diff options
author | Peter Zijlstra <peterz@infradead.org> | 2015-11-17 19:01:11 +0100 |
---|---|---|
committer | Ingo Molnar <mingo@kernel.org> | 2015-12-04 10:33:41 +0100 |
commit | 8643cda549ca49a403160892db68504569ac9052 (patch) | |
tree | e6a333ec181b60487584cbb3bca73e202d69c349 /kernel/sched | |
parent | b3e0b1b6d841a4b2f64fc09ea728913da8218424 (diff) | |
download | linux-8643cda549ca49a403160892db68504569ac9052.tar.bz2 |
sched/core, locking: Document Program-Order guarantees
These are some notes on the scheduler locking and how it provides
program order guarantees on SMP systems.
( This commit is in the locking tree, because the new documentation
refers to a newly introduced locking primitive. )
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'kernel/sched')
-rw-r--r-- | kernel/sched/core.c | 91 |
1 files changed, 91 insertions, 0 deletions
diff --git a/kernel/sched/core.c b/kernel/sched/core.c index 9f7862da2cd1..91db75018652 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -1905,6 +1905,97 @@ static void ttwu_queue(struct task_struct *p, int cpu) raw_spin_unlock(&rq->lock); } +/* + * Notes on Program-Order guarantees on SMP systems. + * + * MIGRATION + * + * The basic program-order guarantee on SMP systems is that when a task [t] + * migrates, all its activity on its old cpu [c0] happens-before any subsequent + * execution on its new cpu [c1]. + * + * For migration (of runnable tasks) this is provided by the following means: + * + * A) UNLOCK of the rq(c0)->lock scheduling out task t + * B) migration for t is required to synchronize *both* rq(c0)->lock and + * rq(c1)->lock (if not at the same time, then in that order). + * C) LOCK of the rq(c1)->lock scheduling in task + * + * Transitivity guarantees that B happens after A and C after B. + * Note: we only require RCpc transitivity. + * Note: the cpu doing B need not be c0 or c1 + * + * Example: + * + * CPU0 CPU1 CPU2 + * + * LOCK rq(0)->lock + * sched-out X + * sched-in Y + * UNLOCK rq(0)->lock + * + * LOCK rq(0)->lock // orders against CPU0 + * dequeue X + * UNLOCK rq(0)->lock + * + * LOCK rq(1)->lock + * enqueue X + * UNLOCK rq(1)->lock + * + * LOCK rq(1)->lock // orders against CPU2 + * sched-out Z + * sched-in X + * UNLOCK rq(1)->lock + * + * + * BLOCKING -- aka. SLEEP + WAKEUP + * + * For blocking we (obviously) need to provide the same guarantee as for + * migration. However the means are completely different as there is no lock + * chain to provide order. Instead we do: + * + * 1) smp_store_release(X->on_cpu, 0) + * 2) smp_cond_acquire(!X->on_cpu) + * + * Example: + * + * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) + * + * LOCK rq(0)->lock LOCK X->pi_lock + * dequeue X + * sched-out X + * smp_store_release(X->on_cpu, 0); + * + * smp_cond_acquire(!X->on_cpu); + * X->state = WAKING + * set_task_cpu(X,2) + * + * LOCK rq(2)->lock + * enqueue X + * X->state = RUNNING + * UNLOCK rq(2)->lock + * + * LOCK rq(2)->lock // orders against CPU1 + * sched-out Z + * sched-in X + * UNLOCK rq(2)->lock + * + * UNLOCK X->pi_lock + * UNLOCK rq(0)->lock + * + * + * However; for wakeups there is a second guarantee we must provide, namely we + * must observe the state that lead to our wakeup. That is, not only must our + * task observe its own prior state, it must also observe the stores prior to + * its wakeup. + * + * This means that any means of doing remote wakeups must order the CPU doing + * the wakeup against the CPU the task is going to end up running on. This, + * however, is already required for the regular Program-Order guarantee above, + * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire). + * + */ + /** * try_to_wake_up - wake up a thread * @p: the thread to be awakened |