diff options
author | Andrea Arcangeli <aarcange@redhat.com> | 2015-11-05 18:49:10 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2015-11-05 19:34:48 -0800 |
commit | f2e5ff85edea30a59b96cf9e20e8886991b0d097 (patch) | |
tree | 146d53bc0e561945541c95ba77149f8154f1f9a1 /mm/ksm.c | |
parent | ad12695f177c3403a64348b42718faf9727fe358 (diff) | |
download | linux-f2e5ff85edea30a59b96cf9e20e8886991b0d097.tar.bz2 |
ksm: don't fail stable tree lookups if walking over stale stable_nodes
The stable_nodes can become stale at any time if the underlying pages gets
freed. The stable_node gets collected and removed from the stable rbtree
if that is detected during the rbtree lookups.
Don't fail the lookup if running into stale stable_nodes, just restart the
lookup after collecting the stale stable_nodes. Otherwise the CPU spent
in the preparation stage is wasted and the lookup must be repeated at the
next loop potentially failing a second time in a second stale stable_node.
If we don't prune aggressively we delay the merging of the unstable node
candidates and at the same time we delay the freeing of the stale
stable_nodes. Keeping stale stable_nodes around wastes memory and it
can't provide any benefit.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Petr Holasek <pholasek@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/ksm.c')
-rw-r--r-- | mm/ksm.c | 32 |
1 files changed, 27 insertions, 5 deletions
@@ -1177,8 +1177,18 @@ again: cond_resched(); stable_node = rb_entry(*new, struct stable_node, node); tree_page = get_ksm_page(stable_node, false); - if (!tree_page) - return NULL; + if (!tree_page) { + /* + * If we walked over a stale stable_node, + * get_ksm_page() will call rb_erase() and it + * may rebalance the tree from under us. So + * restart the search from scratch. Returning + * NULL would be safe too, but we'd generate + * false negative insertions just because some + * stable_node was stale. + */ + goto again; + } ret = memcmp_pages(page, tree_page); put_page(tree_page); @@ -1254,12 +1264,14 @@ static struct stable_node *stable_tree_insert(struct page *kpage) unsigned long kpfn; struct rb_root *root; struct rb_node **new; - struct rb_node *parent = NULL; + struct rb_node *parent; struct stable_node *stable_node; kpfn = page_to_pfn(kpage); nid = get_kpfn_nid(kpfn); root = root_stable_tree + nid; +again: + parent = NULL; new = &root->rb_node; while (*new) { @@ -1269,8 +1281,18 @@ static struct stable_node *stable_tree_insert(struct page *kpage) cond_resched(); stable_node = rb_entry(*new, struct stable_node, node); tree_page = get_ksm_page(stable_node, false); - if (!tree_page) - return NULL; + if (!tree_page) { + /* + * If we walked over a stale stable_node, + * get_ksm_page() will call rb_erase() and it + * may rebalance the tree from under us. So + * restart the search from scratch. Returning + * NULL would be safe too, but we'd generate + * false negative insertions just because some + * stable_node was stale. + */ + goto again; + } ret = memcmp_pages(kpage, tree_page); put_page(tree_page); |