diff options
author | Michal Hocko <mhocko@suse.cz> | 2014-10-09 15:28:52 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2014-10-09 22:25:59 -0400 |
commit | aabfb57296e3dd9761e47736ec69305c95461d7d (patch) | |
tree | 379e66feb872f9f42b44b3245e52cb16ab3194bb /mm/swap_state.c | |
parent | 01c2965f0723a25209d5cf4cac630ed0f6d0edf4 (diff) | |
download | linux-aabfb57296e3dd9761e47736ec69305c95461d7d.tar.bz2 |
mm: memcontrol: do not kill uncharge batching in free_pages_and_swap_cache
free_pages_and_swap_cache limits release_pages to PAGEVEC_SIZE chunks.
This is not a big deal for the normal release path but it completely kills
memcg uncharge batching which reduces res_counter spin_lock contention.
Dave has noticed this with his page fault scalability test case on a large
machine when the lock was basically dominating on all CPUs:
80.18% 80.18% [kernel] [k] _raw_spin_lock
|
--- _raw_spin_lock
|
|--66.59%-- res_counter_uncharge_until
| res_counter_uncharge
| uncharge_batch
| uncharge_list
| mem_cgroup_uncharge_list
| release_pages
| free_pages_and_swap_cache
| tlb_flush_mmu_free
| |
| |--90.12%-- unmap_single_vma
| | unmap_vmas
| | unmap_region
| | do_munmap
| | vm_munmap
| | sys_munmap
| | system_call_fastpath
| | __GI___munmap
| |
| --9.88%-- tlb_flush_mmu
| tlb_finish_mmu
| unmap_region
| do_munmap
| vm_munmap
| sys_munmap
| system_call_fastpath
| __GI___munmap
In his case the load was running in the root memcg and that part has been
handled by reverting 05b843012335 ("mm: memcontrol: use root_mem_cgroup
res_counter") because this is a clear regression, but the problem remains
inside dedicated memcgs.
There is no reason to limit release_pages to PAGEVEC_SIZE batches other
than lru_lock held times. This logic, however, can be moved inside the
function. mem_cgroup_uncharge_list and free_hot_cold_page_list do not
hold any lock for the whole pages_to_free list so it is safe to call them
in a single run.
The release_pages() code was previously breaking the lru_lock each
PAGEVEC_SIZE pages (ie, 14 pages). However this code has no usage of
pagevecs so switch to breaking the lock at least every SWAP_CLUSTER_MAX
(32) pages. This means that the lock acquisition frequency is
approximately halved and the max hold times are approximately doubled.
The now unneeded batching is removed from free_pages_and_swap_cache().
Also update the grossly out-of-date release_pages documentation.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Dave Hansen <dave@sr71.net>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/swap_state.c')
-rw-r--r-- | mm/swap_state.c | 14 |
1 files changed, 4 insertions, 10 deletions
diff --git a/mm/swap_state.c b/mm/swap_state.c index ef1f39139b71..154444918685 100644 --- a/mm/swap_state.c +++ b/mm/swap_state.c @@ -265,18 +265,12 @@ void free_page_and_swap_cache(struct page *page) void free_pages_and_swap_cache(struct page **pages, int nr) { struct page **pagep = pages; + int i; lru_add_drain(); - while (nr) { - int todo = min(nr, PAGEVEC_SIZE); - int i; - - for (i = 0; i < todo; i++) - free_swap_cache(pagep[i]); - release_pages(pagep, todo, false); - pagep += todo; - nr -= todo; - } + for (i = 0; i < nr; i++) + free_swap_cache(pagep[i]); + release_pages(pagep, nr, false); } /* |