summaryrefslogtreecommitdiffstats
path: root/mm/hugetlb.c
diff options
context:
space:
mode:
authorDavidlohr Bueso <dave@stgolabs.net>2014-12-12 16:54:24 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2014-12-13 12:42:45 -0800
commitc8c06efa8b552608493b7066c234cfa82c47fcea (patch)
tree7e206c669149766fb5a77a3ef85cdd4fac63be78 /mm/hugetlb.c
parent83cde9e8ba95d180eaefefe834958fbf7008cf39 (diff)
downloadlinux-c8c06efa8b552608493b7066c234cfa82c47fcea.tar.bz2
mm: convert i_mmap_mutex to rwsem
The i_mmap_mutex is a close cousin of the anon vma lock, both protecting similar data, one for file backed pages and the other for anon memory. To this end, this lock can also be a rwsem. In addition, there are some important opportunities to share the lock when there are no tree modifications. This conversion is straightforward. For now, all users take the write lock. [sfr@canb.auug.org.au: update fremap.c] Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: "Kirill A. Shutemov" <kirill@shutemov.name> Acked-by: Hugh Dickins <hughd@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/hugetlb.c')
-rw-r--r--mm/hugetlb.c10
1 files changed, 5 insertions, 5 deletions
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index ffe19304cc09..989cb032eaf5 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -2726,9 +2726,9 @@ void __unmap_hugepage_range_final(struct mmu_gather *tlb,
* on its way out. We're lucky that the flag has such an appropriate
* name, and can in fact be safely cleared here. We could clear it
* before the __unmap_hugepage_range above, but all that's necessary
- * is to clear it before releasing the i_mmap_mutex. This works
+ * is to clear it before releasing the i_mmap_rwsem. This works
* because in the context this is called, the VMA is about to be
- * destroyed and the i_mmap_mutex is held.
+ * destroyed and the i_mmap_rwsem is held.
*/
vma->vm_flags &= ~VM_MAYSHARE;
}
@@ -3370,9 +3370,9 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
spin_unlock(ptl);
}
/*
- * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
+ * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
* may have cleared our pud entry and done put_page on the page table:
- * once we release i_mmap_mutex, another task can do the final put_page
+ * once we release i_mmap_rwsem, another task can do the final put_page
* and that page table be reused and filled with junk.
*/
flush_tlb_range(vma, start, end);
@@ -3525,7 +3525,7 @@ static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
* and returns the corresponding pte. While this is not necessary for the
* !shared pmd case because we can allocate the pmd later as well, it makes the
* code much cleaner. pmd allocation is essential for the shared case because
- * pud has to be populated inside the same i_mmap_mutex section - otherwise
+ * pud has to be populated inside the same i_mmap_rwsem section - otherwise
* racing tasks could either miss the sharing (see huge_pte_offset) or select a
* bad pmd for sharing.
*/