diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2012-12-17 13:39:11 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2012-12-17 13:39:11 -0800 |
commit | 9228ff90387e276ad67b10c0eb525c9d6a57d5e9 (patch) | |
tree | e7c87b68daba7cf7ca4c342c6b52165bd78fbe16 /lib | |
parent | 9360b53661a2c7754517b2925580055bacc8ec38 (diff) | |
parent | d2ec180c23a5a1bfe34d8638b0342a47c00cf70f (diff) | |
download | linux-9228ff90387e276ad67b10c0eb525c9d6a57d5e9.tar.bz2 |
Merge branch 'for-3.8/drivers' of git://git.kernel.dk/linux-block
Pull block driver update from Jens Axboe:
"Now that the core bits are in, here are the driver bits for 3.8. The
branch contains:
- A huge pile of drbd bits that were dumped from the 3.7 merge
window. Following that, it was both made perfectly clear that
there is going to be no more over-the-wall pulls and how the
situation on individual pulls can be improved.
- A few cleanups from Akinobu Mita for drbd and cciss.
- Queue improvement for loop from Lukas. This grew into adding a
generic interface for waiting/checking an even with a specific
lock, allowing this to be pulled out of md and now loop and drbd is
also using it.
- A few fixes for xen back/front block driver from Roger Pau Monne.
- Partition improvements from Stephen Warren, allowing partiion UUID
to be used as an identifier."
* 'for-3.8/drivers' of git://git.kernel.dk/linux-block: (609 commits)
drbd: update Kconfig to match current dependencies
drbd: Fix drbdsetup wait-connect, wait-sync etc... commands
drbd: close race between drbd_set_role and drbd_connect
drbd: respect no-md-barriers setting also when changed online via disk-options
drbd: Remove obsolete check
drbd: fixup after wait_even_lock_irq() addition to generic code
loop: Limit the number of requests in the bio list
wait: add wait_event_lock_irq() interface
xen-blkfront: free allocated page
xen-blkback: move free persistent grants code
block: partition: msdos: provide UUIDs for partitions
init: reduce PARTUUID min length to 1 from 36
block: store partition_meta_info.uuid as a string
cciss: use check_signature()
cciss: cleanup bitops usage
drbd: use copy_highpage
drbd: if the replication link breaks during handshake, keep retrying
drbd: check return of kmalloc in receive_uuids
drbd: Broadcast sync progress no more often than once per second
drbd: don't try to clear bits once the disk has failed
...
Diffstat (limited to 'lib')
-rw-r--r-- | lib/lru_cache.c | 359 |
1 files changed, 225 insertions, 134 deletions
diff --git a/lib/lru_cache.c b/lib/lru_cache.c index a07e7268d7ed..d71d89498943 100644 --- a/lib/lru_cache.c +++ b/lib/lru_cache.c @@ -44,8 +44,8 @@ MODULE_LICENSE("GPL"); } while (0) #define RETURN(x...) do { \ - clear_bit(__LC_PARANOIA, &lc->flags); \ - smp_mb__after_clear_bit(); return x ; } while (0) + clear_bit_unlock(__LC_PARANOIA, &lc->flags); \ + return x ; } while (0) /* BUG() if e is not one of the elements tracked by lc */ #define PARANOIA_LC_ELEMENT(lc, e) do { \ @@ -55,9 +55,40 @@ MODULE_LICENSE("GPL"); BUG_ON(i >= lc_->nr_elements); \ BUG_ON(lc_->lc_element[i] != e_); } while (0) + +/* We need to atomically + * - try to grab the lock (set LC_LOCKED) + * - only if there is no pending transaction + * (neither LC_DIRTY nor LC_STARVING is set) + * Because of PARANOIA_ENTRY() above abusing lc->flags as well, + * it is not sufficient to just say + * return 0 == cmpxchg(&lc->flags, 0, LC_LOCKED); + */ +int lc_try_lock(struct lru_cache *lc) +{ + unsigned long val; + do { + val = cmpxchg(&lc->flags, 0, LC_LOCKED); + } while (unlikely (val == LC_PARANOIA)); + /* Spin until no-one is inside a PARANOIA_ENTRY()/RETURN() section. */ + return 0 == val; +#if 0 + /* Alternative approach, spin in case someone enters or leaves a + * PARANOIA_ENTRY()/RETURN() section. */ + unsigned long old, new, val; + do { + old = lc->flags & LC_PARANOIA; + new = old | LC_LOCKED; + val = cmpxchg(&lc->flags, old, new); + } while (unlikely (val == (old ^ LC_PARANOIA))); + return old == val; +#endif +} + /** * lc_create - prepares to track objects in an active set * @name: descriptive name only used in lc_seq_printf_stats and lc_seq_dump_details + * @max_pending_changes: maximum changes to accumulate until a transaction is required * @e_count: number of elements allowed to be active simultaneously * @e_size: size of the tracked objects * @e_off: offset to the &struct lc_element member in a tracked object @@ -66,6 +97,7 @@ MODULE_LICENSE("GPL"); * or NULL on (allocation) failure. */ struct lru_cache *lc_create(const char *name, struct kmem_cache *cache, + unsigned max_pending_changes, unsigned e_count, size_t e_size, size_t e_off) { struct hlist_head *slot = NULL; @@ -98,12 +130,13 @@ struct lru_cache *lc_create(const char *name, struct kmem_cache *cache, INIT_LIST_HEAD(&lc->in_use); INIT_LIST_HEAD(&lc->lru); INIT_LIST_HEAD(&lc->free); + INIT_LIST_HEAD(&lc->to_be_changed); lc->name = name; lc->element_size = e_size; lc->element_off = e_off; lc->nr_elements = e_count; - lc->new_number = LC_FREE; + lc->max_pending_changes = max_pending_changes; lc->lc_cache = cache; lc->lc_element = element; lc->lc_slot = slot; @@ -117,6 +150,7 @@ struct lru_cache *lc_create(const char *name, struct kmem_cache *cache, e = p + e_off; e->lc_index = i; e->lc_number = LC_FREE; + e->lc_new_number = LC_FREE; list_add(&e->list, &lc->free); element[i] = e; } @@ -175,15 +209,15 @@ void lc_reset(struct lru_cache *lc) INIT_LIST_HEAD(&lc->in_use); INIT_LIST_HEAD(&lc->lru); INIT_LIST_HEAD(&lc->free); + INIT_LIST_HEAD(&lc->to_be_changed); lc->used = 0; lc->hits = 0; lc->misses = 0; lc->starving = 0; - lc->dirty = 0; + lc->locked = 0; lc->changed = 0; + lc->pending_changes = 0; lc->flags = 0; - lc->changing_element = NULL; - lc->new_number = LC_FREE; memset(lc->lc_slot, 0, sizeof(struct hlist_head) * lc->nr_elements); for (i = 0; i < lc->nr_elements; i++) { @@ -194,6 +228,7 @@ void lc_reset(struct lru_cache *lc) /* re-init it */ e->lc_index = i; e->lc_number = LC_FREE; + e->lc_new_number = LC_FREE; list_add(&e->list, &lc->free); } } @@ -208,14 +243,14 @@ size_t lc_seq_printf_stats(struct seq_file *seq, struct lru_cache *lc) /* NOTE: * total calls to lc_get are * (starving + hits + misses) - * misses include "dirty" count (update from an other thread in + * misses include "locked" count (update from an other thread in * progress) and "changed", when this in fact lead to an successful * update of the cache. */ return seq_printf(seq, "\t%s: used:%u/%u " - "hits:%lu misses:%lu starving:%lu dirty:%lu changed:%lu\n", + "hits:%lu misses:%lu starving:%lu locked:%lu changed:%lu\n", lc->name, lc->used, lc->nr_elements, - lc->hits, lc->misses, lc->starving, lc->dirty, lc->changed); + lc->hits, lc->misses, lc->starving, lc->locked, lc->changed); } static struct hlist_head *lc_hash_slot(struct lru_cache *lc, unsigned int enr) @@ -224,16 +259,8 @@ static struct hlist_head *lc_hash_slot(struct lru_cache *lc, unsigned int enr) } -/** - * lc_find - find element by label, if present in the hash table - * @lc: The lru_cache object - * @enr: element number - * - * Returns the pointer to an element, if the element with the requested - * "label" or element number is present in the hash table, - * or NULL if not found. Does not change the refcnt. - */ -struct lc_element *lc_find(struct lru_cache *lc, unsigned int enr) +static struct lc_element *__lc_find(struct lru_cache *lc, unsigned int enr, + bool include_changing) { struct hlist_node *n; struct lc_element *e; @@ -241,29 +268,48 @@ struct lc_element *lc_find(struct lru_cache *lc, unsigned int enr) BUG_ON(!lc); BUG_ON(!lc->nr_elements); hlist_for_each_entry(e, n, lc_hash_slot(lc, enr), colision) { - if (e->lc_number == enr) + /* "about to be changed" elements, pending transaction commit, + * are hashed by their "new number". "Normal" elements have + * lc_number == lc_new_number. */ + if (e->lc_new_number != enr) + continue; + if (e->lc_new_number == e->lc_number || include_changing) return e; + break; } return NULL; } -/* returned element will be "recycled" immediately */ -static struct lc_element *lc_evict(struct lru_cache *lc) +/** + * lc_find - find element by label, if present in the hash table + * @lc: The lru_cache object + * @enr: element number + * + * Returns the pointer to an element, if the element with the requested + * "label" or element number is present in the hash table, + * or NULL if not found. Does not change the refcnt. + * Ignores elements that are "about to be used", i.e. not yet in the active + * set, but still pending transaction commit. + */ +struct lc_element *lc_find(struct lru_cache *lc, unsigned int enr) { - struct list_head *n; - struct lc_element *e; - - if (list_empty(&lc->lru)) - return NULL; - - n = lc->lru.prev; - e = list_entry(n, struct lc_element, list); - - PARANOIA_LC_ELEMENT(lc, e); + return __lc_find(lc, enr, 0); +} - list_del(&e->list); - hlist_del(&e->colision); - return e; +/** + * lc_is_used - find element by label + * @lc: The lru_cache object + * @enr: element number + * + * Returns true, if the element with the requested "label" or element number is + * present in the hash table, and is used (refcnt > 0). + * Also finds elements that are not _currently_ used but only "about to be + * used", i.e. on the "to_be_changed" list, pending transaction commit. + */ +bool lc_is_used(struct lru_cache *lc, unsigned int enr) +{ + struct lc_element *e = __lc_find(lc, enr, 1); + return e && e->refcnt; } /** @@ -280,22 +326,34 @@ void lc_del(struct lru_cache *lc, struct lc_element *e) PARANOIA_LC_ELEMENT(lc, e); BUG_ON(e->refcnt); - e->lc_number = LC_FREE; + e->lc_number = e->lc_new_number = LC_FREE; hlist_del_init(&e->colision); list_move(&e->list, &lc->free); RETURN(); } -static struct lc_element *lc_get_unused_element(struct lru_cache *lc) +static struct lc_element *lc_prepare_for_change(struct lru_cache *lc, unsigned new_number) { struct list_head *n; + struct lc_element *e; + + if (!list_empty(&lc->free)) + n = lc->free.next; + else if (!list_empty(&lc->lru)) + n = lc->lru.prev; + else + return NULL; + + e = list_entry(n, struct lc_element, list); + PARANOIA_LC_ELEMENT(lc, e); - if (list_empty(&lc->free)) - return lc_evict(lc); + e->lc_new_number = new_number; + if (!hlist_unhashed(&e->colision)) + __hlist_del(&e->colision); + hlist_add_head(&e->colision, lc_hash_slot(lc, new_number)); + list_move(&e->list, &lc->to_be_changed); - n = lc->free.next; - list_del(n); - return list_entry(n, struct lc_element, list); + return e; } static int lc_unused_element_available(struct lru_cache *lc) @@ -308,45 +366,7 @@ static int lc_unused_element_available(struct lru_cache *lc) return 0; } - -/** - * lc_get - get element by label, maybe change the active set - * @lc: the lru cache to operate on - * @enr: the label to look up - * - * Finds an element in the cache, increases its usage count, - * "touches" and returns it. - * - * In case the requested number is not present, it needs to be added to the - * cache. Therefore it is possible that an other element becomes evicted from - * the cache. In either case, the user is notified so he is able to e.g. keep - * a persistent log of the cache changes, and therefore the objects in use. - * - * Return values: - * NULL - * The cache was marked %LC_STARVING, - * or the requested label was not in the active set - * and a changing transaction is still pending (@lc was marked %LC_DIRTY). - * Or no unused or free element could be recycled (@lc will be marked as - * %LC_STARVING, blocking further lc_get() operations). - * - * pointer to the element with the REQUESTED element number. - * In this case, it can be used right away - * - * pointer to an UNUSED element with some different element number, - * where that different number may also be %LC_FREE. - * - * In this case, the cache is marked %LC_DIRTY (blocking further changes), - * and the returned element pointer is removed from the lru list and - * hash collision chains. The user now should do whatever housekeeping - * is necessary. - * Then he must call lc_changed(lc,element_pointer), to finish - * the change. - * - * NOTE: The user needs to check the lc_number on EACH use, so he recognizes - * any cache set change. - */ -struct lc_element *lc_get(struct lru_cache *lc, unsigned int enr) +static struct lc_element *__lc_get(struct lru_cache *lc, unsigned int enr, bool may_change) { struct lc_element *e; @@ -356,8 +376,12 @@ struct lc_element *lc_get(struct lru_cache *lc, unsigned int enr) RETURN(NULL); } - e = lc_find(lc, enr); - if (e) { + e = __lc_find(lc, enr, 1); + /* if lc_new_number != lc_number, + * this enr is currently being pulled in already, + * and will be available once the pending transaction + * has been committed. */ + if (e && e->lc_new_number == e->lc_number) { ++lc->hits; if (e->refcnt++ == 0) lc->used++; @@ -366,6 +390,26 @@ struct lc_element *lc_get(struct lru_cache *lc, unsigned int enr) } ++lc->misses; + if (!may_change) + RETURN(NULL); + + /* It has been found above, but on the "to_be_changed" list, not yet + * committed. Don't pull it in twice, wait for the transaction, then + * try again */ + if (e) + RETURN(NULL); + + /* To avoid races with lc_try_lock(), first, mark us dirty + * (using test_and_set_bit, as it implies memory barriers), ... */ + test_and_set_bit(__LC_DIRTY, &lc->flags); + + /* ... only then check if it is locked anyways. If lc_unlock clears + * the dirty bit again, that's not a problem, we will come here again. + */ + if (test_bit(__LC_LOCKED, &lc->flags)) { + ++lc->locked; + RETURN(NULL); + } /* In case there is nothing available and we can not kick out * the LRU element, we have to wait ... @@ -375,71 +419,109 @@ struct lc_element *lc_get(struct lru_cache *lc, unsigned int enr) RETURN(NULL); } - /* it was not present in the active set. - * we are going to recycle an unused (or even "free") element. - * user may need to commit a transaction to record that change. - * we serialize on flags & TF_DIRTY */ - if (test_and_set_bit(__LC_DIRTY, &lc->flags)) { - ++lc->dirty; + /* It was not present in the active set. We are going to recycle an + * unused (or even "free") element, but we won't accumulate more than + * max_pending_changes changes. */ + if (lc->pending_changes >= lc->max_pending_changes) RETURN(NULL); - } - e = lc_get_unused_element(lc); + e = lc_prepare_for_change(lc, enr); BUG_ON(!e); clear_bit(__LC_STARVING, &lc->flags); BUG_ON(++e->refcnt != 1); lc->used++; - - lc->changing_element = e; - lc->new_number = enr; + lc->pending_changes++; RETURN(e); } -/* similar to lc_get, - * but only gets a new reference on an existing element. - * you either get the requested element, or NULL. - * will be consolidated into one function. +/** + * lc_get - get element by label, maybe change the active set + * @lc: the lru cache to operate on + * @enr: the label to look up + * + * Finds an element in the cache, increases its usage count, + * "touches" and returns it. + * + * In case the requested number is not present, it needs to be added to the + * cache. Therefore it is possible that an other element becomes evicted from + * the cache. In either case, the user is notified so he is able to e.g. keep + * a persistent log of the cache changes, and therefore the objects in use. + * + * Return values: + * NULL + * The cache was marked %LC_STARVING, + * or the requested label was not in the active set + * and a changing transaction is still pending (@lc was marked %LC_DIRTY). + * Or no unused or free element could be recycled (@lc will be marked as + * %LC_STARVING, blocking further lc_get() operations). + * + * pointer to the element with the REQUESTED element number. + * In this case, it can be used right away + * + * pointer to an UNUSED element with some different element number, + * where that different number may also be %LC_FREE. + * + * In this case, the cache is marked %LC_DIRTY, + * so lc_try_lock() will no longer succeed. + * The returned element pointer is moved to the "to_be_changed" list, + * and registered with the new element number on the hash collision chains, + * so it is possible to pick it up from lc_is_used(). + * Up to "max_pending_changes" (see lc_create()) can be accumulated. + * The user now should do whatever housekeeping is necessary, + * typically serialize on lc_try_lock_for_transaction(), then call + * lc_committed(lc) and lc_unlock(), to finish the change. + * + * NOTE: The user needs to check the lc_number on EACH use, so he recognizes + * any cache set change. */ -struct lc_element *lc_try_get(struct lru_cache *lc, unsigned int enr) +struct lc_element *lc_get(struct lru_cache *lc, unsigned int enr) { - struct lc_element *e; - - PARANOIA_ENTRY(); - if (lc->flags & LC_STARVING) { - ++lc->starving; - RETURN(NULL); - } + return __lc_get(lc, enr, 1); +} - e = lc_find(lc, enr); - if (e) { - ++lc->hits; - if (e->refcnt++ == 0) - lc->used++; - list_move(&e->list, &lc->in_use); /* Not evictable... */ - } - RETURN(e); +/** + * lc_try_get - get element by label, if present; do not change the active set + * @lc: the lru cache to operate on + * @enr: the label to look up + * + * Finds an element in the cache, increases its usage count, + * "touches" and returns it. + * + * Return values: + * NULL + * The cache was marked %LC_STARVING, + * or the requested label was not in the active set + * + * pointer to the element with the REQUESTED element number. + * In this case, it can be used right away + */ +struct lc_element *lc_try_get(struct lru_cache *lc, unsigned int enr) +{ + return __lc_get(lc, enr, 0); } /** - * lc_changed - tell @lc that the change has been recorded + * lc_committed - tell @lc that pending changes have been recorded * @lc: the lru cache to operate on - * @e: the element pending label change + * + * User is expected to serialize on explicit lc_try_lock_for_transaction() + * before the transaction is started, and later needs to lc_unlock() explicitly + * as well. */ -void lc_changed(struct lru_cache *lc, struct lc_element *e) +void lc_committed(struct lru_cache *lc) { + struct lc_element *e, *tmp; + PARANOIA_ENTRY(); - BUG_ON(e != lc->changing_element); - PARANOIA_LC_ELEMENT(lc, e); - ++lc->changed; - e->lc_number = lc->new_number; - list_add(&e->list, &lc->in_use); - hlist_add_head(&e->colision, lc_hash_slot(lc, lc->new_number)); - lc->changing_element = NULL; - lc->new_number = LC_FREE; - clear_bit(__LC_DIRTY, &lc->flags); - smp_mb__after_clear_bit(); + list_for_each_entry_safe(e, tmp, &lc->to_be_changed, list) { + /* count number of changes, not number of transactions */ + ++lc->changed; + e->lc_number = e->lc_new_number; + list_move(&e->list, &lc->in_use); + } + lc->pending_changes = 0; RETURN(); } @@ -458,13 +540,12 @@ unsigned int lc_put(struct lru_cache *lc, struct lc_element *e) PARANOIA_ENTRY(); PARANOIA_LC_ELEMENT(lc, e); BUG_ON(e->refcnt == 0); - BUG_ON(e == lc->changing_element); + BUG_ON(e->lc_number != e->lc_new_number); if (--e->refcnt == 0) { /* move it to the front of LRU. */ list_move(&e->list, &lc->lru); lc->used--; - clear_bit(__LC_STARVING, &lc->flags); - smp_mb__after_clear_bit(); + clear_bit_unlock(__LC_STARVING, &lc->flags); } RETURN(e->refcnt); } @@ -504,16 +585,24 @@ unsigned int lc_index_of(struct lru_cache *lc, struct lc_element *e) void lc_set(struct lru_cache *lc, unsigned int enr, int index) { struct lc_element *e; + struct list_head *lh; if (index < 0 || index >= lc->nr_elements) return; e = lc_element_by_index(lc, index); - e->lc_number = enr; + BUG_ON(e->lc_number != e->lc_new_number); + BUG_ON(e->refcnt != 0); + e->lc_number = e->lc_new_number = enr; hlist_del_init(&e->colision); - hlist_add_head(&e->colision, lc_hash_slot(lc, enr)); - list_move(&e->list, e->refcnt ? &lc->in_use : &lc->lru); + if (enr == LC_FREE) + lh = &lc->free; + else { + hlist_add_head(&e->colision, lc_hash_slot(lc, enr)); + lh = &lc->lru; + } + list_move(&e->list, lh); } /** @@ -553,8 +642,10 @@ EXPORT_SYMBOL(lc_try_get); EXPORT_SYMBOL(lc_find); EXPORT_SYMBOL(lc_get); EXPORT_SYMBOL(lc_put); -EXPORT_SYMBOL(lc_changed); +EXPORT_SYMBOL(lc_committed); EXPORT_SYMBOL(lc_element_by_index); EXPORT_SYMBOL(lc_index_of); EXPORT_SYMBOL(lc_seq_printf_stats); EXPORT_SYMBOL(lc_seq_dump_details); +EXPORT_SYMBOL(lc_try_lock); +EXPORT_SYMBOL(lc_is_used); |