diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2020-12-20 10:44:05 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2020-12-20 10:44:05 -0800 |
commit | 6a447b0e3151893f6d4a889956553c06d2e775c6 (patch) | |
tree | 0f0c149c03dd8c2e9a5fbe01d6de528b2724893e /kernel | |
parent | f4a2f7866faaf89ea1595b136e01fcb336b46aab (diff) | |
parent | d45f89f7437d0f2c8275b4434096164db106384d (diff) | |
download | linux-6a447b0e3151893f6d4a889956553c06d2e775c6.tar.bz2 |
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"Much x86 work was pushed out to 5.12, but ARM more than made up for it.
ARM:
- PSCI relay at EL2 when "protected KVM" is enabled
- New exception injection code
- Simplification of AArch32 system register handling
- Fix PMU accesses when no PMU is enabled
- Expose CSV3 on non-Meltdown hosts
- Cache hierarchy discovery fixes
- PV steal-time cleanups
- Allow function pointers at EL2
- Various host EL2 entry cleanups
- Simplification of the EL2 vector allocation
s390:
- memcg accouting for s390 specific parts of kvm and gmap
- selftest for diag318
- new kvm_stat for when async_pf falls back to sync
x86:
- Tracepoints for the new pagetable code from 5.10
- Catch VFIO and KVM irqfd events before userspace
- Reporting dirty pages to userspace with a ring buffer
- SEV-ES host support
- Nested VMX support for wait-for-SIPI activity state
- New feature flag (AVX512 FP16)
- New system ioctl to report Hyper-V-compatible paravirtualization features
Generic:
- Selftest improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (171 commits)
KVM: SVM: fix 32-bit compilation
KVM: SVM: Add AP_JUMP_TABLE support in prep for AP booting
KVM: SVM: Provide support to launch and run an SEV-ES guest
KVM: SVM: Provide an updated VMRUN invocation for SEV-ES guests
KVM: SVM: Provide support for SEV-ES vCPU loading
KVM: SVM: Provide support for SEV-ES vCPU creation/loading
KVM: SVM: Update ASID allocation to support SEV-ES guests
KVM: SVM: Set the encryption mask for the SVM host save area
KVM: SVM: Add NMI support for an SEV-ES guest
KVM: SVM: Guest FPU state save/restore not needed for SEV-ES guest
KVM: SVM: Do not report support for SMM for an SEV-ES guest
KVM: x86: Update __get_sregs() / __set_sregs() to support SEV-ES
KVM: SVM: Add support for CR8 write traps for an SEV-ES guest
KVM: SVM: Add support for CR4 write traps for an SEV-ES guest
KVM: SVM: Add support for CR0 write traps for an SEV-ES guest
KVM: SVM: Add support for EFER write traps for an SEV-ES guest
KVM: SVM: Support string IO operations for an SEV-ES guest
KVM: SVM: Support MMIO for an SEV-ES guest
KVM: SVM: Create trace events for VMGEXIT MSR protocol processing
KVM: SVM: Create trace events for VMGEXIT processing
...
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/sched/wait.c | 17 |
1 files changed, 16 insertions, 1 deletions
diff --git a/kernel/sched/wait.c b/kernel/sched/wait.c index 01f5d3020589..183cc6ae68a6 100644 --- a/kernel/sched/wait.c +++ b/kernel/sched/wait.c @@ -37,6 +37,17 @@ void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue } EXPORT_SYMBOL(add_wait_queue_exclusive); +void add_wait_queue_priority(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) +{ + unsigned long flags; + + wq_entry->flags |= WQ_FLAG_EXCLUSIVE | WQ_FLAG_PRIORITY; + spin_lock_irqsave(&wq_head->lock, flags); + __add_wait_queue(wq_head, wq_entry); + spin_unlock_irqrestore(&wq_head->lock, flags); +} +EXPORT_SYMBOL_GPL(add_wait_queue_priority); + void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) { unsigned long flags; @@ -57,7 +68,11 @@ EXPORT_SYMBOL(remove_wait_queue); /* * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve - * number) then we wake all the non-exclusive tasks and one exclusive task. + * number) then we wake that number of exclusive tasks, and potentially all + * the non-exclusive tasks. Normally, exclusive tasks will be at the end of + * the list and any non-exclusive tasks will be woken first. A priority task + * may be at the head of the list, and can consume the event without any other + * tasks being woken. * * There are circumstances in which we can try to wake a task which has already * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns |