summaryrefslogtreecommitdiffstats
path: root/include/asm-generic
diff options
context:
space:
mode:
authorDave Hansen <dave.hansen@linux.intel.com>2014-11-14 07:18:29 -0800
committerThomas Gleixner <tglx@linutronix.de>2014-11-18 00:58:53 +0100
commitfe3d197f84319d3bce379a9c0dc17b1f48ad358c (patch)
tree68f479a165c25dcd3867648b5d923e6ec80316d4 /include/asm-generic
parentfcc7ffd67991b63029ca54925644753d534ddc5f (diff)
downloadlinux-fe3d197f84319d3bce379a9c0dc17b1f48ad358c.tar.bz2
x86, mpx: On-demand kernel allocation of bounds tables
This is really the meat of the MPX patch set. If there is one patch to review in the entire series, this is the one. There is a new ABI here and this kernel code also interacts with userspace memory in a relatively unusual manner. (small FAQ below). Long Description: This patch adds two prctl() commands to provide enable or disable the management of bounds tables in kernel, including on-demand kernel allocation (See the patch "on-demand kernel allocation of bounds tables") and cleanup (See the patch "cleanup unused bound tables"). Applications do not strictly need the kernel to manage bounds tables and we expect some applications to use MPX without taking advantage of this kernel support. This means the kernel can not simply infer whether an application needs bounds table management from the MPX registers. The prctl() is an explicit signal from userspace. PR_MPX_ENABLE_MANAGEMENT is meant to be a signal from userspace to require kernel's help in managing bounds tables. PR_MPX_DISABLE_MANAGEMENT is the opposite, meaning that userspace don't want kernel's help any more. With PR_MPX_DISABLE_MANAGEMENT, the kernel won't allocate and free bounds tables even if the CPU supports MPX. PR_MPX_ENABLE_MANAGEMENT will fetch the base address of the bounds directory out of a userspace register (bndcfgu) and then cache it into a new field (->bd_addr) in the 'mm_struct'. PR_MPX_DISABLE_MANAGEMENT will set "bd_addr" to an invalid address. Using this scheme, we can use "bd_addr" to determine whether the management of bounds tables in kernel is enabled. Also, the only way to access that bndcfgu register is via an xsaves, which can be expensive. Caching "bd_addr" like this also helps reduce the cost of those xsaves when doing table cleanup at munmap() time. Unfortunately, we can not apply this optimization to #BR fault time because we need an xsave to get the value of BNDSTATUS. ==== Why does the hardware even have these Bounds Tables? ==== MPX only has 4 hardware registers for storing bounds information. If MPX-enabled code needs more than these 4 registers, it needs to spill them somewhere. It has two special instructions for this which allow the bounds to be moved between the bounds registers and some new "bounds tables". They are similar conceptually to a page fault and will be raised by the MPX hardware during both bounds violations or when the tables are not present. This patch handles those #BR exceptions for not-present tables by carving the space out of the normal processes address space (essentially calling the new mmap() interface indroduced earlier in this patch set.) and then pointing the bounds-directory over to it. The tables *need* to be accessed and controlled by userspace because the instructions for moving bounds in and out of them are extremely frequent. They potentially happen every time a register pointing to memory is dereferenced. Any direct kernel involvement (like a syscall) to access the tables would obviously destroy performance. ==== Why not do this in userspace? ==== This patch is obviously doing this allocation in the kernel. However, MPX does not strictly *require* anything in the kernel. It can theoretically be done completely from userspace. Here are a few ways this *could* be done. I don't think any of them are practical in the real-world, but here they are. Q: Can virtual space simply be reserved for the bounds tables so that we never have to allocate them? A: As noted earlier, these tables are *HUGE*. An X-GB virtual area needs 4*X GB of virtual space, plus 2GB for the bounds directory. If we were to preallocate them for the 128TB of user virtual address space, we would need to reserve 512TB+2GB, which is larger than the entire virtual address space today. This means they can not be reserved ahead of time. Also, a single process's pre-popualated bounds directory consumes 2GB of virtual *AND* physical memory. IOW, it's completely infeasible to prepopulate bounds directories. Q: Can we preallocate bounds table space at the same time memory is allocated which might contain pointers that might eventually need bounds tables? A: This would work if we could hook the site of each and every memory allocation syscall. This can be done for small, constrained applications. But, it isn't practical at a larger scale since a given app has no way of controlling how all the parts of the app might allocate memory (think libraries). The kernel is really the only place to intercept these calls. Q: Could a bounds fault be handed to userspace and the tables allocated there in a signal handler instead of in the kernel? A: (thanks to tglx) mmap() is not on the list of safe async handler functions and even if mmap() would work it still requires locking or nasty tricks to keep track of the allocation state there. Having ruled out all of the userspace-only approaches for managing bounds tables that we could think of, we create them on demand in the kernel. Based-on-patch-by: Qiaowei Ren <qiaowei.ren@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: linux-mm@kvack.org Cc: linux-mips@linux-mips.org Cc: Dave Hansen <dave@sr71.net> Link: http://lkml.kernel.org/r/20141114151829.AD4310DE@viggo.jf.intel.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Diffstat (limited to 'include/asm-generic')
-rw-r--r--include/asm-generic/mmu_context.h5
1 files changed, 5 insertions, 0 deletions
diff --git a/include/asm-generic/mmu_context.h b/include/asm-generic/mmu_context.h
index a7eec910ba6c..1f2a8f9c9264 100644
--- a/include/asm-generic/mmu_context.h
+++ b/include/asm-generic/mmu_context.h
@@ -42,4 +42,9 @@ static inline void activate_mm(struct mm_struct *prev_mm,
{
}
+static inline void arch_bprm_mm_init(struct mm_struct *mm,
+ struct vm_area_struct *vma)
+{
+}
+
#endif /* __ASM_GENERIC_MMU_CONTEXT_H */