diff options
author | Axel Rasmussen <axelrasmussen@google.com> | 2021-05-04 18:35:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2021-05-05 11:27:22 -0700 |
commit | 7677f7fd8be76659cd2d0db8ff4093bbb51c20e5 (patch) | |
tree | 54ad879f7c68c5e1cfd7be8b25284dfea72b7a59 /include | |
parent | eb14d4eefdc4f0051a63973124f431798e16a8b2 (diff) | |
download | linux-7677f7fd8be76659cd2d0db8ff4093bbb51c20e5.tar.bz2 |
userfaultfd: add minor fault registration mode
Patch series "userfaultfd: add minor fault handling", v9.
Overview
========
This series adds a new userfaultfd feature, UFFD_FEATURE_MINOR_HUGETLBFS.
When enabled (via the UFFDIO_API ioctl), this feature means that any
hugetlbfs VMAs registered with UFFDIO_REGISTER_MODE_MISSING will *also*
get events for "minor" faults. By "minor" fault, I mean the following
situation:
Let there exist two mappings (i.e., VMAs) to the same page(s) (shared
memory). One of the mappings is registered with userfaultfd (in minor
mode), and the other is not. Via the non-UFFD mapping, the underlying
pages have already been allocated & filled with some contents. The UFFD
mapping has not yet been faulted in; when it is touched for the first
time, this results in what I'm calling a "minor" fault. As a concrete
example, when working with hugetlbfs, we have huge_pte_none(), but
find_lock_page() finds an existing page.
We also add a new ioctl to resolve such faults: UFFDIO_CONTINUE. The idea
is, userspace resolves the fault by either a) doing nothing if the
contents are already correct, or b) updating the underlying contents using
the second, non-UFFD mapping (via memcpy/memset or similar, or something
fancier like RDMA, or etc...). In either case, userspace issues
UFFDIO_CONTINUE to tell the kernel "I have ensured the page contents are
correct, carry on setting up the mapping".
Use Case
========
Consider the use case of VM live migration (e.g. under QEMU/KVM):
1. While a VM is still running, we copy the contents of its memory to a
target machine. The pages are populated on the target by writing to the
non-UFFD mapping, using the setup described above. The VM is still running
(and therefore its memory is likely changing), so this may be repeated
several times, until we decide the target is "up to date enough".
2. We pause the VM on the source, and start executing on the target machine.
During this gap, the VM's user(s) will *see* a pause, so it is desirable to
minimize this window.
3. Between the last time any page was copied from the source to the target, and
when the VM was paused, the contents of that page may have changed - and
therefore the copy we have on the target machine is out of date. Although we
can keep track of which pages are out of date, for VMs with large amounts of
memory, it is "slow" to transfer this information to the target machine. We
want to resume execution before such a transfer would complete.
4. So, the guest begins executing on the target machine. The first time it
touches its memory (via the UFFD-registered mapping), userspace wants to
intercept this fault. Userspace checks whether or not the page is up to date,
and if not, copies the updated page from the source machine, via the non-UFFD
mapping. Finally, whether a copy was performed or not, userspace issues a
UFFDIO_CONTINUE ioctl to tell the kernel "I have ensured the page contents
are correct, carry on setting up the mapping".
We don't have to do all of the final updates on-demand. The userfaultfd manager
can, in the background, also copy over updated pages once it receives the map of
which pages are up-to-date or not.
Interaction with Existing APIs
==============================
Because this is a feature, a registered VMA could potentially receive both
missing and minor faults. I spent some time thinking through how the
existing API interacts with the new feature:
UFFDIO_CONTINUE cannot be used to resolve non-minor faults, as it does not
allocate a new page. If UFFDIO_CONTINUE is used on a non-minor fault:
- For non-shared memory or shmem, -EINVAL is returned.
- For hugetlb, -EFAULT is returned.
UFFDIO_COPY and UFFDIO_ZEROPAGE cannot be used to resolve minor faults.
Without modifications, the existing codepath assumes a new page needs to
be allocated. This is okay, since userspace must have a second
non-UFFD-registered mapping anyway, thus there isn't much reason to want
to use these in any case (just memcpy or memset or similar).
- If UFFDIO_COPY is used on a minor fault, -EEXIST is returned.
- If UFFDIO_ZEROPAGE is used on a minor fault, -EEXIST is returned (or -EINVAL
in the case of hugetlb, as UFFDIO_ZEROPAGE is unsupported in any case).
- UFFDIO_WRITEPROTECT simply doesn't work with shared memory, and returns
-ENOENT in that case (regardless of the kind of fault).
Future Work
===========
This series only supports hugetlbfs. I have a second series in flight to
support shmem as well, extending the functionality. This series is more
mature than the shmem support at this point, and the functionality works
fully on hugetlbfs, so this series can be merged first and then shmem
support will follow.
This patch (of 6):
This feature allows userspace to intercept "minor" faults. By "minor"
faults, I mean the following situation:
Let there exist two mappings (i.e., VMAs) to the same page(s). One of the
mappings is registered with userfaultfd (in minor mode), and the other is
not. Via the non-UFFD mapping, the underlying pages have already been
allocated & filled with some contents. The UFFD mapping has not yet been
faulted in; when it is touched for the first time, this results in what
I'm calling a "minor" fault. As a concrete example, when working with
hugetlbfs, we have huge_pte_none(), but find_lock_page() finds an existing
page.
This commit adds the new registration mode, and sets the relevant flag on
the VMAs being registered. In the hugetlb fault path, if we find that we
have huge_pte_none(), but find_lock_page() does indeed find an existing
page, then we have a "minor" fault, and if the VMA has the userfaultfd
registration flag, we call into userfaultfd to handle it.
This is implemented as a new registration mode, instead of an API feature.
This is because the alternative implementation has significant drawbacks
[1].
However, doing it this was requires we allocate a VM_* flag for the new
registration mode. On 32-bit systems, there are no unused bits, so this
feature is only supported on architectures with
CONFIG_ARCH_USES_HIGH_VMA_FLAGS. When attempting to register a VMA in
MINOR mode on 32-bit architectures, we return -EINVAL.
[1] https://lore.kernel.org/patchwork/patch/1380226/
[peterx@redhat.com: fix minor fault page leak]
Link: https://lkml.kernel.org/r/20210322175132.36659-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20210301222728.176417-1-axelrasmussen@google.com
Link: https://lkml.kernel.org/r/20210301222728.176417-2-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chinwen Chang <chinwen.chang@mediatek.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michal Koutn" <mkoutny@suse.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Shawn Anastasio <shawn@anastas.io>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Adam Ruprecht <ruprecht@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Cannon Matthews <cannonmatthews@google.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'include')
-rw-r--r-- | include/linux/mm.h | 7 | ||||
-rw-r--r-- | include/linux/userfaultfd_k.h | 15 | ||||
-rw-r--r-- | include/trace/events/mmflags.h | 7 | ||||
-rw-r--r-- | include/uapi/linux/userfaultfd.h | 15 |
4 files changed, 41 insertions, 3 deletions
diff --git a/include/linux/mm.h b/include/linux/mm.h index 011f43605807..1dbb53c44243 100644 --- a/include/linux/mm.h +++ b/include/linux/mm.h @@ -372,6 +372,13 @@ extern unsigned int kobjsize(const void *objp); # define VM_GROWSUP VM_NONE #endif +#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR +# define VM_UFFD_MINOR_BIT 37 +# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ +#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ +# define VM_UFFD_MINOR VM_NONE +#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ + /* Bits set in the VMA until the stack is in its final location */ #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) diff --git a/include/linux/userfaultfd_k.h b/include/linux/userfaultfd_k.h index c63ccdae3eab..0390e5ac63b3 100644 --- a/include/linux/userfaultfd_k.h +++ b/include/linux/userfaultfd_k.h @@ -17,6 +17,9 @@ #include <linux/mm.h> #include <asm-generic/pgtable_uffd.h> +/* The set of all possible UFFD-related VM flags. */ +#define __VM_UFFD_FLAGS (VM_UFFD_MISSING | VM_UFFD_WP | VM_UFFD_MINOR) + /* * CAREFUL: Check include/uapi/asm-generic/fcntl.h when defining * new flags, since they might collide with O_* ones. We want @@ -71,6 +74,11 @@ static inline bool userfaultfd_wp(struct vm_area_struct *vma) return vma->vm_flags & VM_UFFD_WP; } +static inline bool userfaultfd_minor(struct vm_area_struct *vma) +{ + return vma->vm_flags & VM_UFFD_MINOR; +} + static inline bool userfaultfd_pte_wp(struct vm_area_struct *vma, pte_t pte) { @@ -85,7 +93,7 @@ static inline bool userfaultfd_huge_pmd_wp(struct vm_area_struct *vma, static inline bool userfaultfd_armed(struct vm_area_struct *vma) { - return vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP); + return vma->vm_flags & __VM_UFFD_FLAGS; } extern int dup_userfaultfd(struct vm_area_struct *, struct list_head *); @@ -132,6 +140,11 @@ static inline bool userfaultfd_wp(struct vm_area_struct *vma) return false; } +static inline bool userfaultfd_minor(struct vm_area_struct *vma) +{ + return false; +} + static inline bool userfaultfd_pte_wp(struct vm_area_struct *vma, pte_t pte) { diff --git a/include/trace/events/mmflags.h b/include/trace/events/mmflags.h index 67018d367b9f..629c7a0eaff2 100644 --- a/include/trace/events/mmflags.h +++ b/include/trace/events/mmflags.h @@ -137,6 +137,12 @@ IF_HAVE_PG_ARCH_2(PG_arch_2, "arch_2" ) #define IF_HAVE_VM_SOFTDIRTY(flag,name) #endif +#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR +# define IF_HAVE_UFFD_MINOR(flag, name) {flag, name}, +#else +# define IF_HAVE_UFFD_MINOR(flag, name) +#endif + #define __def_vmaflag_names \ {VM_READ, "read" }, \ {VM_WRITE, "write" }, \ @@ -148,6 +154,7 @@ IF_HAVE_PG_ARCH_2(PG_arch_2, "arch_2" ) {VM_MAYSHARE, "mayshare" }, \ {VM_GROWSDOWN, "growsdown" }, \ {VM_UFFD_MISSING, "uffd_missing" }, \ +IF_HAVE_UFFD_MINOR(VM_UFFD_MINOR, "uffd_minor" ) \ {VM_PFNMAP, "pfnmap" }, \ {VM_DENYWRITE, "denywrite" }, \ {VM_UFFD_WP, "uffd_wp" }, \ diff --git a/include/uapi/linux/userfaultfd.h b/include/uapi/linux/userfaultfd.h index 5f2d88212f7c..f24dd4fcbad9 100644 --- a/include/uapi/linux/userfaultfd.h +++ b/include/uapi/linux/userfaultfd.h @@ -19,15 +19,19 @@ * means the userland is reading). */ #define UFFD_API ((__u64)0xAA) +#define UFFD_API_REGISTER_MODES (UFFDIO_REGISTER_MODE_MISSING | \ + UFFDIO_REGISTER_MODE_WP | \ + UFFDIO_REGISTER_MODE_MINOR) #define UFFD_API_FEATURES (UFFD_FEATURE_PAGEFAULT_FLAG_WP | \ UFFD_FEATURE_EVENT_FORK | \ UFFD_FEATURE_EVENT_REMAP | \ - UFFD_FEATURE_EVENT_REMOVE | \ + UFFD_FEATURE_EVENT_REMOVE | \ UFFD_FEATURE_EVENT_UNMAP | \ UFFD_FEATURE_MISSING_HUGETLBFS | \ UFFD_FEATURE_MISSING_SHMEM | \ UFFD_FEATURE_SIGBUS | \ - UFFD_FEATURE_THREAD_ID) + UFFD_FEATURE_THREAD_ID | \ + UFFD_FEATURE_MINOR_HUGETLBFS) #define UFFD_API_IOCTLS \ ((__u64)1 << _UFFDIO_REGISTER | \ (__u64)1 << _UFFDIO_UNREGISTER | \ @@ -127,6 +131,7 @@ struct uffd_msg { /* flags for UFFD_EVENT_PAGEFAULT */ #define UFFD_PAGEFAULT_FLAG_WRITE (1<<0) /* If this was a write fault */ #define UFFD_PAGEFAULT_FLAG_WP (1<<1) /* If reason is VM_UFFD_WP */ +#define UFFD_PAGEFAULT_FLAG_MINOR (1<<2) /* If reason is VM_UFFD_MINOR */ struct uffdio_api { /* userland asks for an API number and the features to enable */ @@ -171,6 +176,10 @@ struct uffdio_api { * * UFFD_FEATURE_THREAD_ID pid of the page faulted task_struct will * be returned, if feature is not requested 0 will be returned. + * + * UFFD_FEATURE_MINOR_HUGETLBFS indicates that minor faults + * can be intercepted (via REGISTER_MODE_MINOR) for + * hugetlbfs-backed pages. */ #define UFFD_FEATURE_PAGEFAULT_FLAG_WP (1<<0) #define UFFD_FEATURE_EVENT_FORK (1<<1) @@ -181,6 +190,7 @@ struct uffdio_api { #define UFFD_FEATURE_EVENT_UNMAP (1<<6) #define UFFD_FEATURE_SIGBUS (1<<7) #define UFFD_FEATURE_THREAD_ID (1<<8) +#define UFFD_FEATURE_MINOR_HUGETLBFS (1<<9) __u64 features; __u64 ioctls; @@ -195,6 +205,7 @@ struct uffdio_register { struct uffdio_range range; #define UFFDIO_REGISTER_MODE_MISSING ((__u64)1<<0) #define UFFDIO_REGISTER_MODE_WP ((__u64)1<<1) +#define UFFDIO_REGISTER_MODE_MINOR ((__u64)1<<2) __u64 mode; /* |