;
static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
@@ -3103,64 +3100,6 @@ void __init sparse_memory_present_with_active_regions(int nid)
}
/**
- * push_node_boundaries - Push node boundaries to at least the requested boundary
- * @nid: The nid of the node to push the boundary for
- * @start_pfn: The start pfn of the node
- * @end_pfn: The end pfn of the node
- *
- * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
- * time. Specifically, on x86_64, SRAT will report ranges that can potentially
- * be hotplugged even though no physical memory exists. This function allows
- * an arch to push out the node boundaries so mem_map is allocated that can
- * be used later.
- */
-#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
-void __init push_node_boundaries(unsigned int nid,
- unsigned long start_pfn, unsigned long end_pfn)
-{
- mminit_dprintk(MMINIT_TRACE, "zoneboundary",
- "Entering push_node_boundaries(%u, %lu, %lu)\n",
- nid, start_pfn, end_pfn);
-
- /* Initialise the boundary for this node if necessary */
- if (node_boundary_end_pfn[nid] == 0)
- node_boundary_start_pfn[nid] = -1UL;
-
- /* Update the boundaries */
- if (node_boundary_start_pfn[nid] > start_pfn)
- node_boundary_start_pfn[nid] = start_pfn;
- if (node_boundary_end_pfn[nid] < end_pfn)
- node_boundary_end_pfn[nid] = end_pfn;
-}
-
-/* If necessary, push the node boundary out for reserve hotadd */
-static void __meminit account_node_boundary(unsigned int nid,
- unsigned long *start_pfn, unsigned long *end_pfn)
-{
- mminit_dprintk(MMINIT_TRACE, "zoneboundary",
- "Entering account_node_boundary(%u, %lu, %lu)\n",
- nid, *start_pfn, *end_pfn);
-
- /* Return if boundary information has not been provided */
- if (node_boundary_end_pfn[nid] == 0)
- return;
-
- /* Check the boundaries and update if necessary */
- if (node_boundary_start_pfn[nid] < *start_pfn)
- *start_pfn = node_boundary_start_pfn[nid];
- if (node_boundary_end_pfn[nid] > *end_pfn)
- *end_pfn = node_boundary_end_pfn[nid];
-}
-#else
-void __init push_node_boundaries(unsigned int nid,
- unsigned long start_pfn, unsigned long end_pfn) {}
-
-static void __meminit account_node_boundary(unsigned int nid,
- unsigned long *start_pfn, unsigned long *end_pfn) {}
-#endif
-
-
-/**
* get_pfn_range_for_nid - Return the start and end page frames for a node
* @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
* @start_pfn: Passed by reference. On return, it will have the node start_pfn.
@@ -3185,9 +3124,6 @@ void __meminit get_pfn_range_for_nid(unsigned int nid,
if (*start_pfn == -1UL)
*start_pfn = 0;
-
- /* Push the node boundaries out if requested */
- account_node_boundary(nid, start_pfn, end_pfn);
}
/*
@@ -3793,10 +3729,6 @@ void __init remove_all_active_ranges(void)
{
memset(early_node_map, 0, sizeof(early_node_map));
nr_nodemap_entries = 0;
-#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
- memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
- memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
-#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
}
/* Compare two active node_active_regions */
@@ -4615,6 +4547,16 @@ void *__init alloc_large_system_hash(const char *tablename,
if (_hash_mask)
*_hash_mask = (1 << log2qty) - 1;
+ /*
+ * If hashdist is set, the table allocation is done with __vmalloc()
+ * which invokes the kmemleak_alloc() callback. This function may also
+ * be called before the slab and kmemleak are initialised when
+ * kmemleak simply buffers the request to be executed later
+ * (GFP_ATOMIC flag ignored in this case).
+ */
+ if (!hashdist)
+ kmemleak_alloc(table, size, 1, GFP_ATOMIC);
+
return table;
}
diff --git a/mm/page_cgroup.c b/mm/page_cgroup.c
index 791905c991df..3dd4a909a1de 100644
--- a/mm/page_cgroup.c
+++ b/mm/page_cgroup.c
@@ -47,6 +47,8 @@ static int __init alloc_node_page_cgroup(int nid)
struct page_cgroup *base, *pc;
unsigned long table_size;
unsigned long start_pfn, nr_pages, index;
+ struct page *page;
+ unsigned int order;
start_pfn = NODE_DATA(nid)->node_start_pfn;
nr_pages = NODE_DATA(nid)->node_spanned_pages;
@@ -55,11 +57,13 @@ static int __init alloc_node_page_cgroup(int nid)
return 0;
table_size = sizeof(struct page_cgroup) * nr_pages;
-
- base = __alloc_bootmem_node_nopanic(NODE_DATA(nid),
- table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
- if (!base)
+ order = get_order(table_size);
+ page = alloc_pages_node(nid, GFP_NOWAIT | __GFP_ZERO, order);
+ if (!page)
+ page = alloc_pages_node(-1, GFP_NOWAIT | __GFP_ZERO, order);
+ if (!page)
return -ENOMEM;
+ base = page_address(page);
for (index = 0; index < nr_pages; index++) {
pc = base + index;
__init_page_cgroup(pc, start_pfn + index);
diff --git a/mm/percpu.c b/mm/percpu.c
index 1aa5d8fbca12..c0b2c1a76e81 100644
--- a/mm/percpu.c
+++ b/mm/percpu.c
@@ -23,7 +23,7 @@
* Allocation is done in offset-size areas of single unit space. Ie,
* an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
* c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring
- * percpu base registers UNIT_SIZE apart.
+ * percpu base registers pcpu_unit_size apart.
*
* There are usually many small percpu allocations many of them as
* small as 4 bytes. The allocator organizes chunks into lists
@@ -38,8 +38,8 @@
* region and negative allocated. Allocation inside a chunk is done
* by scanning this map sequentially and serving the first matching
* entry. This is mostly copied from the percpu_modalloc() allocator.
- * Chunks are also linked into a rb tree to ease address to chunk
- * mapping during free.
+ * Chunks can be determined from the address using the index field
+ * in the page struct. The index field contains a pointer to the chunk.
*
* To use this allocator, arch code should do the followings.
*
@@ -61,7 +61,6 @@
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
-#include <linux/rbtree.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
@@ -88,7 +87,6 @@
struct pcpu_chunk {
struct list_head list; /* linked to pcpu_slot lists */
- struct rb_node rb_node; /* key is chunk->vm->addr */
int free_size; /* free bytes in the chunk */
int contig_hint; /* max contiguous size hint */
struct vm_struct *vm; /* mapped vmalloc region */
@@ -110,9 +108,21 @@ static size_t pcpu_chunk_struct_size __read_mostly;
void *pcpu_base_addr __read_mostly;
EXPORT_SYMBOL_GPL(pcpu_base_addr);
-/* optional reserved chunk, only accessible for reserved allocations */
+/*
+ * The first chunk which always exists. Note that unlike other
+ * chunks, this one can be allocated and mapped in several different
+ * ways and thus often doesn't live in the vmalloc area.
+ */
+static struct pcpu_chunk *pcpu_first_chunk;
+
+/*
+ * Optional reserved chunk. This chunk reserves part of the first
+ * chunk and serves it for reserved allocations. The amount of
+ * reserved offset is in pcpu_reserved_chunk_limit. When reserved
+ * area doesn't exist, the following variables contain NULL and 0
+ * respectively.
+ */
static struct pcpu_chunk *pcpu_reserved_chunk;
-/* offset limit of the reserved chunk */
static int pcpu_reserved_chunk_limit;
/*
@@ -121,7 +131,7 @@ static int pcpu_reserved_chunk_limit;
* There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
* protects allocation/reclaim paths, chunks and chunk->page arrays.
* The latter is a spinlock and protects the index data structures -
- * chunk slots, rbtree, chunks and area maps in chunks.
+ * chunk slots, chunks and area maps in chunks.
*
* During allocation, pcpu_alloc_mutex is kept locked all the time and
* pcpu_lock is grabbed and released as necessary. All actual memory
@@ -140,7 +150,6 @@ static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
-static struct rb_root pcpu_addr_root = RB_ROOT; /* chunks by address */
/* reclaim work to release fully free chunks, scheduled from free path */
static void pcpu_reclaim(struct work_struct *work);
@@ -191,6 +200,18 @@ static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk,
return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL;
}
+/* set the pointer to a chunk in a page struct */
+static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
+{
+ page->index = (unsigned long)pcpu;
+}
+
+/* obtain pointer to a chunk from a page struct */
+static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
+{
+ return (struct pcpu_chunk *)page->index;
+}
+
/**
* pcpu_mem_alloc - allocate memory
* @size: bytes to allocate
@@ -257,93 +278,26 @@ static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
}
}
-static struct rb_node **pcpu_chunk_rb_search(void *addr,
- struct rb_node **parentp)
-{
- struct rb_node **p = &pcpu_addr_root.rb_node;
- struct rb_node *parent = NULL;
- struct pcpu_chunk *chunk;
-
- while (*p) {
- parent = *p;
- chunk = rb_entry(parent, struct pcpu_chunk, rb_node);
-
- if (addr < chunk->vm->addr)
- p = &(*p)->rb_left;
- else if (addr > chunk->vm->addr)
- p = &(*p)->rb_right;
- else
- break;
- }
-
- if (parentp)
- *parentp = parent;
- return p;
-}
-
/**
- * pcpu_chunk_addr_search - search for chunk containing specified address
- * @addr: address to search for
- *
- * Look for chunk which might contain @addr. More specifically, it
- * searchs for the chunk with the highest start address which isn't
- * beyond @addr.
- *
- * CONTEXT:
- * pcpu_lock.
+ * pcpu_chunk_addr_search - determine chunk containing specified address
+ * @addr: address for which the chunk needs to be determined.
*
* RETURNS:
* The address of the found chunk.
*/
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
- struct rb_node *n, *parent;
- struct pcpu_chunk *chunk;
+ void *first_start = pcpu_first_chunk->vm->addr;
- /* is it in the reserved chunk? */
- if (pcpu_reserved_chunk) {
- void *start = pcpu_reserved_chunk->vm->addr;
-
- if (addr >= start && addr < start + pcpu_reserved_chunk_limit)
+ /* is it in the first chunk? */
+ if (addr >= first_start && addr < first_start + pcpu_chunk_size) {
+ /* is it in the reserved area? */
+ if (addr < first_start + pcpu_reserved_chunk_limit)
return pcpu_reserved_chunk;
+ return pcpu_first_chunk;
}
- /* nah... search the regular ones */
- n = *pcpu_chunk_rb_search(addr, &parent);
- if (!n) {
- /* no exactly matching chunk, the parent is the closest */
- n = parent;
- BUG_ON(!n);
- }
- chunk = rb_entry(n, struct pcpu_chunk, rb_node);
-
- if (addr < chunk->vm->addr) {
- /* the parent was the next one, look for the previous one */
- n = rb_prev(n);
- BUG_ON(!n);
- chunk = rb_entry(n, struct pcpu_chunk, rb_node);
- }
-
- return chunk;
-}
-
-/**
- * pcpu_chunk_addr_insert - insert chunk into address rb tree
- * @new: chunk to insert
- *
- * Insert @new into address rb tree.
- *
- * CONTEXT:
- * pcpu_lock.
- */
-static void pcpu_chunk_addr_insert(struct pcpu_chunk *new)
-{
- struct rb_node **p, *parent;
-
- p = pcpu_chunk_rb_search(new->vm->addr, &parent);
- BUG_ON(*p);
- rb_link_node(&new->rb_node, parent, p);
- rb_insert_color(&new->rb_node, &pcpu_addr_root);
+ return pcpu_get_page_chunk(vmalloc_to_page(addr));
}
/**
@@ -755,6 +709,7 @@ static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
alloc_mask, 0);
if (!*pagep)
goto err;
+ pcpu_set_page_chunk(*pagep, chunk);
}
}
@@ -879,7 +834,6 @@ restart:
spin_lock_irq(&pcpu_lock);
pcpu_chunk_relocate(chunk, -1);
- pcpu_chunk_addr_insert(chunk);
goto restart;
area_found:
@@ -968,7 +922,6 @@ static void pcpu_reclaim(struct work_struct *work)
if (chunk == list_first_entry(head, struct pcpu_chunk, list))
continue;
- rb_erase(&chunk->rb_node, &pcpu_addr_root);
list_move(&chunk->list, &todo);
}
@@ -1147,7 +1100,8 @@ size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
if (reserved_size) {
schunk->free_size = reserved_size;
- pcpu_reserved_chunk = schunk; /* not for dynamic alloc */
+ pcpu_reserved_chunk = schunk;
+ pcpu_reserved_chunk_limit = static_size + reserved_size;
} else {
schunk->free_size = dyn_size;
dyn_size = 0; /* dynamic area covered */
@@ -1158,8 +1112,6 @@ size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
if (schunk->free_size)
schunk->map[schunk->map_used++] = schunk->free_size;
- pcpu_reserved_chunk_limit = static_size + schunk->free_size;
-
/* init dynamic chunk if necessary */
if (dyn_size) {
dchunk = alloc_bootmem(sizeof(struct pcpu_chunk));
@@ -1226,13 +1178,8 @@ size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
}
/* link the first chunk in */
- if (!dchunk) {
- pcpu_chunk_relocate(schunk, -1);
- pcpu_chunk_addr_insert(schunk);
- } else {
- pcpu_chunk_relocate(dchunk, -1);
- pcpu_chunk_addr_insert(dchunk);
- }
+ pcpu_first_chunk = dchunk ?: schunk;
+ pcpu_chunk_relocate(pcpu_first_chunk, -1);
/* we're done */
pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0);
diff --git a/mm/shmem.c b/mm/shmem.c
index b25f95ce3db7..0132fbd45a23 100644
--- a/mm/shmem.c
+++ b/mm/shmem.c
@@ -2659,6 +2659,7 @@ struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
if (error)
goto close_file;
#endif
+ ima_counts_get(file);
return file;
close_file:
@@ -2684,7 +2685,6 @@ int shmem_zero_setup(struct vm_area_struct *vma)
if (IS_ERR(file))
return PTR_ERR(file);
- ima_shm_check(file);
if (vma->vm_file)
fput(vma->vm_file);
vma->vm_file = file;
diff --git a/mm/slab.c b/mm/slab.c
index 9a90b00d2f91..f46b65d124e5 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -102,11 +102,12 @@
#include <linux/cpu.h>
#include <linux/sysctl.h>
#include <linux/module.h>
-#include <trace/kmemtrace.h>
+#include <linux/kmemtrace.h>
#include <linux/rcupdate.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include <linux/nodemask.h>
+#include <linux/kmemleak.h>
#include <linux/mempolicy.h>
#include <linux/mutex.h>
#include <linux/fault-inject.h>
@@ -178,13 +179,13 @@
SLAB_STORE_USER | \
SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
- SLAB_DEBUG_OBJECTS)
+ SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
#else
# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
SLAB_CACHE_DMA | \
SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
- SLAB_DEBUG_OBJECTS)
+ SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
#endif
/*
@@ -315,7 +316,7 @@ static int drain_freelist(struct kmem_cache *cache,
struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
int node);
-static int enable_cpucache(struct kmem_cache *cachep);
+static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
static void cache_reap(struct work_struct *unused);
/*
@@ -958,12 +959,20 @@ static void __cpuinit start_cpu_timer(int cpu)
}
static struct array_cache *alloc_arraycache(int node, int entries,
- int batchcount)
+ int batchcount, gfp_t gfp)
{
int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
struct array_cache *nc = NULL;
- nc = kmalloc_node(memsize, GFP_KERNEL, node);
+ nc = kmalloc_node(memsize, gfp, node);
+ /*
+ * The array_cache structures contain pointers to free object.
+ * However, when such objects are allocated or transfered to another
+ * cache the pointers are not cleared and they could be counted as
+ * valid references during a kmemleak scan. Therefore, kmemleak must
+ * not scan such objects.
+ */
+ kmemleak_no_scan(nc);
if (nc) {
nc->avail = 0;
nc->limit = entries;
@@ -1003,7 +1012,7 @@ static int transfer_objects(struct array_cache *to,
#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)
-static inline struct array_cache **alloc_alien_cache(int node, int limit)
+static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
{
return (struct array_cache **)BAD_ALIEN_MAGIC;
}
@@ -1034,7 +1043,7 @@ static inline void *____cache_alloc_node(struct kmem_cache *cachep,
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
-static struct array_cache **alloc_alien_cache(int node, int limit)
+static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
{
struct array_cache **ac_ptr;
int memsize = sizeof(void *) * nr_node_ids;
@@ -1042,14 +1051,14 @@ static struct array_cache **alloc_alien_cache(int node, int limit)
if (limit > 1)
limit = 12;
- ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
+ ac_ptr = kmalloc_node(memsize, gfp, node);
if (ac_ptr) {
for_each_node(i) {
if (i == node || !node_online(i)) {
ac_ptr[i] = NULL;
continue;
}
- ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
+ ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
if (!ac_ptr[i]) {
for (i--; i >= 0; i--)
kfree(ac_ptr[i]);
@@ -1282,20 +1291,20 @@ static int __cpuinit cpuup_prepare(long cpu)
struct array_cache **alien = NULL;
nc = alloc_arraycache(node, cachep->limit,
- cachep->batchcount);
+ cachep->batchcount, GFP_KERNEL);
if (!nc)
goto bad;
if (cachep->shared) {
shared = alloc_arraycache(node,
cachep->shared * cachep->batchcount,
- 0xbaadf00d);
+ 0xbaadf00d, GFP_KERNEL);
if (!shared) {
kfree(nc);
goto bad;
}
}
if (use_alien_caches) {
- alien = alloc_alien_cache(node, cachep->limit);
+ alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
if (!alien) {
kfree(shared);
kfree(nc);
@@ -1399,10 +1408,9 @@ static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
{
struct kmem_list3 *ptr;
- ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
+ ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
BUG_ON(!ptr);
- local_irq_disable();
memcpy(ptr, list, sizeof(struct kmem_list3));
/*
* Do not assume that spinlocks can be initialized via memcpy:
@@ -1411,7 +1419,6 @@ static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
MAKE_ALL_LISTS(cachep, ptr, nodeid);
cachep->nodelists[nodeid] = ptr;
- local_irq_enable();
}
/*
@@ -1575,9 +1582,8 @@ void __init kmem_cache_init(void)
{
struct array_cache *ptr;
- ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
+ ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
- local_irq_disable();
BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
memcpy(ptr, cpu_cache_get(&cache_cache),
sizeof(struct arraycache_init));
@@ -1587,11 +1593,9 @@ void __init kmem_cache_init(void)
spin_lock_init(&ptr->lock);
cache_cache.array[smp_processor_id()] = ptr;
- local_irq_enable();
- ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
+ ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
- local_irq_disable();
BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
!= &initarray_generic.cache);
memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
@@ -1603,7 +1607,6 @@ void __init kmem_cache_init(void)
malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
ptr;
- local_irq_enable();
}
/* 5) Replace the bootstrap kmem_list3's */
{
@@ -1627,7 +1630,7 @@ void __init kmem_cache_init(void)
struct kmem_cache *cachep;
mutex_lock(&cache_chain_mutex);
list_for_each_entry(cachep, &cache_chain, next)
- if (enable_cpucache(cachep))
+ if (enable_cpucache(cachep, GFP_NOWAIT))
BUG();
mutex_unlock(&cache_chain_mutex);
}
@@ -2064,10 +2067,10 @@ static size_t calculate_slab_order(struct kmem_cache *cachep,
return left_over;
}
-static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
+static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
{
if (g_cpucache_up == FULL)
- return enable_cpucache(cachep);
+ return enable_cpucache(cachep, gfp);
if (g_cpucache_up == NONE) {
/*
@@ -2089,7 +2092,7 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
g_cpucache_up = PARTIAL_AC;
} else {
cachep->array[smp_processor_id()] =
- kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
+ kmalloc(sizeof(struct arraycache_init), gfp);
if (g_cpucache_up == PARTIAL_AC) {
set_up_list3s(cachep, SIZE_L3);
@@ -2153,6 +2156,7 @@ kmem_cache_create (const char *name, size_t size, size_t align,
{
size_t left_over, slab_size, ralign;
struct kmem_cache *cachep = NULL, *pc;
+ gfp_t gfp;
/*
* Sanity checks... these are all serious usage bugs.
@@ -2168,8 +2172,10 @@ kmem_cache_create (const char *name, size_t size, size_t align,
* We use cache_chain_mutex to ensure a consistent view of
* cpu_online_mask as well. Please see cpuup_callback
*/
- get_online_cpus();
- mutex_lock(&cache_chain_mutex);
+ if (slab_is_available()) {
+ get_online_cpus();
+ mutex_lock(&cache_chain_mutex);
+ }
list_for_each_entry(pc, &cache_chain, next) {
char tmp;
@@ -2278,8 +2284,13 @@ kmem_cache_create (const char *name, size_t size, size_t align,
*/
align = ralign;
+ if (slab_is_available())
+ gfp = GFP_KERNEL;
+ else
+ gfp = GFP_NOWAIT;
+
/* Get cache's description obj. */
- cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
+ cachep = kmem_cache_zalloc(&cache_cache, gfp);
if (!cachep)
goto oops;
@@ -2382,7 +2393,7 @@ kmem_cache_create (const char *name, size_t size, size_t align,
cachep->ctor = ctor;
cachep->name = name;
- if (setup_cpu_cache(cachep)) {
+ if (setup_cpu_cache(cachep, gfp)) {
__kmem_cache_destroy(cachep);
cachep = NULL;
goto oops;
@@ -2394,8 +2405,10 @@ oops:
if (!cachep && (flags & SLAB_PANIC))
panic("kmem_cache_create(): failed to create slab `%s'\n",
name);
- mutex_unlock(&cache_chain_mutex);
- put_online_cpus();
+ if (slab_is_available()) {
+ mutex_unlock(&cache_chain_mutex);
+ put_online_cpus();
+ }
return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);
@@ -2621,6 +2634,14 @@ static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
/* Slab management obj is off-slab. */
slabp = kmem_cache_alloc_node(cachep->slabp_cache,
local_flags, nodeid);
+ /*
+ * If the first object in the slab is leaked (it's allocated
+ * but no one has a reference to it), we want to make sure
+ * kmemleak does not treat the ->s_mem pointer as a reference
+ * to the object. Otherwise we will not report the leak.
+ */
+ kmemleak_scan_area(slabp, offsetof(struct slab, list),
+ sizeof(struct list_head), local_flags);
if (!slabp)
return NULL;
} else {
@@ -3141,6 +3162,12 @@ static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
STATS_INC_ALLOCMISS(cachep);
objp = cache_alloc_refill(cachep, flags);
}
+ /*
+ * To avoid a false negative, if an object that is in one of the
+ * per-CPU caches is leaked, we need to make sure kmemleak doesn't
+ * treat the array pointers as a reference to the object.
+ */
+ kmemleak_erase(&ac->entry[ac->avail]);
return objp;
}
@@ -3360,6 +3387,8 @@ __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
out:
local_irq_restore(save_flags);
ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
+ kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
+ flags);
if (unlikely((flags & __GFP_ZERO) && ptr))
memset(ptr, 0, obj_size(cachep));
@@ -3415,6 +3444,8 @@ __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
objp = __do_cache_alloc(cachep, flags);
local_irq_restore(save_flags);
objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
+ kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
+ flags);
prefetchw(objp);
if (unlikely((flags & __GFP_ZERO) && objp))
@@ -3530,6 +3561,7 @@ static inline void __cache_free(struct kmem_cache *cachep, void *objp)
struct array_cache *ac = cpu_cache_get(cachep);
check_irq_off();
+ kmemleak_free_recursive(objp, cachep->flags);
objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
/*
@@ -3802,7 +3834,7 @@ EXPORT_SYMBOL_GPL(kmem_cache_name);
/*
* This initializes kmem_list3 or resizes various caches for all nodes.
*/
-static int alloc_kmemlist(struct kmem_cache *cachep)
+static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
{
int node;
struct kmem_list3 *l3;
@@ -3812,7 +3844,7 @@ static int alloc_kmemlist(struct kmem_cache *cachep)
for_each_online_node(node) {
if (use_alien_caches) {
- new_alien = alloc_alien_cache(node, cachep->limit);
+ new_alien = alloc_alien_cache(node, cachep->limit, gfp);
if (!new_alien)
goto fail;
}
@@ -3821,7 +3853,7 @@ static int alloc_kmemlist(struct kmem_cache *cachep)
if (cachep->shared) {
new_shared = alloc_arraycache(node,
cachep->shared*cachep->batchcount,
- 0xbaadf00d);
+ 0xbaadf00d, gfp);
if (!new_shared) {
free_alien_cache(new_alien);
goto fail;
@@ -3850,7 +3882,7 @@ static int alloc_kmemlist(struct kmem_cache *cachep)
free_alien_cache(new_alien);
continue;
}
- l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
+ l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
if (!l3) {
free_alien_cache(new_alien);
kfree(new_shared);
@@ -3906,18 +3938,18 @@ static void do_ccupdate_local(void *info)
/* Always called with the cache_chain_mutex held */
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
- int batchcount, int shared)
+ int batchcount, int shared, gfp_t gfp)
{
struct ccupdate_struct *new;
int i;
- new = kzalloc(sizeof(*new), GFP_KERNEL);
+ new = kzalloc(sizeof(*new), gfp);
if (!new)
return -ENOMEM;
for_each_online_cpu(i) {
new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
- batchcount);
+ batchcount, gfp);
if (!new->new[i]) {
for (i--; i >= 0; i--)
kfree(new->new[i]);
@@ -3944,11 +3976,11 @@ static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
kfree(ccold);
}
kfree(new);
- return alloc_kmemlist(cachep);
+ return alloc_kmemlist(cachep, gfp);
}
/* Called with cache_chain_mutex held always */
-static int enable_cpucache(struct kmem_cache *cachep)
+static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
{
int err;
int limit, shared;
@@ -3994,7 +4026,7 @@ static int enable_cpucache(struct kmem_cache *cachep)
if (limit > 32)
limit = 32;
#endif
- err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
+ err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
if (err)
printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
cachep->name, -err);
@@ -4300,7 +4332,8 @@ ssize_t slabinfo_write(struct file *file, const char __user * buffer,
res = 0;
} else {
res = do_tune_cpucache(cachep, limit,
- batchcount, shared);
+ batchcount, shared,
+ GFP_KERNEL);
}
break;
}
diff --git a/mm/slob.c b/mm/slob.c
index f92e66d558bd..12f261499925 100644
--- a/mm/slob.c
+++ b/mm/slob.c
@@ -66,7 +66,8 @@
#include <linux/module.h>
#include <linux/rcupdate.h>
#include <linux/list.h>
-#include <trace/kmemtrace.h>
+#include <linux/kmemtrace.h>
+#include <linux/kmemleak.h>
#include <asm/atomic.h>
/*
@@ -509,6 +510,7 @@ void *__kmalloc_node(size_t size, gfp_t gfp, int node)
size, PAGE_SIZE << order, gfp, node);
}
+ kmemleak_alloc(ret, size, 1, gfp);
return ret;
}
EXPORT_SYMBOL(__kmalloc_node);
@@ -521,6 +523,7 @@ void kfree(const void *block)
if (unlikely(ZERO_OR_NULL_PTR(block)))
return;
+ kmemleak_free(block);
sp = slob_page(block);
if (is_slob_page(sp)) {
@@ -584,12 +587,14 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size,
} else if (flags & SLAB_PANIC)
panic("Cannot create slab cache %s\n", name);
+ kmemleak_alloc(c, sizeof(struct kmem_cache), 1, GFP_KERNEL);
return c;
}
EXPORT_SYMBOL(kmem_cache_create);
void kmem_cache_destroy(struct kmem_cache *c)
{
+ kmemleak_free(c);
slob_free(c, sizeof(struct kmem_cache));
}
EXPORT_SYMBOL(kmem_cache_destroy);
@@ -613,6 +618,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
if (c->ctor)
c->ctor(b);
+ kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
return b;
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
@@ -635,6 +641,7 @@ static void kmem_rcu_free(struct rcu_head *head)
void kmem_cache_free(struct kmem_cache *c, void *b)
{
+ kmemleak_free_recursive(b, c->flags);
if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
struct slob_rcu *slob_rcu;
slob_rcu = b + (c->size - sizeof(struct slob_rcu));
diff --git a/mm/slub.c b/mm/slub.c
index 65ffda5934b0..3964d3ce4c15 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -17,9 +17,10 @@
#include <linux/slab.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
-#include <trace/kmemtrace.h>
+#include <linux/kmemtrace.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
+#include <linux/kmemleak.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
#include <linux/debugobjects.h>
@@ -143,7 +144,7 @@
* Set of flags that will prevent slab merging
*/
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
- SLAB_TRACE | SLAB_DESTROY_BY_RCU)
+ SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
SLAB_CACHE_DMA)
@@ -1617,6 +1618,7 @@ static __always_inline void *slab_alloc(struct kmem_cache *s,
if (unlikely((gfpflags & __GFP_ZERO) && object))
memset(object, 0, objsize);
+ kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
return object;
}
@@ -1746,6 +1748,7 @@ static __always_inline void slab_free(struct kmem_cache *s,
struct kmem_cache_cpu *c;
unsigned long flags;
+ kmemleak_free_recursive(x, s->flags);
local_irq_save(flags);
c = get_cpu_slab(s, smp_processor_id());
debug_check_no_locks_freed(object, c->objsize);
@@ -2557,13 +2560,16 @@ static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
if (gfp_flags & SLUB_DMA)
flags = SLAB_CACHE_DMA;
- down_write(&slub_lock);
+ /*
+ * This function is called with IRQs disabled during early-boot on
+ * single CPU so there's no need to take slub_lock here.
+ */
if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
flags, NULL))
goto panic;
list_add(&s->list, &slab_caches);
- up_write(&slub_lock);
+
if (sysfs_slab_add(s))
goto panic;
return s;
@@ -3021,7 +3027,7 @@ void __init kmem_cache_init(void)
* kmem_cache_open for slab_state == DOWN.
*/
create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
- sizeof(struct kmem_cache_node), GFP_KERNEL);
+ sizeof(struct kmem_cache_node), GFP_NOWAIT);
kmalloc_caches[0].refcount = -1;
caches++;
@@ -3034,16 +3040,16 @@ void __init kmem_cache_init(void)
/* Caches that are not of the two-to-the-power-of size */
if (KMALLOC_MIN_SIZE <= 64) {
create_kmalloc_cache(&kmalloc_caches[1],
- "kmalloc-96", 96, GFP_KERNEL);
+ "kmalloc-96", 96, GFP_NOWAIT);
caches++;
create_kmalloc_cache(&kmalloc_caches[2],
- "kmalloc-192", 192, GFP_KERNEL);
+ "kmalloc-192", 192, GFP_NOWAIT);
caches++;
}
for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
create_kmalloc_cache(&kmalloc_caches[i],
- "kmalloc", 1 << i, GFP_KERNEL);
+ "kmalloc", 1 << i, GFP_NOWAIT);
caches++;
}
@@ -3080,7 +3086,7 @@ void __init kmem_cache_init(void)
/* Provide the correct kmalloc names now that the caches are up */
for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
kmalloc_caches[i]. name =
- kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
+ kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
#ifdef CONFIG_SMP
register_cpu_notifier(&slab_notifier);
diff --git a/mm/util.c b/mm/util.c
index 55bef160b9f1..abc65aa7cdfc 100644
--- a/mm/util.c
+++ b/mm/util.c
@@ -4,9 +4,11 @@
#include <linux/module.h>
#include <linux/err.h>
#include <linux/sched.h>
-#include <linux/tracepoint.h>
#include <asm/uaccess.h>
+#define CREATE_TRACE_POINTS
+#include <trace/events/kmem.h>
+
/**
* kstrdup - allocate space for and copy an existing string
* @s: the string to duplicate
@@ -255,13 +257,6 @@ int __attribute__((weak)) get_user_pages_fast(unsigned long start,
EXPORT_SYMBOL_GPL(get_user_pages_fast);
/* Tracepoints definitions. */
-DEFINE_TRACE(kmalloc);
-DEFINE_TRACE(kmem_cache_alloc);
-DEFINE_TRACE(kmalloc_node);
-DEFINE_TRACE(kmem_cache_alloc_node);
-DEFINE_TRACE(kfree);
-DEFINE_TRACE(kmem_cache_free);
-
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
diff --git a/mm/vmalloc.c b/mm/vmalloc.c
index 083716ea38c9..f8189a4b3e13 100644
--- a/mm/vmalloc.c
+++ b/mm/vmalloc.c
@@ -23,8 +23,8 @@
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
-#include <linux/bootmem.h>
#include <linux/pfn.h>
+#include <linux/kmemleak.h>
#include <asm/atomic.h>
#include <asm/uaccess.h>
@@ -1032,7 +1032,7 @@ void __init vmalloc_init(void)
/* Import existing vmlist entries. */
for (tmp = vmlist; tmp; tmp = tmp->next) {
- va = alloc_bootmem(sizeof(struct vmap_area));
+ va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
va->flags = tmp->flags | VM_VM_AREA;
va->va_start = (unsigned long)tmp->addr;
va->va_end = va->va_start + tmp->size;
@@ -1327,6 +1327,9 @@ static void __vunmap(const void *addr, int deallocate_pages)
void vfree(const void *addr)
{
BUG_ON(in_interrupt());
+
+ kmemleak_free(addr);
+
__vunmap(addr, 1);
}
EXPORT_SYMBOL(vfree);
@@ -1439,8 +1442,17 @@ fail:
void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
{
- return __vmalloc_area_node(area, gfp_mask, prot, -1,
- __builtin_return_address(0));
+ void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
+ __builtin_return_address(0));
+
+ /*
+ * A ref_count = 3 is needed because the vm_struct and vmap_area
+ * structures allocated in the __get_vm_area_node() function contain
+ * references to the virtual address of the vmalloc'ed block.
+ */
+ kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
+
+ return addr;
}
/**
@@ -1459,6 +1471,8 @@ static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
int node, void *caller)
{
struct vm_struct *area;
+ void *addr;
+ unsigned long real_size = size;
size = PAGE_ALIGN(size);
if (!size || (size >> PAGE_SHIFT) > num_physpages)
@@ -1470,7 +1484,16 @@ static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
if (!area)
return NULL;
- return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
+ addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
+
+ /*
+ * A ref_count = 3 is needed because the vm_struct and vmap_area
+ * structures allocated in the __get_vm_area_node() function contain
+ * references to the virtual address of the vmalloc'ed block.
+ */
+ kmemleak_alloc(addr, real_size, 3, gfp_mask);
+
+ return addr;
}
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)