diff options
author | Patrick Bellasi <patrick.bellasi@arm.com> | 2019-08-22 14:28:06 +0100 |
---|---|---|
committer | Ingo Molnar <mingo@kernel.org> | 2019-09-03 09:17:37 +0200 |
commit | 2480c093130f64ac3a410504fa8b3db1fc4b87ce (patch) | |
tree | 1dbeca7920dfcadd75249ab41de421bbb2a3ad85 /kernel/sched/core.c | |
parent | a55c7454a8c887b226a01d7eed088ccb5374d81e (diff) | |
download | linux-2480c093130f64ac3a410504fa8b3db1fc4b87ce.tar.bz2 |
sched/uclamp: Extend CPU's cgroup controller
The cgroup CPU bandwidth controller allows to assign a specified
(maximum) bandwidth to the tasks of a group. However this bandwidth is
defined and enforced only on a temporal base, without considering the
actual frequency a CPU is running on. Thus, the amount of computation
completed by a task within an allocated bandwidth can be very different
depending on the actual frequency the CPU is running that task.
The amount of computation can be affected also by the specific CPU a
task is running on, especially when running on asymmetric capacity
systems like Arm's big.LITTLE.
With the availability of schedutil, the scheduler is now able
to drive frequency selections based on actual task utilization.
Moreover, the utilization clamping support provides a mechanism to
bias the frequency selection operated by schedutil depending on
constraints assigned to the tasks currently RUNNABLE on a CPU.
Giving the mechanisms described above, it is now possible to extend the
cpu controller to specify the minimum (or maximum) utilization which
should be considered for tasks RUNNABLE on a cpu.
This makes it possible to better defined the actual computational
power assigned to task groups, thus improving the cgroup CPU bandwidth
controller which is currently based just on time constraints.
Extend the CPU controller with a couple of new attributes uclamp.{min,max}
which allow to enforce utilization boosting and capping for all the
tasks in a group.
Specifically:
- uclamp.min: defines the minimum utilization which should be considered
i.e. the RUNNABLE tasks of this group will run at least at a
minimum frequency which corresponds to the uclamp.min
utilization
- uclamp.max: defines the maximum utilization which should be considered
i.e. the RUNNABLE tasks of this group will run up to a
maximum frequency which corresponds to the uclamp.max
utilization
These attributes:
a) are available only for non-root nodes, both on default and legacy
hierarchies, while system wide clamps are defined by a generic
interface which does not depends on cgroups. This system wide
interface enforces constraints on tasks in the root node.
b) enforce effective constraints at each level of the hierarchy which
are a restriction of the group requests considering its parent's
effective constraints. Root group effective constraints are defined
by the system wide interface.
This mechanism allows each (non-root) level of the hierarchy to:
- request whatever clamp values it would like to get
- effectively get only up to the maximum amount allowed by its parent
c) have higher priority than task-specific clamps, defined via
sched_setattr(), thus allowing to control and restrict task requests.
Add two new attributes to the cpu controller to collect "requested"
clamp values. Allow that at each non-root level of the hierarchy.
Keep it simple by not caring now about "effective" values computation
and propagation along the hierarchy.
Update sysctl_sched_uclamp_handler() to use the newly introduced
uclamp_mutex so that we serialize system default updates with cgroup
relate updates.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-2-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'kernel/sched/core.c')
-rw-r--r-- | kernel/sched/core.c | 193 |
1 files changed, 189 insertions, 4 deletions
diff --git a/kernel/sched/core.c b/kernel/sched/core.c index a6661852907b..c186abed5c6d 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -773,6 +773,18 @@ static void set_load_weight(struct task_struct *p, bool update_load) } #ifdef CONFIG_UCLAMP_TASK +/* + * Serializes updates of utilization clamp values + * + * The (slow-path) user-space triggers utilization clamp value updates which + * can require updates on (fast-path) scheduler's data structures used to + * support enqueue/dequeue operations. + * While the per-CPU rq lock protects fast-path update operations, user-space + * requests are serialized using a mutex to reduce the risk of conflicting + * updates or API abuses. + */ +static DEFINE_MUTEX(uclamp_mutex); + /* Max allowed minimum utilization */ unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; @@ -1010,10 +1022,9 @@ int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, loff_t *ppos) { int old_min, old_max; - static DEFINE_MUTEX(mutex); int result; - mutex_lock(&mutex); + mutex_lock(&uclamp_mutex); old_min = sysctl_sched_uclamp_util_min; old_max = sysctl_sched_uclamp_util_max; @@ -1048,7 +1059,7 @@ undo: sysctl_sched_uclamp_util_min = old_min; sysctl_sched_uclamp_util_max = old_max; done: - mutex_unlock(&mutex); + mutex_unlock(&uclamp_mutex); return result; } @@ -1137,6 +1148,8 @@ static void __init init_uclamp(void) unsigned int clamp_id; int cpu; + mutex_init(&uclamp_mutex); + for_each_possible_cpu(cpu) { memset(&cpu_rq(cpu)->uclamp, 0, sizeof(struct uclamp_rq)); cpu_rq(cpu)->uclamp_flags = 0; @@ -1149,8 +1162,12 @@ static void __init init_uclamp(void) /* System defaults allow max clamp values for both indexes */ uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); - for_each_clamp_id(clamp_id) + for_each_clamp_id(clamp_id) { uclamp_default[clamp_id] = uc_max; +#ifdef CONFIG_UCLAMP_TASK_GROUP + root_task_group.uclamp_req[clamp_id] = uc_max; +#endif + } } #else /* CONFIG_UCLAMP_TASK */ @@ -6798,6 +6815,19 @@ void ia64_set_curr_task(int cpu, struct task_struct *p) /* task_group_lock serializes the addition/removal of task groups */ static DEFINE_SPINLOCK(task_group_lock); +static inline void alloc_uclamp_sched_group(struct task_group *tg, + struct task_group *parent) +{ +#ifdef CONFIG_UCLAMP_TASK_GROUP + int clamp_id; + + for_each_clamp_id(clamp_id) { + uclamp_se_set(&tg->uclamp_req[clamp_id], + uclamp_none(clamp_id), false); + } +#endif +} + static void sched_free_group(struct task_group *tg) { free_fair_sched_group(tg); @@ -6821,6 +6851,8 @@ struct task_group *sched_create_group(struct task_group *parent) if (!alloc_rt_sched_group(tg, parent)) goto err; + alloc_uclamp_sched_group(tg, parent); + return tg; err: @@ -7037,6 +7069,131 @@ static void cpu_cgroup_attach(struct cgroup_taskset *tset) sched_move_task(task); } +#ifdef CONFIG_UCLAMP_TASK_GROUP + +/* + * Integer 10^N with a given N exponent by casting to integer the literal "1eN" + * C expression. Since there is no way to convert a macro argument (N) into a + * character constant, use two levels of macros. + */ +#define _POW10(exp) ((unsigned int)1e##exp) +#define POW10(exp) _POW10(exp) + +struct uclamp_request { +#define UCLAMP_PERCENT_SHIFT 2 +#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) + s64 percent; + u64 util; + int ret; +}; + +static inline struct uclamp_request +capacity_from_percent(char *buf) +{ + struct uclamp_request req = { + .percent = UCLAMP_PERCENT_SCALE, + .util = SCHED_CAPACITY_SCALE, + .ret = 0, + }; + + buf = strim(buf); + if (strcmp(buf, "max")) { + req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, + &req.percent); + if (req.ret) + return req; + if (req.percent > UCLAMP_PERCENT_SCALE) { + req.ret = -ERANGE; + return req; + } + + req.util = req.percent << SCHED_CAPACITY_SHIFT; + req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); + } + + return req; +} + +static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, + size_t nbytes, loff_t off, + enum uclamp_id clamp_id) +{ + struct uclamp_request req; + struct task_group *tg; + + req = capacity_from_percent(buf); + if (req.ret) + return req.ret; + + mutex_lock(&uclamp_mutex); + rcu_read_lock(); + + tg = css_tg(of_css(of)); + if (tg->uclamp_req[clamp_id].value != req.util) + uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); + + /* + * Because of not recoverable conversion rounding we keep track of the + * exact requested value + */ + tg->uclamp_pct[clamp_id] = req.percent; + + rcu_read_unlock(); + mutex_unlock(&uclamp_mutex); + + return nbytes; +} + +static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, + loff_t off) +{ + return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); +} + +static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, + loff_t off) +{ + return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); +} + +static inline void cpu_uclamp_print(struct seq_file *sf, + enum uclamp_id clamp_id) +{ + struct task_group *tg; + u64 util_clamp; + u64 percent; + u32 rem; + + rcu_read_lock(); + tg = css_tg(seq_css(sf)); + util_clamp = tg->uclamp_req[clamp_id].value; + rcu_read_unlock(); + + if (util_clamp == SCHED_CAPACITY_SCALE) { + seq_puts(sf, "max\n"); + return; + } + + percent = tg->uclamp_pct[clamp_id]; + percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); + seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); +} + +static int cpu_uclamp_min_show(struct seq_file *sf, void *v) +{ + cpu_uclamp_print(sf, UCLAMP_MIN); + return 0; +} + +static int cpu_uclamp_max_show(struct seq_file *sf, void *v) +{ + cpu_uclamp_print(sf, UCLAMP_MAX); + return 0; +} +#endif /* CONFIG_UCLAMP_TASK_GROUP */ + #ifdef CONFIG_FAIR_GROUP_SCHED static int cpu_shares_write_u64(struct cgroup_subsys_state *css, struct cftype *cftype, u64 shareval) @@ -7382,6 +7539,20 @@ static struct cftype cpu_legacy_files[] = { .write_u64 = cpu_rt_period_write_uint, }, #endif +#ifdef CONFIG_UCLAMP_TASK_GROUP + { + .name = "uclamp.min", + .flags = CFTYPE_NOT_ON_ROOT, + .seq_show = cpu_uclamp_min_show, + .write = cpu_uclamp_min_write, + }, + { + .name = "uclamp.max", + .flags = CFTYPE_NOT_ON_ROOT, + .seq_show = cpu_uclamp_max_show, + .write = cpu_uclamp_max_write, + }, +#endif { } /* Terminate */ }; @@ -7549,6 +7720,20 @@ static struct cftype cpu_files[] = { .write = cpu_max_write, }, #endif +#ifdef CONFIG_UCLAMP_TASK_GROUP + { + .name = "uclamp.min", + .flags = CFTYPE_NOT_ON_ROOT, + .seq_show = cpu_uclamp_min_show, + .write = cpu_uclamp_min_write, + }, + { + .name = "uclamp.max", + .flags = CFTYPE_NOT_ON_ROOT, + .seq_show = cpu_uclamp_max_show, + .write = cpu_uclamp_max_write, + }, +#endif { } /* terminate */ }; |