diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2015-11-05 23:10:54 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2015-11-05 23:10:54 -0800 |
commit | 2e3078af2c67730c479f1d183af5b367f5d95337 (patch) | |
tree | b7881c6c9c479aadac345df7e18e3c0e10f0811e /mm/hugetlb.c | |
parent | ea5c58e70c3a148ada0d3061a8f529589bb766ba (diff) | |
parent | b3b0d09c7a2330759ac293f5269bd932439ea0ff (diff) | |
download | linux-2e3078af2c67730c479f1d183af5b367f5d95337.tar.bz2 |
Merge branch 'akpm' (patches from Andrew)
Merge patch-bomb from Andrew Morton:
- inotify tweaks
- some ocfs2 updates (many more are awaiting review)
- various misc bits
- kernel/watchdog.c updates
- Some of mm. I have a huge number of MM patches this time and quite a
lot of it is quite difficult and much will be held over to next time.
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (162 commits)
selftests: vm: add tests for lock on fault
mm: mlock: add mlock flags to enable VM_LOCKONFAULT usage
mm: introduce VM_LOCKONFAULT
mm: mlock: add new mlock system call
mm: mlock: refactor mlock, munlock, and munlockall code
kasan: always taint kernel on report
mm, slub, kasan: enable user tracking by default with KASAN=y
kasan: use IS_ALIGNED in memory_is_poisoned_8()
kasan: Fix a type conversion error
lib: test_kasan: add some testcases
kasan: update reference to kasan prototype repo
kasan: move KASAN_SANITIZE in arch/x86/boot/Makefile
kasan: various fixes in documentation
kasan: update log messages
kasan: accurately determine the type of the bad access
kasan: update reported bug types for kernel memory accesses
kasan: update reported bug types for not user nor kernel memory accesses
mm/kasan: prevent deadlock in kasan reporting
mm/kasan: don't use kasan shadow pointer in generic functions
mm/kasan: MODULE_VADDR is not available on all archs
...
Diffstat (limited to 'mm/hugetlb.c')
-rw-r--r-- | mm/hugetlb.c | 139 |
1 files changed, 124 insertions, 15 deletions
diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 9cc773483624..74ef0c6a25dd 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -1437,7 +1437,82 @@ void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) dissolve_free_huge_page(pfn_to_page(pfn)); } -static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) +/* + * There are 3 ways this can get called: + * 1. With vma+addr: we use the VMA's memory policy + * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge + * page from any node, and let the buddy allocator itself figure + * it out. + * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page + * strictly from 'nid' + */ +static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h, + struct vm_area_struct *vma, unsigned long addr, int nid) +{ + int order = huge_page_order(h); + gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN; + unsigned int cpuset_mems_cookie; + + /* + * We need a VMA to get a memory policy. If we do not + * have one, we use the 'nid' argument. + * + * The mempolicy stuff below has some non-inlined bits + * and calls ->vm_ops. That makes it hard to optimize at + * compile-time, even when NUMA is off and it does + * nothing. This helps the compiler optimize it out. + */ + if (!IS_ENABLED(CONFIG_NUMA) || !vma) { + /* + * If a specific node is requested, make sure to + * get memory from there, but only when a node + * is explicitly specified. + */ + if (nid != NUMA_NO_NODE) + gfp |= __GFP_THISNODE; + /* + * Make sure to call something that can handle + * nid=NUMA_NO_NODE + */ + return alloc_pages_node(nid, gfp, order); + } + + /* + * OK, so we have a VMA. Fetch the mempolicy and try to + * allocate a huge page with it. We will only reach this + * when CONFIG_NUMA=y. + */ + do { + struct page *page; + struct mempolicy *mpol; + struct zonelist *zl; + nodemask_t *nodemask; + + cpuset_mems_cookie = read_mems_allowed_begin(); + zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask); + mpol_cond_put(mpol); + page = __alloc_pages_nodemask(gfp, order, zl, nodemask); + if (page) + return page; + } while (read_mems_allowed_retry(cpuset_mems_cookie)); + + return NULL; +} + +/* + * There are two ways to allocate a huge page: + * 1. When you have a VMA and an address (like a fault) + * 2. When you have no VMA (like when setting /proc/.../nr_hugepages) + * + * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in + * this case which signifies that the allocation should be done with + * respect for the VMA's memory policy. + * + * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This + * implies that memory policies will not be taken in to account. + */ +static struct page *__alloc_buddy_huge_page(struct hstate *h, + struct vm_area_struct *vma, unsigned long addr, int nid) { struct page *page; unsigned int r_nid; @@ -1446,6 +1521,15 @@ static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) return NULL; /* + * Make sure that anyone specifying 'nid' is not also specifying a VMA. + * This makes sure the caller is picking _one_ of the modes with which + * we can call this function, not both. + */ + if (vma || (addr != -1)) { + VM_WARN_ON_ONCE(addr == -1); + VM_WARN_ON_ONCE(nid != NUMA_NO_NODE); + } + /* * Assume we will successfully allocate the surplus page to * prevent racing processes from causing the surplus to exceed * overcommit @@ -1478,14 +1562,7 @@ static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) } spin_unlock(&hugetlb_lock); - if (nid == NUMA_NO_NODE) - page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP| - __GFP_REPEAT|__GFP_NOWARN, - huge_page_order(h)); - else - page = __alloc_pages_node(nid, - htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| - __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); + page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid); spin_lock(&hugetlb_lock); if (page) { @@ -1510,6 +1587,29 @@ static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) } /* + * Allocate a huge page from 'nid'. Note, 'nid' may be + * NUMA_NO_NODE, which means that it may be allocated + * anywhere. + */ +static +struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid) +{ + unsigned long addr = -1; + + return __alloc_buddy_huge_page(h, NULL, addr, nid); +} + +/* + * Use the VMA's mpolicy to allocate a huge page from the buddy. + */ +static +struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h, + struct vm_area_struct *vma, unsigned long addr) +{ + return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE); +} + +/* * This allocation function is useful in the context where vma is irrelevant. * E.g. soft-offlining uses this function because it only cares physical * address of error page. @@ -1524,7 +1624,7 @@ struct page *alloc_huge_page_node(struct hstate *h, int nid) spin_unlock(&hugetlb_lock); if (!page) - page = alloc_buddy_huge_page(h, nid); + page = __alloc_buddy_huge_page_no_mpol(h, nid); return page; } @@ -1554,7 +1654,7 @@ static int gather_surplus_pages(struct hstate *h, int delta) retry: spin_unlock(&hugetlb_lock); for (i = 0; i < needed; i++) { - page = alloc_buddy_huge_page(h, NUMA_NO_NODE); + page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE); if (!page) { alloc_ok = false; break; @@ -1787,7 +1887,7 @@ struct page *alloc_huge_page(struct vm_area_struct *vma, page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); if (!page) { spin_unlock(&hugetlb_lock); - page = alloc_buddy_huge_page(h, NUMA_NO_NODE); + page = __alloc_buddy_huge_page_with_mpol(h, vma, addr); if (!page) goto out_uncharge_cgroup; @@ -2376,7 +2476,7 @@ struct node_hstate { struct kobject *hugepages_kobj; struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; }; -struct node_hstate node_hstates[MAX_NUMNODES]; +static struct node_hstate node_hstates[MAX_NUMNODES]; /* * A subset of global hstate attributes for node devices @@ -2790,6 +2890,12 @@ void hugetlb_show_meminfo(void) 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); } +void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) +{ + seq_printf(m, "HugetlbPages:\t%8lu kB\n", + atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); +} + /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ unsigned long hugetlb_total_pages(void) { @@ -3025,6 +3131,7 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, get_page(ptepage); page_dup_rmap(ptepage); set_huge_pte_at(dst, addr, dst_pte, entry); + hugetlb_count_add(pages_per_huge_page(h), dst); } spin_unlock(src_ptl); spin_unlock(dst_ptl); @@ -3105,6 +3212,7 @@ again: if (huge_pte_dirty(pte)) set_page_dirty(page); + hugetlb_count_sub(pages_per_huge_page(h), mm); page_remove_rmap(page); force_flush = !__tlb_remove_page(tlb, page); if (force_flush) { @@ -3509,6 +3617,7 @@ retry: && (vma->vm_flags & VM_SHARED))); set_huge_pte_at(mm, address, ptep, new_pte); + hugetlb_count_add(pages_per_huge_page(h), mm); if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { /* Optimization, do the COW without a second fault */ ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl); @@ -4028,8 +4137,8 @@ static unsigned long page_table_shareable(struct vm_area_struct *svma, unsigned long s_end = sbase + PUD_SIZE; /* Allow segments to share if only one is marked locked */ - unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED; - unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED; + unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; + unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; /* * match the virtual addresses, permission and the alignment of the |