summaryrefslogtreecommitdiffstats
path: root/mm/page_alloc.c
diff options
context:
space:
mode:
authorMike Kravetz <mike.kravetz@oracle.com>2021-06-30 18:48:34 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2021-06-30 20:47:27 -0700
commit7118fc2906e2925d7edb5ed9c8a57f2a5f23b849 (patch)
tree0c8e10ad4b90c59e5660f7a51ae43899e71958d1 /mm/page_alloc.c
parent48b8d744ea841b8adf8d07bfe7a2d55f22e4d179 (diff)
downloadlinux-7118fc2906e2925d7edb5ed9c8a57f2a5f23b849.tar.bz2
hugetlb: address ref count racing in prep_compound_gigantic_page
In [1], Jann Horn points out a possible race between prep_compound_gigantic_page and __page_cache_add_speculative. The root cause of the possible race is prep_compound_gigantic_page uncondittionally setting the ref count of pages to zero. It does this because prep_compound_gigantic_page is handed a 'group' of pages from an allocator and needs to convert that group of pages to a compound page. The ref count of each page in this 'group' is one as set by the allocator. However, the ref count of compound page tail pages must be zero. The potential race comes about when ref counted pages are returned from the allocator. When this happens, other mm code could also take a reference on the page. __page_cache_add_speculative is one such example. Therefore, prep_compound_gigantic_page can not just set the ref count of pages to zero as it does today. Doing so would lose the reference taken by any other code. This would lead to BUGs in code checking ref counts and could possibly even lead to memory corruption. There are two possible ways to address this issue. 1) Make all allocators of gigantic groups of pages be able to return a properly constructed compound page. 2) Make prep_compound_gigantic_page be more careful when constructing a compound page. This patch takes approach 2. In prep_compound_gigantic_page, use cmpxchg to only set ref count to zero if it is one. If the cmpxchg fails, call synchronize_rcu() in the hope that the extra ref count will be driopped during a rcu grace period. This is not a performance critical code path and the wait should be accceptable. If the ref count is still inflated after the grace period, then undo any modifications made and return an error. Currently prep_compound_gigantic_page is type void and does not return errors. Modify the two callers to check for and handle error returns. On error, the caller must free the 'group' of pages as they can not be used to form a gigantic page. After freeing pages, the runtime caller (alloc_fresh_huge_page) will retry the allocation once. Boot time allocations can not be retried. The routine prep_compound_page also unconditionally sets the ref count of compound page tail pages to zero. However, in this case the buddy allocator is constructing a compound page from freshly allocated pages. The ref count on those freshly allocated pages is already zero, so the set_page_count(p, 0) is unnecessary and could lead to confusion. Just remove it. [1] https://lore.kernel.org/linux-mm/CAG48ez23q0Jy9cuVnwAe7t_fdhMk2S7N5Hdi-GLcCeq5bsfLxw@mail.gmail.com/ Link: https://lkml.kernel.org/r/20210622021423.154662-3-mike.kravetz@oracle.com Fixes: 58a84aa92723 ("thp: set compound tail page _count to zero") Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reported-by: Jann Horn <jannh@google.com> Cc: Youquan Song <youquan.song@intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/page_alloc.c')
-rw-r--r--mm/page_alloc.c1
1 files changed, 0 insertions, 1 deletions
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index db00ee8d79d2..eeff64843718 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -754,7 +754,6 @@ void prep_compound_page(struct page *page, unsigned int order)
__SetPageHead(page);
for (i = 1; i < nr_pages; i++) {
struct page *p = page + i;
- set_page_count(p, 0);
p->mapping = TAIL_MAPPING;
set_compound_head(p, page);
}