summaryrefslogtreecommitdiffstats
path: root/kernel/rcu/rcu_segcblist.h
diff options
context:
space:
mode:
authorPaul E. McKenney <paulmck@linux.vnet.ibm.com>2017-02-08 12:36:42 -0800
committerPaul E. McKenney <paulmck@linux.vnet.ibm.com>2017-04-18 11:38:18 -0700
commit15fecf89e46a962ccda583d919e25d9da7bf0723 (patch)
tree7ca067833f685d989ecfd3dcdce3fca9ecc40f31 /kernel/rcu/rcu_segcblist.h
parentb8c78d3afc6aac1c722af3bec18959c6bd93231c (diff)
downloadlinux-15fecf89e46a962ccda583d919e25d9da7bf0723.tar.bz2
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the rcu_data structure, and whose operations are open-code throughout the Tree RCU implementation. This has been more or less OK in the past, but upcoming callback-list optimizations in SRCU could really use a multi-tail callback list there as well. This commit therefore abstracts the multi-tail callback list handling into a new kernel/rcu/rcu_segcblist.h file, and uses this new API. The simple head-and-tail pointer callback list is also abstracted and applied everywhere except for the NOCB callback-offload lists. (Yes, the plan is to apply them there as well, but this commit is already bigger than would be good.) Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Diffstat (limited to 'kernel/rcu/rcu_segcblist.h')
-rw-r--r--kernel/rcu/rcu_segcblist.h625
1 files changed, 625 insertions, 0 deletions
diff --git a/kernel/rcu/rcu_segcblist.h b/kernel/rcu/rcu_segcblist.h
new file mode 100644
index 000000000000..24078f3c0218
--- /dev/null
+++ b/kernel/rcu/rcu_segcblist.h
@@ -0,0 +1,625 @@
+/*
+ * RCU segmented callback lists
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, you can access it online at
+ * http://www.gnu.org/licenses/gpl-2.0.html.
+ *
+ * Copyright IBM Corporation, 2017
+ *
+ * Authors: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
+ */
+
+#ifndef __KERNEL_RCU_SEGCBLIST_H
+#define __KERNEL_RCU_SEGCBLIST_H
+
+/* Simple unsegmented callback lists. */
+struct rcu_cblist {
+ struct rcu_head *head;
+ struct rcu_head **tail;
+ long len;
+ long len_lazy;
+};
+
+#define RCU_CBLIST_INITIALIZER(n) { .head = NULL, .tail = &n.head }
+
+/* Initialize simple callback list. */
+static inline void rcu_cblist_init(struct rcu_cblist *rclp)
+{
+ rclp->head = NULL;
+ rclp->tail = &rclp->head;
+ rclp->len = 0;
+ rclp->len_lazy = 0;
+}
+
+/* Is simple callback list empty? */
+static inline bool rcu_cblist_empty(struct rcu_cblist *rclp)
+{
+ return !rclp->head;
+}
+
+/* Return number of callbacks in simple callback list. */
+static inline long rcu_cblist_n_cbs(struct rcu_cblist *rclp)
+{
+ return rclp->len;
+}
+
+/* Return number of lazy callbacks in simple callback list. */
+static inline long rcu_cblist_n_lazy_cbs(struct rcu_cblist *rclp)
+{
+ return rclp->len_lazy;
+}
+
+/*
+ * Debug function to actually count the number of callbacks.
+ * If the number exceeds the limit specified, return -1.
+ */
+static inline long rcu_cblist_count_cbs(struct rcu_cblist *rclp, long lim)
+{
+ int cnt = 0;
+ struct rcu_head **rhpp = &rclp->head;
+
+ for (;;) {
+ if (!*rhpp)
+ return cnt;
+ if (++cnt > lim)
+ return -1;
+ rhpp = &(*rhpp)->next;
+ }
+}
+
+/*
+ * Dequeue the oldest rcu_head structure from the specified callback
+ * list. This function assumes that the callback is non-lazy, but
+ * the caller can later invoke rcu_cblist_dequeued_lazy() if it
+ * finds otherwise (and if it cares about laziness). This allows
+ * different users to have different ways of determining laziness.
+ */
+static inline struct rcu_head *rcu_cblist_dequeue(struct rcu_cblist *rclp)
+{
+ struct rcu_head *rhp;
+
+ rhp = rclp->head;
+ if (!rhp)
+ return NULL;
+ prefetch(rhp);
+ rclp->len--;
+ rclp->head = rhp->next;
+ if (!rclp->head)
+ rclp->tail = &rclp->head;
+ return rhp;
+}
+
+/*
+ * Account for the fact that a previously dequeued callback turned out
+ * to be marked as lazy.
+ */
+static inline void rcu_cblist_dequeued_lazy(struct rcu_cblist *rclp)
+{
+ rclp->len_lazy--;
+}
+
+/*
+ * Interim function to return rcu_cblist head pointer. Longer term, the
+ * rcu_cblist will be used more pervasively, removing the need for this
+ * function.
+ */
+static inline struct rcu_head *rcu_cblist_head(struct rcu_cblist *rclp)
+{
+ return rclp->head;
+}
+
+/*
+ * Interim function to return rcu_cblist head pointer. Longer term, the
+ * rcu_cblist will be used more pervasively, removing the need for this
+ * function.
+ */
+static inline struct rcu_head **rcu_cblist_tail(struct rcu_cblist *rclp)
+{
+ WARN_ON_ONCE(rcu_cblist_empty(rclp));
+ return rclp->tail;
+}
+
+/* Complicated segmented callback lists. ;-) */
+
+/*
+ * Index values for segments in rcu_segcblist structure.
+ *
+ * The segments are as follows:
+ *
+ * [head, *tails[RCU_DONE_TAIL]):
+ * Callbacks whose grace period has elapsed, and thus can be invoked.
+ * [*tails[RCU_DONE_TAIL], *tails[RCU_WAIT_TAIL]):
+ * Callbacks waiting for the current GP from the current CPU's viewpoint.
+ * [*tails[RCU_WAIT_TAIL], *tails[RCU_NEXT_READY_TAIL]):
+ * Callbacks that arrived before the next GP started, again from
+ * the current CPU's viewpoint. These can be handled by the next GP.
+ * [*tails[RCU_NEXT_READY_TAIL], *tails[RCU_NEXT_TAIL]):
+ * Callbacks that might have arrived after the next GP started.
+ * There is some uncertainty as to when a given GP starts and
+ * ends, but a CPU knows the exact times if it is the one starting
+ * or ending the GP. Other CPUs know that the previous GP ends
+ * before the next one starts.
+ *
+ * Note that RCU_WAIT_TAIL cannot be empty unless RCU_NEXT_READY_TAIL is also
+ * empty.
+ *
+ * The ->gp_seq[] array contains the grace-period number at which the
+ * corresponding segment of callbacks will be ready to invoke. A given
+ * element of this array is meaningful only when the corresponding segment
+ * is non-empty, and it is never valid for RCU_DONE_TAIL (whose callbacks
+ * are already ready to invoke) or for RCU_NEXT_TAIL (whose callbacks have
+ * not yet been assigned a grace-period number).
+ */
+#define RCU_DONE_TAIL 0 /* Also RCU_WAIT head. */
+#define RCU_WAIT_TAIL 1 /* Also RCU_NEXT_READY head. */
+#define RCU_NEXT_READY_TAIL 2 /* Also RCU_NEXT head. */
+#define RCU_NEXT_TAIL 3
+#define RCU_CBLIST_NSEGS 4
+
+struct rcu_segcblist {
+ struct rcu_head *head;
+ struct rcu_head **tails[RCU_CBLIST_NSEGS];
+ unsigned long gp_seq[RCU_CBLIST_NSEGS];
+ long len;
+ long len_lazy;
+};
+
+/*
+ * Initialize an rcu_segcblist structure.
+ */
+static inline void rcu_segcblist_init(struct rcu_segcblist *rsclp)
+{
+ int i;
+
+ BUILD_BUG_ON(RCU_NEXT_TAIL + 1 != ARRAY_SIZE(rsclp->gp_seq));
+ BUILD_BUG_ON(ARRAY_SIZE(rsclp->tails) != ARRAY_SIZE(rsclp->gp_seq));
+ rsclp->head = NULL;
+ for (i = 0; i < RCU_CBLIST_NSEGS; i++)
+ rsclp->tails[i] = &rsclp->head;
+ rsclp->len = 0;
+ rsclp->len_lazy = 0;
+}
+
+/*
+ * Is the specified rcu_segcblist structure empty?
+ *
+ * But careful! The fact that the ->head field is NULL does not
+ * necessarily imply that there are no callbacks associated with
+ * this structure. When callbacks are being invoked, they are
+ * removed as a group. If callback invocation must be preempted,
+ * the remaining callbacks will be added back to the list. Either
+ * way, the counts are updated later.
+ *
+ * So it is often the case that rcu_segcblist_n_cbs() should be used
+ * instead.
+ */
+static inline bool rcu_segcblist_empty(struct rcu_segcblist *rsclp)
+{
+ return !rsclp->head;
+}
+
+/* Return number of callbacks in segmented callback list. */
+static inline long rcu_segcblist_n_cbs(struct rcu_segcblist *rsclp)
+{
+ return READ_ONCE(rsclp->len);
+}
+
+/* Return number of lazy callbacks in segmented callback list. */
+static inline long rcu_segcblist_n_lazy_cbs(struct rcu_segcblist *rsclp)
+{
+ return rsclp->len_lazy;
+}
+
+/* Return number of lazy callbacks in segmented callback list. */
+static inline long rcu_segcblist_n_nonlazy_cbs(struct rcu_segcblist *rsclp)
+{
+ return rsclp->len - rsclp->len_lazy;
+}
+
+/*
+ * Is the specified rcu_segcblist enabled, for example, not corresponding
+ * to an offline or callback-offloaded CPU?
+ */
+static inline bool rcu_segcblist_is_enabled(struct rcu_segcblist *rsclp)
+{
+ return !!rsclp->tails[RCU_NEXT_TAIL];
+}
+
+/*
+ * Disable the specified rcu_segcblist structure, so that callbacks can
+ * no longer be posted to it. This structure must be empty.
+ */
+static inline void rcu_segcblist_disable(struct rcu_segcblist *rsclp)
+{
+ WARN_ON_ONCE(!rcu_segcblist_empty(rsclp));
+ WARN_ON_ONCE(rcu_segcblist_n_cbs(rsclp));
+ WARN_ON_ONCE(rcu_segcblist_n_lazy_cbs(rsclp));
+ rsclp->tails[RCU_NEXT_TAIL] = NULL;
+}
+
+/*
+ * Is the specified segment of the specified rcu_segcblist structure
+ * empty of callbacks?
+ */
+static inline bool rcu_segcblist_segempty(struct rcu_segcblist *rsclp, int seg)
+{
+ if (seg == RCU_DONE_TAIL)
+ return &rsclp->head == rsclp->tails[RCU_DONE_TAIL];
+ return rsclp->tails[seg - 1] == rsclp->tails[seg];
+}
+
+/*
+ * Are all segments following the specified segment of the specified
+ * rcu_segcblist structure empty of callbacks? (The specified
+ * segment might well contain callbacks.)
+ */
+static inline bool rcu_segcblist_restempty(struct rcu_segcblist *rsclp, int seg)
+{
+ return !*rsclp->tails[seg];
+}
+
+/*
+ * Does the specified rcu_segcblist structure contain callbacks that
+ * are ready to be invoked?
+ */
+static inline bool rcu_segcblist_ready_cbs(struct rcu_segcblist *rsclp)
+{
+ return rcu_segcblist_is_enabled(rsclp) &&
+ &rsclp->head != rsclp->tails[RCU_DONE_TAIL];
+}
+
+/*
+ * Does the specified rcu_segcblist structure contain callbacks that
+ * are still pending, that is, not yet ready to be invoked?
+ */
+static inline bool rcu_segcblist_pend_cbs(struct rcu_segcblist *rsclp)
+{
+ return rcu_segcblist_is_enabled(rsclp) &&
+ !rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL);
+}
+
+/*
+ * Return a pointer to the first callback in the specified rcu_segcblist
+ * structure. This is useful for diagnostics.
+ */
+static inline struct rcu_head *
+rcu_segcblist_first_cb(struct rcu_segcblist *rsclp)
+{
+ if (rcu_segcblist_is_enabled(rsclp))
+ return rsclp->head;
+ return NULL;
+}
+
+/*
+ * Return a pointer to the first pending callback in the specified
+ * rcu_segcblist structure. This is useful just after posting a given
+ * callback -- if that callback is the first pending callback, then
+ * you cannot rely on someone else having already started up the required
+ * grace period.
+ */
+static inline struct rcu_head *
+rcu_segcblist_first_pend_cb(struct rcu_segcblist *rsclp)
+{
+ if (rcu_segcblist_is_enabled(rsclp))
+ return *rsclp->tails[RCU_DONE_TAIL];
+ return NULL;
+}
+
+/*
+ * Does the specified rcu_segcblist structure contain callbacks that
+ * have not yet been processed beyond having been posted, that is,
+ * does it contain callbacks in its last segment?
+ */
+static inline bool rcu_segcblist_new_cbs(struct rcu_segcblist *rsclp)
+{
+ return rcu_segcblist_is_enabled(rsclp) &&
+ !rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL);
+}
+
+/*
+ * Enqueue the specified callback onto the specified rcu_segcblist
+ * structure, updating accounting as needed. Note that the ->len
+ * field may be accessed locklessly, hence the WRITE_ONCE().
+ * The ->len field is used by rcu_barrier() and friends to determine
+ * if it must post a callback on this structure, and it is OK
+ * for rcu_barrier() to sometimes post callbacks needlessly, but
+ * absolutely not OK for it to ever miss posting a callback.
+ */
+static inline void rcu_segcblist_enqueue(struct rcu_segcblist *rsclp,
+ struct rcu_head *rhp, bool lazy)
+{
+ WRITE_ONCE(rsclp->len, rsclp->len + 1); /* ->len sampled locklessly. */
+ if (lazy)
+ rsclp->len_lazy++;
+ smp_mb(); /* Ensure counts are updated before callback is enqueued. */
+ rhp->next = NULL;
+ *rsclp->tails[RCU_NEXT_TAIL] = rhp;
+ rsclp->tails[RCU_NEXT_TAIL] = &rhp->next;
+}
+
+/*
+ * Extract only the counts from the specified rcu_segcblist structure,
+ * and place them in the specified rcu_cblist structure. This function
+ * supports both callback orphaning and invocation, hence the separation
+ * of counts and callbacks. (Callbacks ready for invocation must be
+ * orphaned and adopted separately from pending callbacks, but counts
+ * apply to all callbacks. Locking must be used to make sure that
+ * both orphaned-callbacks lists are consistent.)
+ */
+static inline void rcu_segcblist_extract_count(struct rcu_segcblist *rsclp,
+ struct rcu_cblist *rclp)
+{
+ rclp->len_lazy += rsclp->len_lazy;
+ rclp->len += rsclp->len;
+ rsclp->len_lazy = 0;
+ WRITE_ONCE(rsclp->len, 0); /* ->len sampled locklessly. */
+}
+
+/*
+ * Extract only those callbacks ready to be invoked from the specified
+ * rcu_segcblist structure and place them in the specified rcu_cblist
+ * structure.
+ */
+static inline void rcu_segcblist_extract_done_cbs(struct rcu_segcblist *rsclp,
+ struct rcu_cblist *rclp)
+{
+ int i;
+
+ if (!rcu_segcblist_ready_cbs(rsclp))
+ return; /* Nothing to do. */
+ *rclp->tail = rsclp->head;
+ rsclp->head = *rsclp->tails[RCU_DONE_TAIL];
+ *rsclp->tails[RCU_DONE_TAIL] = NULL;
+ rclp->tail = rsclp->tails[RCU_DONE_TAIL];
+ for (i = RCU_CBLIST_NSEGS - 1; i >= RCU_DONE_TAIL; i--)
+ if (rsclp->tails[i] == rsclp->tails[RCU_DONE_TAIL])
+ rsclp->tails[i] = &rsclp->head;
+}
+
+/*
+ * Extract only those callbacks still pending (not yet ready to be
+ * invoked) from the specified rcu_segcblist structure and place them in
+ * the specified rcu_cblist structure. Note that this loses information
+ * about any callbacks that might have been partway done waiting for
+ * their grace period. Too bad! They will have to start over.
+ */
+static inline void
+rcu_segcblist_extract_pend_cbs(struct rcu_segcblist *rsclp,
+ struct rcu_cblist *rclp)
+{
+ int i;
+
+ if (!rcu_segcblist_pend_cbs(rsclp))
+ return; /* Nothing to do. */
+ *rclp->tail = *rsclp->tails[RCU_DONE_TAIL];
+ rclp->tail = rsclp->tails[RCU_NEXT_TAIL];
+ *rsclp->tails[RCU_DONE_TAIL] = NULL;
+ for (i = RCU_DONE_TAIL + 1; i < RCU_CBLIST_NSEGS; i++)
+ rsclp->tails[i] = rsclp->tails[RCU_DONE_TAIL];
+}
+
+/*
+ * Move the entire contents of the specified rcu_segcblist structure,
+ * counts, callbacks, and all, to the specified rcu_cblist structure.
+ * @@@ Why do we need this??? Moving early-boot CBs to NOCB lists?
+ * @@@ Memory barrier needed? (Not if only used at boot time...)
+ */
+static inline void rcu_segcblist_extract_all(struct rcu_segcblist *rsclp,
+ struct rcu_cblist *rclp)
+{
+ rcu_segcblist_extract_done_cbs(rsclp, rclp);
+ rcu_segcblist_extract_pend_cbs(rsclp, rclp);
+ rcu_segcblist_extract_count(rsclp, rclp);
+}
+
+/*
+ * Insert counts from the specified rcu_cblist structure in the
+ * specified rcu_segcblist structure.
+ */
+static inline void rcu_segcblist_insert_count(struct rcu_segcblist *rsclp,
+ struct rcu_cblist *rclp)
+{
+ rsclp->len_lazy += rclp->len_lazy;
+ /* ->len sampled locklessly. */
+ WRITE_ONCE(rsclp->len, rsclp->len + rclp->len);
+ rclp->len_lazy = 0;
+ rclp->len = 0;
+}
+
+/*
+ * Move callbacks from the specified rcu_cblist to the beginning of the
+ * done-callbacks segment of the specified rcu_segcblist.
+ */
+static inline void rcu_segcblist_insert_done_cbs(struct rcu_segcblist *rsclp,
+ struct rcu_cblist *rclp)
+{
+ int i;
+
+ if (!rclp->head)
+ return; /* No callbacks to move. */
+ *rclp->tail = rsclp->head;
+ rsclp->head = rclp->head;
+ for (i = RCU_DONE_TAIL; i < RCU_CBLIST_NSEGS; i++)
+ if (&rsclp->head == rsclp->tails[i])
+ rsclp->tails[i] = rclp->tail;
+ else
+ break;
+ rclp->head = NULL;
+ rclp->tail = &rclp->head;
+}
+
+/*
+ * Move callbacks from the specified rcu_cblist to the end of the
+ * new-callbacks segment of the specified rcu_segcblist.
+ */
+static inline void rcu_segcblist_insert_pend_cbs(struct rcu_segcblist *rsclp,
+ struct rcu_cblist *rclp)
+{
+ if (!rclp->head)
+ return; /* Nothing to do. */
+ *rsclp->tails[RCU_NEXT_TAIL] = rclp->head;
+ rsclp->tails[RCU_NEXT_TAIL] = rclp->tail;
+ rclp->head = NULL;
+ rclp->tail = &rclp->head;
+}
+
+/*
+ * Advance the callbacks in the specified rcu_segcblist structure based
+ * on the current value passed in for the grace-period counter.
+ */
+static inline void rcu_segcblist_advance(struct rcu_segcblist *rsclp,
+ unsigned long seq)
+{
+ int i, j;
+
+ WARN_ON_ONCE(!rcu_segcblist_is_enabled(rsclp));
+ WARN_ON_ONCE(rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL));
+
+ /*
+ * Find all callbacks whose ->gp_seq numbers indicate that they
+ * are ready to invoke, and put them into the RCU_DONE_TAIL segment.
+ */
+ for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
+ if (ULONG_CMP_LT(seq, rsclp->gp_seq[i]))
+ break;
+ rsclp->tails[RCU_DONE_TAIL] = rsclp->tails[i];
+ }
+
+ /* If no callbacks moved, nothing more need be done. */
+ if (i == RCU_WAIT_TAIL)
+ return;
+
+ /* Clean up tail pointers that might have been misordered above. */
+ for (j = RCU_WAIT_TAIL; j < i; j++)
+ rsclp->tails[j] = rsclp->tails[RCU_DONE_TAIL];
+
+ /*
+ * Callbacks moved, so clean up the misordered ->tails[] pointers
+ * that now point into the middle of the list of ready-to-invoke
+ * callbacks. The overall effect is to copy down the later pointers
+ * into the gap that was created by the now-ready segments.
+ */
+ for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
+ if (rsclp->tails[j] == rsclp->tails[RCU_NEXT_TAIL])
+ break; /* No more callbacks. */
+ rsclp->tails[j] = rsclp->tails[i];
+ rsclp->gp_seq[j] = rsclp->gp_seq[i];
+ }
+}
+
+/*
+ * "Accelerate" callbacks based on more-accurate grace-period information.
+ * The reason for this is that RCU does not synchronize the beginnings and
+ * ends of grace periods, and that callbacks are posted locally. This in
+ * turn means that the callbacks must be labelled conservatively early
+ * on, as getting exact information would degrade both performance and
+ * scalability. When more accurate grace-period information becomes
+ * available, previously posted callbacks can be "accelerated", marking
+ * them to complete at the end of the earlier grace period.
+ *
+ * This function operates on an rcu_segcblist structure, and also the
+ * grace-period sequence number at which new callbacks would become
+ * ready to invoke.
+ */
+static inline bool rcu_segcblist_accelerate(struct rcu_segcblist *rsclp,
+ unsigned long seq)
+{
+ int i;
+
+ WARN_ON_ONCE(!rcu_segcblist_is_enabled(rsclp));
+ WARN_ON_ONCE(rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL));
+
+ /*
+ * Find the segment preceding the oldest segment of callbacks
+ * whose ->gp_seq[] completion is at or after that passed in via
+ * "seq", skipping any empty segments. This oldest segment, along
+ * with any later segments, can be merged in with any newly arrived
+ * callbacks in the RCU_NEXT_TAIL segment, and assigned "seq"
+ * as their ->gp_seq[] grace-period completion sequence number.
+ */
+ for (i = RCU_NEXT_READY_TAIL; i > RCU_DONE_TAIL; i--)
+ if (rsclp->tails[i] != rsclp->tails[i - 1] &&
+ ULONG_CMP_LT(rsclp->gp_seq[i], seq))
+ break;
+
+ /*
+ * If all the segments contain callbacks that correspond to
+ * earlier grace-period sequence numbers than "seq", leave.
+ * Assuming that the rcu_segcblist structure has enough
+ * segments in its arrays, this can only happen if some of
+ * the non-done segments contain callbacks that really are
+ * ready to invoke. This situation will get straightened
+ * out by the next call to rcu_segcblist_advance().
+ *
+ * Also advance to the oldest segment of callbacks whose
+ * ->gp_seq[] completion is at or after that passed in via "seq",
+ * skipping any empty segments.
+ */
+ if (++i >= RCU_NEXT_TAIL)
+ return false;
+
+ /*
+ * Merge all later callbacks, including newly arrived callbacks,
+ * into the segment located by the for-loop above. Assign "seq"
+ * as the ->gp_seq[] value in order to correctly handle the case
+ * where there were no pending callbacks in the rcu_segcblist
+ * structure other than in the RCU_NEXT_TAIL segment.
+ */
+ for (; i < RCU_NEXT_TAIL; i++) {
+ rsclp->tails[i] = rsclp->tails[RCU_NEXT_TAIL];
+ rsclp->gp_seq[i] = seq;
+ }
+ return true;
+}
+
+/*
+ * Scan the specified rcu_segcblist structure for callbacks that need
+ * a grace period later than the one specified by "seq". We don't look
+ * at the RCU_DONE_TAIL or RCU_NEXT_TAIL segments because they don't
+ * have a grace-period sequence number.
+ */
+static inline bool rcu_segcblist_future_gp_needed(struct rcu_segcblist *rsclp,
+ unsigned long seq)
+{
+ int i;
+
+ for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
+ if (rsclp->tails[i - 1] != rsclp->tails[i] &&
+ ULONG_CMP_LT(seq, rsclp->gp_seq[i]))
+ return true;
+ return false;
+}
+
+/*
+ * Interim function to return rcu_segcblist head pointer. Longer term, the
+ * rcu_segcblist will be used more pervasively, removing the need for this
+ * function.
+ */
+static inline struct rcu_head *rcu_segcblist_head(struct rcu_segcblist *rsclp)
+{
+ return rsclp->head;
+}
+
+/*
+ * Interim function to return rcu_segcblist head pointer. Longer term, the
+ * rcu_segcblist will be used more pervasively, removing the need for this
+ * function.
+ */
+static inline struct rcu_head **rcu_segcblist_tail(struct rcu_segcblist *rsclp)
+{
+ WARN_ON_ONCE(rcu_segcblist_empty(rsclp));
+ return rsclp->tails[RCU_NEXT_TAIL];
+}
+
+#endif /* __KERNEL_RCU_SEGCBLIST_H */