diff options
author | Mel Gorman <mgorman@techsingularity.net> | 2016-07-28 15:46:11 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2016-07-28 16:07:41 -0700 |
commit | 281e37265f2826ed401d84d6790226448ef3f0e8 (patch) | |
tree | a29b375b754c242f29082cd9e0df1a48c8109ac2 /mm/page_alloc.c | |
parent | 1e6b10857f91685c60c341703ece4ae9bb775cf3 (diff) | |
download | linux-281e37265f2826ed401d84d6790226448ef3f0e8.tar.bz2 |
mm, page_alloc: consider dirtyable memory in terms of nodes
Historically dirty pages were spread among zones but now that LRUs are
per-node it is more appropriate to consider dirty pages in a node.
Link: http://lkml.kernel.org/r/1467970510-21195-17-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/page_alloc.c')
-rw-r--r-- | mm/page_alloc.c | 26 |
1 files changed, 11 insertions, 15 deletions
diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 749b3c358ead..73b018df6e42 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -2912,31 +2912,24 @@ zonelist_scan: } /* * When allocating a page cache page for writing, we - * want to get it from a zone that is within its dirty - * limit, such that no single zone holds more than its + * want to get it from a node that is within its dirty + * limit, such that no single node holds more than its * proportional share of globally allowed dirty pages. - * The dirty limits take into account the zone's + * The dirty limits take into account the node's * lowmem reserves and high watermark so that kswapd * should be able to balance it without having to * write pages from its LRU list. * - * This may look like it could increase pressure on - * lower zones by failing allocations in higher zones - * before they are full. But the pages that do spill - * over are limited as the lower zones are protected - * by this very same mechanism. It should not become - * a practical burden to them. - * * XXX: For now, allow allocations to potentially - * exceed the per-zone dirty limit in the slowpath + * exceed the per-node dirty limit in the slowpath * (spread_dirty_pages unset) before going into reclaim, * which is important when on a NUMA setup the allowed - * zones are together not big enough to reach the + * nodes are together not big enough to reach the * global limit. The proper fix for these situations - * will require awareness of zones in the + * will require awareness of nodes in the * dirty-throttling and the flusher threads. */ - if (ac->spread_dirty_pages && !zone_dirty_ok(zone)) + if (ac->spread_dirty_pages && !node_dirty_ok(zone->zone_pgdat)) continue; mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; @@ -6701,6 +6694,9 @@ static void calculate_totalreserve_pages(void) enum zone_type i, j; for_each_online_pgdat(pgdat) { + + pgdat->totalreserve_pages = 0; + for (i = 0; i < MAX_NR_ZONES; i++) { struct zone *zone = pgdat->node_zones + i; long max = 0; @@ -6717,7 +6713,7 @@ static void calculate_totalreserve_pages(void) if (max > zone->managed_pages) max = zone->managed_pages; - zone->totalreserve_pages = max; + pgdat->totalreserve_pages += max; reserve_pages += max; } |