summaryrefslogtreecommitdiffstats
path: root/mm/page_alloc.c
diff options
context:
space:
mode:
authorBob Picco <bob.picco@hp.com>2006-05-20 15:00:31 -0700
committerLinus Torvalds <torvalds@g5.osdl.org>2006-05-21 12:59:22 -0700
commite984bb43f7450312ba66fe0e67a99efa6be3b246 (patch)
tree54c86240172136fc81c773f71cd70eda54fed6f2 /mm/page_alloc.c
parentae57a856429dd932c547530df1b234eb7e642297 (diff)
downloadlinux-e984bb43f7450312ba66fe0e67a99efa6be3b246.tar.bz2
[PATCH] Align the node_mem_map endpoints to a MAX_ORDER boundary
Andy added code to buddy allocator which does not require the zone's endpoints to be aligned to MAX_ORDER. An issue is that the buddy allocator requires the node_mem_map's endpoints to be MAX_ORDER aligned. Otherwise __page_find_buddy could compute a buddy not in node_mem_map for partial MAX_ORDER regions at zone's endpoints. page_is_buddy will detect that these pages at endpoints are not PG_buddy (they were zeroed out by bootmem allocator and not part of zone). Of course the negative here is we could waste a little memory but the positive is eliminating all the old checks for zone boundary conditions. SPARSEMEM won't encounter this issue because of MAX_ORDER size constraint when SPARSEMEM is configured. ia64 VIRTUAL_MEM_MAP doesn't need the logic either because the holes and endpoints are handled differently. This leaves checking alloc_remap and other arches which privately allocate for node_mem_map. Signed-off-by: Bob Picco <bob.picco@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'mm/page_alloc.c')
-rw-r--r--mm/page_alloc.c14
1 files changed, 11 insertions, 3 deletions
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index bb3416932ab0..253a450c400d 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -2125,14 +2125,22 @@ static void __init alloc_node_mem_map(struct pglist_data *pgdat)
#ifdef CONFIG_FLAT_NODE_MEM_MAP
/* ia64 gets its own node_mem_map, before this, without bootmem */
if (!pgdat->node_mem_map) {
- unsigned long size;
+ unsigned long size, start, end;
struct page *map;
- size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
+ /*
+ * The zone's endpoints aren't required to be MAX_ORDER
+ * aligned but the node_mem_map endpoints must be in order
+ * for the buddy allocator to function correctly.
+ */
+ start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
+ end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
+ end = ALIGN(end, MAX_ORDER_NR_PAGES);
+ size = (end - start) * sizeof(struct page);
map = alloc_remap(pgdat->node_id, size);
if (!map)
map = alloc_bootmem_node(pgdat, size);
- pgdat->node_mem_map = map;
+ pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
}
#ifdef CONFIG_FLATMEM
/*