summaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_log_recover.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /fs/xfs/xfs_log_recover.c
downloadlinux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.bz2
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'fs/xfs/xfs_log_recover.c')
-rw-r--r--fs/xfs/xfs_log_recover.c4098
1 files changed, 4098 insertions, 0 deletions
diff --git a/fs/xfs/xfs_log_recover.c b/fs/xfs/xfs_log_recover.c
new file mode 100644
index 000000000000..9824b5bf0ec0
--- /dev/null
+++ b/fs/xfs/xfs_log_recover.c
@@ -0,0 +1,4098 @@
+/*
+ * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of version 2 of the GNU General Public License as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it would be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+ *
+ * Further, this software is distributed without any warranty that it is
+ * free of the rightful claim of any third person regarding infringement
+ * or the like. Any license provided herein, whether implied or
+ * otherwise, applies only to this software file. Patent licenses, if
+ * any, provided herein do not apply to combinations of this program with
+ * other software, or any other product whatsoever.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write the Free Software Foundation, Inc., 59
+ * Temple Place - Suite 330, Boston MA 02111-1307, USA.
+ *
+ * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
+ * Mountain View, CA 94043, or:
+ *
+ * http://www.sgi.com
+ *
+ * For further information regarding this notice, see:
+ *
+ * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
+ */
+
+#include "xfs.h"
+#include "xfs_macros.h"
+#include "xfs_types.h"
+#include "xfs_inum.h"
+#include "xfs_log.h"
+#include "xfs_ag.h"
+#include "xfs_sb.h"
+#include "xfs_trans.h"
+#include "xfs_dir.h"
+#include "xfs_dir2.h"
+#include "xfs_dmapi.h"
+#include "xfs_mount.h"
+#include "xfs_error.h"
+#include "xfs_bmap_btree.h"
+#include "xfs_alloc.h"
+#include "xfs_attr_sf.h"
+#include "xfs_dir_sf.h"
+#include "xfs_dir2_sf.h"
+#include "xfs_dinode.h"
+#include "xfs_imap.h"
+#include "xfs_inode_item.h"
+#include "xfs_inode.h"
+#include "xfs_ialloc_btree.h"
+#include "xfs_ialloc.h"
+#include "xfs_log_priv.h"
+#include "xfs_buf_item.h"
+#include "xfs_alloc_btree.h"
+#include "xfs_log_recover.h"
+#include "xfs_extfree_item.h"
+#include "xfs_trans_priv.h"
+#include "xfs_bit.h"
+#include "xfs_quota.h"
+#include "xfs_rw.h"
+
+STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
+STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
+STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
+ xlog_recover_item_t *item);
+#if defined(DEBUG)
+STATIC void xlog_recover_check_summary(xlog_t *);
+STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
+#else
+#define xlog_recover_check_summary(log)
+#define xlog_recover_check_ail(mp, lip, gen)
+#endif
+
+
+/*
+ * Sector aligned buffer routines for buffer create/read/write/access
+ */
+
+#define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
+ ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
+ ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
+#define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
+
+xfs_buf_t *
+xlog_get_bp(
+ xlog_t *log,
+ int num_bblks)
+{
+ ASSERT(num_bblks > 0);
+
+ if (log->l_sectbb_log) {
+ if (num_bblks > 1)
+ num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
+ num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
+ }
+ return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
+}
+
+void
+xlog_put_bp(
+ xfs_buf_t *bp)
+{
+ xfs_buf_free(bp);
+}
+
+
+/*
+ * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
+ */
+int
+xlog_bread(
+ xlog_t *log,
+ xfs_daddr_t blk_no,
+ int nbblks,
+ xfs_buf_t *bp)
+{
+ int error;
+
+ if (log->l_sectbb_log) {
+ blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
+ nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
+ }
+
+ ASSERT(nbblks > 0);
+ ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
+ ASSERT(bp);
+
+ XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
+ XFS_BUF_READ(bp);
+ XFS_BUF_BUSY(bp);
+ XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
+ XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
+
+ xfsbdstrat(log->l_mp, bp);
+ if ((error = xfs_iowait(bp)))
+ xfs_ioerror_alert("xlog_bread", log->l_mp,
+ bp, XFS_BUF_ADDR(bp));
+ return error;
+}
+
+/*
+ * Write out the buffer at the given block for the given number of blocks.
+ * The buffer is kept locked across the write and is returned locked.
+ * This can only be used for synchronous log writes.
+ */
+int
+xlog_bwrite(
+ xlog_t *log,
+ xfs_daddr_t blk_no,
+ int nbblks,
+ xfs_buf_t *bp)
+{
+ int error;
+
+ if (log->l_sectbb_log) {
+ blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
+ nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
+ }
+
+ ASSERT(nbblks > 0);
+ ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
+
+ XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
+ XFS_BUF_ZEROFLAGS(bp);
+ XFS_BUF_BUSY(bp);
+ XFS_BUF_HOLD(bp);
+ XFS_BUF_PSEMA(bp, PRIBIO);
+ XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
+ XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
+
+ if ((error = xfs_bwrite(log->l_mp, bp)))
+ xfs_ioerror_alert("xlog_bwrite", log->l_mp,
+ bp, XFS_BUF_ADDR(bp));
+ return error;
+}
+
+xfs_caddr_t
+xlog_align(
+ xlog_t *log,
+ xfs_daddr_t blk_no,
+ int nbblks,
+ xfs_buf_t *bp)
+{
+ xfs_caddr_t ptr;
+
+ if (!log->l_sectbb_log)
+ return XFS_BUF_PTR(bp);
+
+ ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
+ ASSERT(XFS_BUF_SIZE(bp) >=
+ BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
+ return ptr;
+}
+
+#ifdef DEBUG
+/*
+ * dump debug superblock and log record information
+ */
+STATIC void
+xlog_header_check_dump(
+ xfs_mount_t *mp,
+ xlog_rec_header_t *head)
+{
+ int b;
+
+ printk("%s: SB : uuid = ", __FUNCTION__);
+ for (b = 0; b < 16; b++)
+ printk("%02x",((unsigned char *)&mp->m_sb.sb_uuid)[b]);
+ printk(", fmt = %d\n", XLOG_FMT);
+ printk(" log : uuid = ");
+ for (b = 0; b < 16; b++)
+ printk("%02x",((unsigned char *)&head->h_fs_uuid)[b]);
+ printk(", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT));
+}
+#else
+#define xlog_header_check_dump(mp, head)
+#endif
+
+/*
+ * check log record header for recovery
+ */
+STATIC int
+xlog_header_check_recover(
+ xfs_mount_t *mp,
+ xlog_rec_header_t *head)
+{
+ ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
+
+ /*
+ * IRIX doesn't write the h_fmt field and leaves it zeroed
+ * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
+ * a dirty log created in IRIX.
+ */
+ if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) {
+ xlog_warn(
+ "XFS: dirty log written in incompatible format - can't recover");
+ xlog_header_check_dump(mp, head);
+ XFS_ERROR_REPORT("xlog_header_check_recover(1)",
+ XFS_ERRLEVEL_HIGH, mp);
+ return XFS_ERROR(EFSCORRUPTED);
+ } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
+ xlog_warn(
+ "XFS: dirty log entry has mismatched uuid - can't recover");
+ xlog_header_check_dump(mp, head);
+ XFS_ERROR_REPORT("xlog_header_check_recover(2)",
+ XFS_ERRLEVEL_HIGH, mp);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+ return 0;
+}
+
+/*
+ * read the head block of the log and check the header
+ */
+STATIC int
+xlog_header_check_mount(
+ xfs_mount_t *mp,
+ xlog_rec_header_t *head)
+{
+ ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
+
+ if (uuid_is_nil(&head->h_fs_uuid)) {
+ /*
+ * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
+ * h_fs_uuid is nil, we assume this log was last mounted
+ * by IRIX and continue.
+ */
+ xlog_warn("XFS: nil uuid in log - IRIX style log");
+ } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
+ xlog_warn("XFS: log has mismatched uuid - can't recover");
+ xlog_header_check_dump(mp, head);
+ XFS_ERROR_REPORT("xlog_header_check_mount",
+ XFS_ERRLEVEL_HIGH, mp);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+ return 0;
+}
+
+STATIC void
+xlog_recover_iodone(
+ struct xfs_buf *bp)
+{
+ xfs_mount_t *mp;
+
+ ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
+
+ if (XFS_BUF_GETERROR(bp)) {
+ /*
+ * We're not going to bother about retrying
+ * this during recovery. One strike!
+ */
+ mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
+ xfs_ioerror_alert("xlog_recover_iodone",
+ mp, bp, XFS_BUF_ADDR(bp));
+ xfs_force_shutdown(mp, XFS_METADATA_IO_ERROR);
+ }
+ XFS_BUF_SET_FSPRIVATE(bp, NULL);
+ XFS_BUF_CLR_IODONE_FUNC(bp);
+ xfs_biodone(bp);
+}
+
+/*
+ * This routine finds (to an approximation) the first block in the physical
+ * log which contains the given cycle. It uses a binary search algorithm.
+ * Note that the algorithm can not be perfect because the disk will not
+ * necessarily be perfect.
+ */
+int
+xlog_find_cycle_start(
+ xlog_t *log,
+ xfs_buf_t *bp,
+ xfs_daddr_t first_blk,
+ xfs_daddr_t *last_blk,
+ uint cycle)
+{
+ xfs_caddr_t offset;
+ xfs_daddr_t mid_blk;
+ uint mid_cycle;
+ int error;
+
+ mid_blk = BLK_AVG(first_blk, *last_blk);
+ while (mid_blk != first_blk && mid_blk != *last_blk) {
+ if ((error = xlog_bread(log, mid_blk, 1, bp)))
+ return error;
+ offset = xlog_align(log, mid_blk, 1, bp);
+ mid_cycle = GET_CYCLE(offset, ARCH_CONVERT);
+ if (mid_cycle == cycle) {
+ *last_blk = mid_blk;
+ /* last_half_cycle == mid_cycle */
+ } else {
+ first_blk = mid_blk;
+ /* first_half_cycle == mid_cycle */
+ }
+ mid_blk = BLK_AVG(first_blk, *last_blk);
+ }
+ ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
+ (mid_blk == *last_blk && mid_blk-1 == first_blk));
+
+ return 0;
+}
+
+/*
+ * Check that the range of blocks does not contain the cycle number
+ * given. The scan needs to occur from front to back and the ptr into the
+ * region must be updated since a later routine will need to perform another
+ * test. If the region is completely good, we end up returning the same
+ * last block number.
+ *
+ * Set blkno to -1 if we encounter no errors. This is an invalid block number
+ * since we don't ever expect logs to get this large.
+ */
+STATIC int
+xlog_find_verify_cycle(
+ xlog_t *log,
+ xfs_daddr_t start_blk,
+ int nbblks,
+ uint stop_on_cycle_no,
+ xfs_daddr_t *new_blk)
+{
+ xfs_daddr_t i, j;
+ uint cycle;
+ xfs_buf_t *bp;
+ xfs_daddr_t bufblks;
+ xfs_caddr_t buf = NULL;
+ int error = 0;
+
+ bufblks = 1 << ffs(nbblks);
+
+ while (!(bp = xlog_get_bp(log, bufblks))) {
+ /* can't get enough memory to do everything in one big buffer */
+ bufblks >>= 1;
+ if (bufblks <= log->l_sectbb_log)
+ return ENOMEM;
+ }
+
+ for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
+ int bcount;
+
+ bcount = min(bufblks, (start_blk + nbblks - i));
+
+ if ((error = xlog_bread(log, i, bcount, bp)))
+ goto out;
+
+ buf = xlog_align(log, i, bcount, bp);
+ for (j = 0; j < bcount; j++) {
+ cycle = GET_CYCLE(buf, ARCH_CONVERT);
+ if (cycle == stop_on_cycle_no) {
+ *new_blk = i+j;
+ goto out;
+ }
+
+ buf += BBSIZE;
+ }
+ }
+
+ *new_blk = -1;
+
+out:
+ xlog_put_bp(bp);
+ return error;
+}
+
+/*
+ * Potentially backup over partial log record write.
+ *
+ * In the typical case, last_blk is the number of the block directly after
+ * a good log record. Therefore, we subtract one to get the block number
+ * of the last block in the given buffer. extra_bblks contains the number
+ * of blocks we would have read on a previous read. This happens when the
+ * last log record is split over the end of the physical log.
+ *
+ * extra_bblks is the number of blocks potentially verified on a previous
+ * call to this routine.
+ */
+STATIC int
+xlog_find_verify_log_record(
+ xlog_t *log,
+ xfs_daddr_t start_blk,
+ xfs_daddr_t *last_blk,
+ int extra_bblks)
+{
+ xfs_daddr_t i;
+ xfs_buf_t *bp;
+ xfs_caddr_t offset = NULL;
+ xlog_rec_header_t *head = NULL;
+ int error = 0;
+ int smallmem = 0;
+ int num_blks = *last_blk - start_blk;
+ int xhdrs;
+
+ ASSERT(start_blk != 0 || *last_blk != start_blk);
+
+ if (!(bp = xlog_get_bp(log, num_blks))) {
+ if (!(bp = xlog_get_bp(log, 1)))
+ return ENOMEM;
+ smallmem = 1;
+ } else {
+ if ((error = xlog_bread(log, start_blk, num_blks, bp)))
+ goto out;
+ offset = xlog_align(log, start_blk, num_blks, bp);
+ offset += ((num_blks - 1) << BBSHIFT);
+ }
+
+ for (i = (*last_blk) - 1; i >= 0; i--) {
+ if (i < start_blk) {
+ /* valid log record not found */
+ xlog_warn(
+ "XFS: Log inconsistent (didn't find previous header)");
+ ASSERT(0);
+ error = XFS_ERROR(EIO);
+ goto out;
+ }
+
+ if (smallmem) {
+ if ((error = xlog_bread(log, i, 1, bp)))
+ goto out;
+ offset = xlog_align(log, i, 1, bp);
+ }
+
+ head = (xlog_rec_header_t *)offset;
+
+ if (XLOG_HEADER_MAGIC_NUM ==
+ INT_GET(head->h_magicno, ARCH_CONVERT))
+ break;
+
+ if (!smallmem)
+ offset -= BBSIZE;
+ }
+
+ /*
+ * We hit the beginning of the physical log & still no header. Return
+ * to caller. If caller can handle a return of -1, then this routine
+ * will be called again for the end of the physical log.
+ */
+ if (i == -1) {
+ error = -1;
+ goto out;
+ }
+
+ /*
+ * We have the final block of the good log (the first block
+ * of the log record _before_ the head. So we check the uuid.
+ */
+ if ((error = xlog_header_check_mount(log->l_mp, head)))
+ goto out;
+
+ /*
+ * We may have found a log record header before we expected one.
+ * last_blk will be the 1st block # with a given cycle #. We may end
+ * up reading an entire log record. In this case, we don't want to
+ * reset last_blk. Only when last_blk points in the middle of a log
+ * record do we update last_blk.
+ */
+ if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
+ uint h_size = INT_GET(head->h_size, ARCH_CONVERT);
+
+ xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
+ if (h_size % XLOG_HEADER_CYCLE_SIZE)
+ xhdrs++;
+ } else {
+ xhdrs = 1;
+ }
+
+ if (*last_blk - i + extra_bblks
+ != BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs)
+ *last_blk = i;
+
+out:
+ xlog_put_bp(bp);
+ return error;
+}
+
+/*
+ * Head is defined to be the point of the log where the next log write
+ * write could go. This means that incomplete LR writes at the end are
+ * eliminated when calculating the head. We aren't guaranteed that previous
+ * LR have complete transactions. We only know that a cycle number of
+ * current cycle number -1 won't be present in the log if we start writing
+ * from our current block number.
+ *
+ * last_blk contains the block number of the first block with a given
+ * cycle number.
+ *
+ * Return: zero if normal, non-zero if error.
+ */
+int
+xlog_find_head(
+ xlog_t *log,
+ xfs_daddr_t *return_head_blk)
+{
+ xfs_buf_t *bp;
+ xfs_caddr_t offset;
+ xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
+ int num_scan_bblks;
+ uint first_half_cycle, last_half_cycle;
+ uint stop_on_cycle;
+ int error, log_bbnum = log->l_logBBsize;
+
+ /* Is the end of the log device zeroed? */
+ if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
+ *return_head_blk = first_blk;
+
+ /* Is the whole lot zeroed? */
+ if (!first_blk) {
+ /* Linux XFS shouldn't generate totally zeroed logs -
+ * mkfs etc write a dummy unmount record to a fresh
+ * log so we can store the uuid in there
+ */
+ xlog_warn("XFS: totally zeroed log");
+ }
+
+ return 0;
+ } else if (error) {
+ xlog_warn("XFS: empty log check failed");
+ return error;
+ }
+
+ first_blk = 0; /* get cycle # of 1st block */
+ bp = xlog_get_bp(log, 1);
+ if (!bp)
+ return ENOMEM;
+ if ((error = xlog_bread(log, 0, 1, bp)))
+ goto bp_err;
+ offset = xlog_align(log, 0, 1, bp);
+ first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
+
+ last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
+ if ((error = xlog_bread(log, last_blk, 1, bp)))
+ goto bp_err;
+ offset = xlog_align(log, last_blk, 1, bp);
+ last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
+ ASSERT(last_half_cycle != 0);
+
+ /*
+ * If the 1st half cycle number is equal to the last half cycle number,
+ * then the entire log is stamped with the same cycle number. In this
+ * case, head_blk can't be set to zero (which makes sense). The below
+ * math doesn't work out properly with head_blk equal to zero. Instead,
+ * we set it to log_bbnum which is an invalid block number, but this
+ * value makes the math correct. If head_blk doesn't changed through
+ * all the tests below, *head_blk is set to zero at the very end rather
+ * than log_bbnum. In a sense, log_bbnum and zero are the same block
+ * in a circular file.
+ */
+ if (first_half_cycle == last_half_cycle) {
+ /*
+ * In this case we believe that the entire log should have
+ * cycle number last_half_cycle. We need to scan backwards
+ * from the end verifying that there are no holes still
+ * containing last_half_cycle - 1. If we find such a hole,
+ * then the start of that hole will be the new head. The
+ * simple case looks like
+ * x | x ... | x - 1 | x
+ * Another case that fits this picture would be
+ * x | x + 1 | x ... | x
+ * In this case the head really is somwhere at the end of the
+ * log, as one of the latest writes at the beginning was
+ * incomplete.
+ * One more case is
+ * x | x + 1 | x ... | x - 1 | x
+ * This is really the combination of the above two cases, and
+ * the head has to end up at the start of the x-1 hole at the
+ * end of the log.
+ *
+ * In the 256k log case, we will read from the beginning to the
+ * end of the log and search for cycle numbers equal to x-1.
+ * We don't worry about the x+1 blocks that we encounter,
+ * because we know that they cannot be the head since the log
+ * started with x.
+ */
+ head_blk = log_bbnum;
+ stop_on_cycle = last_half_cycle - 1;
+ } else {
+ /*
+ * In this case we want to find the first block with cycle
+ * number matching last_half_cycle. We expect the log to be
+ * some variation on
+ * x + 1 ... | x ...
+ * The first block with cycle number x (last_half_cycle) will
+ * be where the new head belongs. First we do a binary search
+ * for the first occurrence of last_half_cycle. The binary
+ * search may not be totally accurate, so then we scan back
+ * from there looking for occurrences of last_half_cycle before
+ * us. If that backwards scan wraps around the beginning of
+ * the log, then we look for occurrences of last_half_cycle - 1
+ * at the end of the log. The cases we're looking for look
+ * like
+ * x + 1 ... | x | x + 1 | x ...
+ * ^ binary search stopped here
+ * or
+ * x + 1 ... | x ... | x - 1 | x
+ * <---------> less than scan distance
+ */
+ stop_on_cycle = last_half_cycle;
+ if ((error = xlog_find_cycle_start(log, bp, first_blk,
+ &head_blk, last_half_cycle)))
+ goto bp_err;
+ }
+
+ /*
+ * Now validate the answer. Scan back some number of maximum possible
+ * blocks and make sure each one has the expected cycle number. The
+ * maximum is determined by the total possible amount of buffering
+ * in the in-core log. The following number can be made tighter if
+ * we actually look at the block size of the filesystem.
+ */
+ num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
+ if (head_blk >= num_scan_bblks) {
+ /*
+ * We are guaranteed that the entire check can be performed
+ * in one buffer.
+ */
+ start_blk = head_blk - num_scan_bblks;
+ if ((error = xlog_find_verify_cycle(log,
+ start_blk, num_scan_bblks,
+ stop_on_cycle, &new_blk)))
+ goto bp_err;
+ if (new_blk != -1)
+ head_blk = new_blk;
+ } else { /* need to read 2 parts of log */
+ /*
+ * We are going to scan backwards in the log in two parts.
+ * First we scan the physical end of the log. In this part
+ * of the log, we are looking for blocks with cycle number
+ * last_half_cycle - 1.
+ * If we find one, then we know that the log starts there, as
+ * we've found a hole that didn't get written in going around
+ * the end of the physical log. The simple case for this is
+ * x + 1 ... | x ... | x - 1 | x
+ * <---------> less than scan distance
+ * If all of the blocks at the end of the log have cycle number
+ * last_half_cycle, then we check the blocks at the start of
+ * the log looking for occurrences of last_half_cycle. If we
+ * find one, then our current estimate for the location of the
+ * first occurrence of last_half_cycle is wrong and we move
+ * back to the hole we've found. This case looks like
+ * x + 1 ... | x | x + 1 | x ...
+ * ^ binary search stopped here
+ * Another case we need to handle that only occurs in 256k
+ * logs is
+ * x + 1 ... | x ... | x+1 | x ...
+ * ^ binary search stops here
+ * In a 256k log, the scan at the end of the log will see the
+ * x + 1 blocks. We need to skip past those since that is
+ * certainly not the head of the log. By searching for
+ * last_half_cycle-1 we accomplish that.
+ */
+ start_blk = log_bbnum - num_scan_bblks + head_blk;
+ ASSERT(head_blk <= INT_MAX &&
+ (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
+ if ((error = xlog_find_verify_cycle(log, start_blk,
+ num_scan_bblks - (int)head_blk,
+ (stop_on_cycle - 1), &new_blk)))
+ goto bp_err;
+ if (new_blk != -1) {
+ head_blk = new_blk;
+ goto bad_blk;
+ }
+
+ /*
+ * Scan beginning of log now. The last part of the physical
+ * log is good. This scan needs to verify that it doesn't find
+ * the last_half_cycle.
+ */
+ start_blk = 0;
+ ASSERT(head_blk <= INT_MAX);
+ if ((error = xlog_find_verify_cycle(log,
+ start_blk, (int)head_blk,
+ stop_on_cycle, &new_blk)))
+ goto bp_err;
+ if (new_blk != -1)
+ head_blk = new_blk;
+ }
+
+ bad_blk:
+ /*
+ * Now we need to make sure head_blk is not pointing to a block in
+ * the middle of a log record.
+ */
+ num_scan_bblks = XLOG_REC_SHIFT(log);
+ if (head_blk >= num_scan_bblks) {
+ start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
+
+ /* start ptr at last block ptr before head_blk */
+ if ((error = xlog_find_verify_log_record(log, start_blk,
+ &head_blk, 0)) == -1) {
+ error = XFS_ERROR(EIO);
+ goto bp_err;
+ } else if (error)
+ goto bp_err;
+ } else {
+ start_blk = 0;
+ ASSERT(head_blk <= INT_MAX);
+ if ((error = xlog_find_verify_log_record(log, start_blk,
+ &head_blk, 0)) == -1) {
+ /* We hit the beginning of the log during our search */
+ start_blk = log_bbnum - num_scan_bblks + head_blk;
+ new_blk = log_bbnum;
+ ASSERT(start_blk <= INT_MAX &&
+ (xfs_daddr_t) log_bbnum-start_blk >= 0);
+ ASSERT(head_blk <= INT_MAX);
+ if ((error = xlog_find_verify_log_record(log,
+ start_blk, &new_blk,
+ (int)head_blk)) == -1) {
+ error = XFS_ERROR(EIO);
+ goto bp_err;
+ } else if (error)
+ goto bp_err;
+ if (new_blk != log_bbnum)
+ head_blk = new_blk;
+ } else if (error)
+ goto bp_err;
+ }
+
+ xlog_put_bp(bp);
+ if (head_blk == log_bbnum)
+ *return_head_blk = 0;
+ else
+ *return_head_blk = head_blk;
+ /*
+ * When returning here, we have a good block number. Bad block
+ * means that during a previous crash, we didn't have a clean break
+ * from cycle number N to cycle number N-1. In this case, we need
+ * to find the first block with cycle number N-1.
+ */
+ return 0;
+
+ bp_err:
+ xlog_put_bp(bp);
+
+ if (error)
+ xlog_warn("XFS: failed to find log head");
+ return error;
+}
+
+/*
+ * Find the sync block number or the tail of the log.
+ *
+ * This will be the block number of the last record to have its
+ * associated buffers synced to disk. Every log record header has
+ * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
+ * to get a sync block number. The only concern is to figure out which
+ * log record header to believe.
+ *
+ * The following algorithm uses the log record header with the largest
+ * lsn. The entire log record does not need to be valid. We only care
+ * that the header is valid.
+ *
+ * We could speed up search by using current head_blk buffer, but it is not
+ * available.
+ */
+int
+xlog_find_tail(
+ xlog_t *log,
+ xfs_daddr_t *head_blk,
+ xfs_daddr_t *tail_blk,
+ int readonly)
+{
+ xlog_rec_header_t *rhead;
+ xlog_op_header_t *op_head;
+ xfs_caddr_t offset = NULL;
+ xfs_buf_t *bp;
+ int error, i, found;
+ xfs_daddr_t umount_data_blk;
+ xfs_daddr_t after_umount_blk;
+ xfs_lsn_t tail_lsn;
+ int hblks;
+
+ found = 0;
+
+ /*
+ * Find previous log record
+ */
+ if ((error = xlog_find_head(log, head_blk)))
+ return error;
+
+ bp = xlog_get_bp(log, 1);
+ if (!bp)
+ return ENOMEM;
+ if (*head_blk == 0) { /* special case */
+ if ((error = xlog_bread(log, 0, 1, bp)))
+ goto bread_err;
+ offset = xlog_align(log, 0, 1, bp);
+ if (GET_CYCLE(offset, ARCH_CONVERT) == 0) {
+ *tail_blk = 0;
+ /* leave all other log inited values alone */
+ goto exit;
+ }
+ }
+
+ /*
+ * Search backwards looking for log record header block
+ */
+ ASSERT(*head_blk < INT_MAX);
+ for (i = (int)(*head_blk) - 1; i >= 0; i--) {
+ if ((error = xlog_bread(log, i, 1, bp)))
+ goto bread_err;
+ offset = xlog_align(log, i, 1, bp);
+ if (XLOG_HEADER_MAGIC_NUM ==
+ INT_GET(*(uint *)offset, ARCH_CONVERT)) {
+ found = 1;
+ break;
+ }
+ }
+ /*
+ * If we haven't found the log record header block, start looking
+ * again from the end of the physical log. XXXmiken: There should be
+ * a check here to make sure we didn't search more than N blocks in
+ * the previous code.
+ */
+ if (!found) {
+ for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
+ if ((error = xlog_bread(log, i, 1, bp)))
+ goto bread_err;
+ offset = xlog_align(log, i, 1, bp);
+ if (XLOG_HEADER_MAGIC_NUM ==
+ INT_GET(*(uint*)offset, ARCH_CONVERT)) {
+ found = 2;
+ break;
+ }
+ }
+ }
+ if (!found) {
+ xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
+ ASSERT(0);
+ return XFS_ERROR(EIO);
+ }
+
+ /* find blk_no of tail of log */
+ rhead = (xlog_rec_header_t *)offset;
+ *tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT));
+
+ /*
+ * Reset log values according to the state of the log when we
+ * crashed. In the case where head_blk == 0, we bump curr_cycle
+ * one because the next write starts a new cycle rather than
+ * continuing the cycle of the last good log record. At this
+ * point we have guaranteed that all partial log records have been
+ * accounted for. Therefore, we know that the last good log record
+ * written was complete and ended exactly on the end boundary
+ * of the physical log.
+ */
+ log->l_prev_block = i;
+ log->l_curr_block = (int)*head_blk;
+ log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT);
+ if (found == 2)
+ log->l_curr_cycle++;
+ log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT);
+ log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT);
+ log->l_grant_reserve_cycle = log->l_curr_cycle;
+ log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
+ log->l_grant_write_cycle = log->l_curr_cycle;
+ log->l_grant_write_bytes = BBTOB(log->l_curr_block);
+
+ /*
+ * Look for unmount record. If we find it, then we know there
+ * was a clean unmount. Since 'i' could be the last block in
+ * the physical log, we convert to a log block before comparing
+ * to the head_blk.
+ *
+ * Save the current tail lsn to use to pass to
+ * xlog_clear_stale_blocks() below. We won't want to clear the
+ * unmount record if there is one, so we pass the lsn of the
+ * unmount record rather than the block after it.
+ */
+ if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
+ int h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
+ int h_version = INT_GET(rhead->h_version, ARCH_CONVERT);
+
+ if ((h_version & XLOG_VERSION_2) &&
+ (h_size > XLOG_HEADER_CYCLE_SIZE)) {
+ hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
+ if (h_size % XLOG_HEADER_CYCLE_SIZE)
+ hblks++;
+ } else {
+ hblks = 1;
+ }
+ } else {
+ hblks = 1;
+ }
+ after_umount_blk = (i + hblks + (int)
+ BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize;
+ tail_lsn = log->l_tail_lsn;
+ if (*head_blk == after_umount_blk &&
+ INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) {
+ umount_data_blk = (i + hblks) % log->l_logBBsize;
+ if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
+ goto bread_err;
+ }
+ offset = xlog_align(log, umount_data_blk, 1, bp);
+ op_head = (xlog_op_header_t *)offset;
+ if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
+ /*
+ * Set tail and last sync so that newly written
+ * log records will point recovery to after the
+ * current unmount record.
+ */
+ ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle,
+ after_umount_blk);
+ ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle,
+ after_umount_blk);
+ *tail_blk = after_umount_blk;
+ }
+ }
+
+ /*
+ * Make sure that there are no blocks in front of the head
+ * with the same cycle number as the head. This can happen
+ * because we allow multiple outstanding log writes concurrently,
+ * and the later writes might make it out before earlier ones.
+ *
+ * We use the lsn from before modifying it so that we'll never
+ * overwrite the unmount record after a clean unmount.
+ *
+ * Do this only if we are going to recover the filesystem
+ *
+ * NOTE: This used to say "if (!readonly)"
+ * However on Linux, we can & do recover a read-only filesystem.
+ * We only skip recovery if NORECOVERY is specified on mount,
+ * in which case we would not be here.
+ *
+ * But... if the -device- itself is readonly, just skip this.
+ * We can't recover this device anyway, so it won't matter.
+ */
+ if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
+ error = xlog_clear_stale_blocks(log, tail_lsn);
+ }
+
+bread_err:
+exit:
+ xlog_put_bp(bp);
+
+ if (error)
+ xlog_warn("XFS: failed to locate log tail");
+ return error;
+}
+
+/*
+ * Is the log zeroed at all?
+ *
+ * The last binary search should be changed to perform an X block read
+ * once X becomes small enough. You can then search linearly through
+ * the X blocks. This will cut down on the number of reads we need to do.
+ *
+ * If the log is partially zeroed, this routine will pass back the blkno
+ * of the first block with cycle number 0. It won't have a complete LR
+ * preceding it.
+ *
+ * Return:
+ * 0 => the log is completely written to
+ * -1 => use *blk_no as the first block of the log
+ * >0 => error has occurred
+ */
+int
+xlog_find_zeroed(
+ xlog_t *log,
+ xfs_daddr_t *blk_no)
+{
+ xfs_buf_t *bp;
+ xfs_caddr_t offset;
+ uint first_cycle, last_cycle;
+ xfs_daddr_t new_blk, last_blk, start_blk;
+ xfs_daddr_t num_scan_bblks;
+ int error, log_bbnum = log->l_logBBsize;
+
+ /* check totally zeroed log */
+ bp = xlog_get_bp(log, 1);
+ if (!bp)
+ return ENOMEM;
+ if ((error = xlog_bread(log, 0, 1, bp)))
+ goto bp_err;
+ offset = xlog_align(log, 0, 1, bp);
+ first_cycle = GET_CYCLE(offset, ARCH_CONVERT);
+ if (first_cycle == 0) { /* completely zeroed log */
+ *blk_no = 0;
+ xlog_put_bp(bp);
+ return -1;
+ }
+
+ /* check partially zeroed log */
+ if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
+ goto bp_err;
+ offset = xlog_align(log, log_bbnum-1, 1, bp);
+ last_cycle = GET_CYCLE(offset, ARCH_CONVERT);
+ if (last_cycle != 0) { /* log completely written to */
+ xlog_put_bp(bp);
+ return 0;
+ } else if (first_cycle != 1) {
+ /*
+ * If the cycle of the last block is zero, the cycle of
+ * the first block must be 1. If it's not, maybe we're
+ * not looking at a log... Bail out.
+ */
+ xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
+ return XFS_ERROR(EINVAL);
+ }
+
+ /* we have a partially zeroed log */
+ last_blk = log_bbnum-1;
+ if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
+ goto bp_err;
+
+ /*
+ * Validate the answer. Because there is no way to guarantee that
+ * the entire log is made up of log records which are the same size,
+ * we scan over the defined maximum blocks. At this point, the maximum
+ * is not chosen to mean anything special. XXXmiken
+ */
+ num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
+ ASSERT(num_scan_bblks <= INT_MAX);
+
+ if (last_blk < num_scan_bblks)
+ num_scan_bblks = last_blk;
+ start_blk = last_blk - num_scan_bblks;
+
+ /*
+ * We search for any instances of cycle number 0 that occur before
+ * our current estimate of the head. What we're trying to detect is
+ * 1 ... | 0 | 1 | 0...
+ * ^ binary search ends here
+ */
+ if ((error = xlog_find_verify_cycle(log, start_blk,
+ (int)num_scan_bblks, 0, &new_blk)))
+ goto bp_err;
+ if (new_blk != -1)
+ last_blk = new_blk;
+
+ /*
+ * Potentially backup over partial log record write. We don't need
+ * to search the end of the log because we know it is zero.
+ */
+ if ((error = xlog_find_verify_log_record(log, start_blk,
+ &last_blk, 0)) == -1) {
+ error = XFS_ERROR(EIO);
+ goto bp_err;
+ } else if (error)
+ goto bp_err;
+
+ *blk_no = last_blk;
+bp_err:
+ xlog_put_bp(bp);
+ if (error)
+ return error;
+ return -1;
+}
+
+/*
+ * These are simple subroutines used by xlog_clear_stale_blocks() below
+ * to initialize a buffer full of empty log record headers and write
+ * them into the log.
+ */
+STATIC void
+xlog_add_record(
+ xlog_t *log,
+ xfs_caddr_t buf,
+ int cycle,
+ int block,
+ int tail_cycle,
+ int tail_block)
+{
+ xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
+
+ memset(buf, 0, BBSIZE);
+ INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM);
+ INT_SET(recp->h_cycle, ARCH_CONVERT, cycle);
+ INT_SET(recp->h_version, ARCH_CONVERT,
+ XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1);
+ ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block);
+ ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block);
+ INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT);
+ memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
+}
+
+STATIC int
+xlog_write_log_records(
+ xlog_t *log,
+ int cycle,
+ int start_block,
+ int blocks,
+ int tail_cycle,
+ int tail_block)
+{
+ xfs_caddr_t offset;
+ xfs_buf_t *bp;
+ int balign, ealign;
+ int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
+ int end_block = start_block + blocks;
+ int bufblks;
+ int error = 0;
+ int i, j = 0;
+
+ bufblks = 1 << ffs(blocks);
+ while (!(bp = xlog_get_bp(log, bufblks))) {
+ bufblks >>= 1;
+ if (bufblks <= log->l_sectbb_log)
+ return ENOMEM;
+ }
+
+ /* We may need to do a read at the start to fill in part of
+ * the buffer in the starting sector not covered by the first
+ * write below.
+ */
+ balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
+ if (balign != start_block) {
+ if ((error = xlog_bread(log, start_block, 1, bp))) {
+ xlog_put_bp(bp);
+ return error;
+ }
+ j = start_block - balign;
+ }
+
+ for (i = start_block; i < end_block; i += bufblks) {
+ int bcount, endcount;
+
+ bcount = min(bufblks, end_block - start_block);
+ endcount = bcount - j;
+
+ /* We may need to do a read at the end to fill in part of
+ * the buffer in the final sector not covered by the write.
+ * If this is the same sector as the above read, skip it.
+ */
+ ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
+ if (j == 0 && (start_block + endcount > ealign)) {
+ offset = XFS_BUF_PTR(bp);
+ balign = BBTOB(ealign - start_block);
+ XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
+ if ((error = xlog_bread(log, ealign, sectbb, bp)))
+ break;
+ XFS_BUF_SET_PTR(bp, offset, bufblks);
+ }
+
+ offset = xlog_align(log, start_block, endcount, bp);
+ for (; j < endcount; j++) {
+ xlog_add_record(log, offset, cycle, i+j,
+ tail_cycle, tail_block);
+ offset += BBSIZE;
+ }
+ error = xlog_bwrite(log, start_block, endcount, bp);
+ if (error)
+ break;
+ start_block += endcount;
+ j = 0;
+ }
+ xlog_put_bp(bp);
+ return error;
+}
+
+/*
+ * This routine is called to blow away any incomplete log writes out
+ * in front of the log head. We do this so that we won't become confused
+ * if we come up, write only a little bit more, and then crash again.
+ * If we leave the partial log records out there, this situation could
+ * cause us to think those partial writes are valid blocks since they
+ * have the current cycle number. We get rid of them by overwriting them
+ * with empty log records with the old cycle number rather than the
+ * current one.
+ *
+ * The tail lsn is passed in rather than taken from
+ * the log so that we will not write over the unmount record after a
+ * clean unmount in a 512 block log. Doing so would leave the log without
+ * any valid log records in it until a new one was written. If we crashed
+ * during that time we would not be able to recover.
+ */
+STATIC int
+xlog_clear_stale_blocks(
+ xlog_t *log,
+ xfs_lsn_t tail_lsn)
+{
+ int tail_cycle, head_cycle;
+ int tail_block, head_block;
+ int tail_distance, max_distance;
+ int distance;
+ int error;
+
+ tail_cycle = CYCLE_LSN(tail_lsn);
+ tail_block = BLOCK_LSN(tail_lsn);
+ head_cycle = log->l_curr_cycle;
+ head_block = log->l_curr_block;
+
+ /*
+ * Figure out the distance between the new head of the log
+ * and the tail. We want to write over any blocks beyond the
+ * head that we may have written just before the crash, but
+ * we don't want to overwrite the tail of the log.
+ */
+ if (head_cycle == tail_cycle) {
+ /*
+ * The tail is behind the head in the physical log,
+ * so the distance from the head to the tail is the
+ * distance from the head to the end of the log plus
+ * the distance from the beginning of the log to the
+ * tail.
+ */
+ if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
+ XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
+ XFS_ERRLEVEL_LOW, log->l_mp);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+ tail_distance = tail_block + (log->l_logBBsize - head_block);
+ } else {
+ /*
+ * The head is behind the tail in the physical log,
+ * so the distance from the head to the tail is just
+ * the tail block minus the head block.
+ */
+ if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
+ XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
+ XFS_ERRLEVEL_LOW, log->l_mp);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+ tail_distance = tail_block - head_block;
+ }
+
+ /*
+ * If the head is right up against the tail, we can't clear
+ * anything.
+ */
+ if (tail_distance <= 0) {
+ ASSERT(tail_distance == 0);
+ return 0;
+ }
+
+ max_distance = XLOG_TOTAL_REC_SHIFT(log);
+ /*
+ * Take the smaller of the maximum amount of outstanding I/O
+ * we could have and the distance to the tail to clear out.
+ * We take the smaller so that we don't overwrite the tail and
+ * we don't waste all day writing from the head to the tail
+ * for no reason.
+ */
+ max_distance = MIN(max_distance, tail_distance);
+
+ if ((head_block + max_distance) <= log->l_logBBsize) {
+ /*
+ * We can stomp all the blocks we need to without
+ * wrapping around the end of the log. Just do it
+ * in a single write. Use the cycle number of the
+ * current cycle minus one so that the log will look like:
+ * n ... | n - 1 ...
+ */
+ error = xlog_write_log_records(log, (head_cycle - 1),
+ head_block, max_distance, tail_cycle,
+ tail_block);
+ if (error)
+ return error;
+ } else {
+ /*
+ * We need to wrap around the end of the physical log in
+ * order to clear all the blocks. Do it in two separate
+ * I/Os. The first write should be from the head to the
+ * end of the physical log, and it should use the current
+ * cycle number minus one just like above.
+ */
+ distance = log->l_logBBsize - head_block;
+ error = xlog_write_log_records(log, (head_cycle - 1),
+ head_block, distance, tail_cycle,
+ tail_block);
+
+ if (error)
+ return error;
+
+ /*
+ * Now write the blocks at the start of the physical log.
+ * This writes the remainder of the blocks we want to clear.
+ * It uses the current cycle number since we're now on the
+ * same cycle as the head so that we get:
+ * n ... n ... | n - 1 ...
+ * ^^^^^ blocks we're writing
+ */
+ distance = max_distance - (log->l_logBBsize - head_block);
+ error = xlog_write_log_records(log, head_cycle, 0, distance,
+ tail_cycle, tail_block);
+ if (error)
+ return error;
+ }
+
+ return 0;
+}
+
+/******************************************************************************
+ *
+ * Log recover routines
+ *
+ ******************************************************************************
+ */
+
+STATIC xlog_recover_t *
+xlog_recover_find_tid(
+ xlog_recover_t *q,
+ xlog_tid_t tid)
+{
+ xlog_recover_t *p = q;
+
+ while (p != NULL) {
+ if (p->r_log_tid == tid)
+ break;
+ p = p->r_next;
+ }
+ return p;
+}
+
+STATIC void
+xlog_recover_put_hashq(
+ xlog_recover_t **q,
+ xlog_recover_t *trans)
+{
+ trans->r_next = *q;
+ *q = trans;
+}
+
+STATIC void
+xlog_recover_add_item(
+ xlog_recover_item_t **itemq)
+{
+ xlog_recover_item_t *item;
+
+ item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
+ xlog_recover_insert_item_backq(itemq, item);
+}
+
+STATIC int
+xlog_recover_add_to_cont_trans(
+ xlog_recover_t *trans,
+ xfs_caddr_t dp,
+ int len)
+{
+ xlog_recover_item_t *item;
+ xfs_caddr_t ptr, old_ptr;
+ int old_len;
+
+ item = trans->r_itemq;
+ if (item == 0) {
+ /* finish copying rest of trans header */
+ xlog_recover_add_item(&trans->r_itemq);
+ ptr = (xfs_caddr_t) &trans->r_theader +
+ sizeof(xfs_trans_header_t) - len;
+ memcpy(ptr, dp, len); /* d, s, l */
+ return 0;
+ }
+ item = item->ri_prev;
+
+ old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
+ old_len = item->ri_buf[item->ri_cnt-1].i_len;
+
+ ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0);
+ memcpy(&ptr[old_len], dp, len); /* d, s, l */
+ item->ri_buf[item->ri_cnt-1].i_len += len;
+ item->ri_buf[item->ri_cnt-1].i_addr = ptr;
+ return 0;
+}
+
+/*
+ * The next region to add is the start of a new region. It could be
+ * a whole region or it could be the first part of a new region. Because
+ * of this, the assumption here is that the type and size fields of all
+ * format structures fit into the first 32 bits of the structure.
+ *
+ * This works because all regions must be 32 bit aligned. Therefore, we
+ * either have both fields or we have neither field. In the case we have
+ * neither field, the data part of the region is zero length. We only have
+ * a log_op_header and can throw away the header since a new one will appear
+ * later. If we have at least 4 bytes, then we can determine how many regions
+ * will appear in the current log item.
+ */
+STATIC int
+xlog_recover_add_to_trans(
+ xlog_recover_t *trans,
+ xfs_caddr_t dp,
+ int len)
+{
+ xfs_inode_log_format_t *in_f; /* any will do */
+ xlog_recover_item_t *item;
+ xfs_caddr_t ptr;
+
+ if (!len)
+ return 0;
+ item = trans->r_itemq;
+ if (item == 0) {
+ ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
+ if (len == sizeof(xfs_trans_header_t))
+ xlog_recover_add_item(&trans->r_itemq);
+ memcpy(&trans->r_theader, dp, len); /* d, s, l */
+ return 0;
+ }
+
+ ptr = kmem_alloc(len, KM_SLEEP);
+ memcpy(ptr, dp, len);
+ in_f = (xfs_inode_log_format_t *)ptr;
+
+ if (item->ri_prev->ri_total != 0 &&
+ item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
+ xlog_recover_add_item(&trans->r_itemq);
+ }
+ item = trans->r_itemq;
+ item = item->ri_prev;
+
+ if (item->ri_total == 0) { /* first region to be added */
+ item->ri_total = in_f->ilf_size;
+ ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
+ item->ri_buf = kmem_zalloc((item->ri_total *
+ sizeof(xfs_log_iovec_t)), KM_SLEEP);
+ }
+ ASSERT(item->ri_total > item->ri_cnt);
+ /* Description region is ri_buf[0] */
+ item->ri_buf[item->ri_cnt].i_addr = ptr;
+ item->ri_buf[item->ri_cnt].i_len = len;
+ item->ri_cnt++;
+ return 0;
+}
+
+STATIC void
+xlog_recover_new_tid(
+ xlog_recover_t **q,
+ xlog_tid_t tid,
+ xfs_lsn_t lsn)
+{
+ xlog_recover_t *trans;
+
+ trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
+ trans->r_log_tid = tid;
+ trans->r_lsn = lsn;
+ xlog_recover_put_hashq(q, trans);
+}
+
+STATIC int
+xlog_recover_unlink_tid(
+ xlog_recover_t **q,
+ xlog_recover_t *trans)
+{
+ xlog_recover_t *tp;
+ int found = 0;
+
+ ASSERT(trans != 0);
+ if (trans == *q) {
+ *q = (*q)->r_next;
+ } else {
+ tp = *q;
+ while (tp != 0) {
+ if (tp->r_next == trans) {
+ found = 1;
+ break;
+ }
+ tp = tp->r_next;
+ }
+ if (!found) {
+ xlog_warn(
+ "XFS: xlog_recover_unlink_tid: trans not found");
+ ASSERT(0);
+ return XFS_ERROR(EIO);
+ }
+ tp->r_next = tp->r_next->r_next;
+ }
+ return 0;
+}
+
+STATIC void
+xlog_recover_insert_item_backq(
+ xlog_recover_item_t **q,
+ xlog_recover_item_t *item)
+{
+ if (*q == 0) {
+ item->ri_prev = item->ri_next = item;
+ *q = item;
+ } else {
+ item->ri_next = *q;
+ item->ri_prev = (*q)->ri_prev;
+ (*q)->ri_prev = item;
+ item->ri_prev->ri_next = item;
+ }
+}
+
+STATIC void
+xlog_recover_insert_item_frontq(
+ xlog_recover_item_t **q,
+ xlog_recover_item_t *item)
+{
+ xlog_recover_insert_item_backq(q, item);
+ *q = item;
+}
+
+STATIC int
+xlog_recover_reorder_trans(
+ xlog_t *log,
+ xlog_recover_t *trans)
+{
+ xlog_recover_item_t *first_item, *itemq, *itemq_next;
+ xfs_buf_log_format_t *buf_f;
+ xfs_buf_log_format_v1_t *obuf_f;
+ ushort flags = 0;
+
+ first_item = itemq = trans->r_itemq;
+ trans->r_itemq = NULL;
+ do {
+ itemq_next = itemq->ri_next;
+ buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
+ switch (ITEM_TYPE(itemq)) {
+ case XFS_LI_BUF:
+ flags = buf_f->blf_flags;
+ break;
+ case XFS_LI_6_1_BUF:
+ case XFS_LI_5_3_BUF:
+ obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
+ flags = obuf_f->blf_flags;
+ break;
+ }
+
+ switch (ITEM_TYPE(itemq)) {
+ case XFS_LI_BUF:
+ case XFS_LI_6_1_BUF:
+ case XFS_LI_5_3_BUF:
+ if (!(flags & XFS_BLI_CANCEL)) {
+ xlog_recover_insert_item_frontq(&trans->r_itemq,
+ itemq);
+ break;
+ }
+ case XFS_LI_INODE:
+ case XFS_LI_6_1_INODE:
+ case XFS_LI_5_3_INODE:
+ case XFS_LI_DQUOT:
+ case XFS_LI_QUOTAOFF:
+ case XFS_LI_EFD:
+ case XFS_LI_EFI:
+ xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
+ break;
+ default:
+ xlog_warn(
+ "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
+ ASSERT(0);
+ return XFS_ERROR(EIO);
+ }
+ itemq = itemq_next;
+ } while (first_item != itemq);
+ return 0;
+}
+
+/*
+ * Build up the table of buf cancel records so that we don't replay
+ * cancelled data in the second pass. For buffer records that are
+ * not cancel records, there is nothing to do here so we just return.
+ *
+ * If we get a cancel record which is already in the table, this indicates
+ * that the buffer was cancelled multiple times. In order to ensure
+ * that during pass 2 we keep the record in the table until we reach its
+ * last occurrence in the log, we keep a reference count in the cancel
+ * record in the table to tell us how many times we expect to see this
+ * record during the second pass.
+ */
+STATIC void
+xlog_recover_do_buffer_pass1(
+ xlog_t *log,
+ xfs_buf_log_format_t *buf_f)
+{
+ xfs_buf_cancel_t *bcp;
+ xfs_buf_cancel_t *nextp;
+ xfs_buf_cancel_t *prevp;
+ xfs_buf_cancel_t **bucket;
+ xfs_buf_log_format_v1_t *obuf_f;
+ xfs_daddr_t blkno = 0;
+ uint len = 0;
+ ushort flags = 0;
+
+ switch (buf_f->blf_type) {
+ case XFS_LI_BUF:
+ blkno = buf_f->blf_blkno;
+ len = buf_f->blf_len;
+ flags = buf_f->blf_flags;
+ break;
+ case XFS_LI_6_1_BUF:
+ case XFS_LI_5_3_BUF:
+ obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
+ blkno = (xfs_daddr_t) obuf_f->blf_blkno;
+ len = obuf_f->blf_len;
+ flags = obuf_f->blf_flags;
+ break;
+ }
+
+ /*
+ * If this isn't a cancel buffer item, then just return.
+ */
+ if (!(flags & XFS_BLI_CANCEL))
+ return;
+
+ /*
+ * Insert an xfs_buf_cancel record into the hash table of
+ * them. If there is already an identical record, bump
+ * its reference count.
+ */
+ bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
+ XLOG_BC_TABLE_SIZE];
+ /*
+ * If the hash bucket is empty then just insert a new record into
+ * the bucket.
+ */
+ if (*bucket == NULL) {
+ bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
+ KM_SLEEP);
+ bcp->bc_blkno = blkno;
+ bcp->bc_len = len;
+ bcp->bc_refcount = 1;
+ bcp->bc_next = NULL;
+ *bucket = bcp;
+ return;
+ }
+
+ /*
+ * The hash bucket is not empty, so search for duplicates of our
+ * record. If we find one them just bump its refcount. If not
+ * then add us at the end of the list.
+ */
+ prevp = NULL;
+ nextp = *bucket;
+ while (nextp != NULL) {
+ if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
+ nextp->bc_refcount++;
+ return;
+ }
+ prevp = nextp;
+ nextp = nextp->bc_next;
+ }
+ ASSERT(prevp != NULL);
+ bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
+ KM_SLEEP);
+ bcp->bc_blkno = blkno;
+ bcp->bc_len = len;
+ bcp->bc_refcount = 1;
+ bcp->bc_next = NULL;
+ prevp->bc_next = bcp;
+}
+
+/*
+ * Check to see whether the buffer being recovered has a corresponding
+ * entry in the buffer cancel record table. If it does then return 1
+ * so that it will be cancelled, otherwise return 0. If the buffer is
+ * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
+ * the refcount on the entry in the table and remove it from the table
+ * if this is the last reference.
+ *
+ * We remove the cancel record from the table when we encounter its
+ * last occurrence in the log so that if the same buffer is re-used
+ * again after its last cancellation we actually replay the changes
+ * made at that point.
+ */
+STATIC int
+xlog_check_buffer_cancelled(
+ xlog_t *log,
+ xfs_daddr_t blkno,
+ uint len,
+ ushort flags)
+{
+ xfs_buf_cancel_t *bcp;
+ xfs_buf_cancel_t *prevp;
+ xfs_buf_cancel_t **bucket;
+
+ if (log->l_buf_cancel_table == NULL) {
+ /*
+ * There is nothing in the table built in pass one,
+ * so this buffer must not be cancelled.
+ */
+ ASSERT(!(flags & XFS_BLI_CANCEL));
+ return 0;
+ }
+
+ bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
+ XLOG_BC_TABLE_SIZE];
+ bcp = *bucket;
+ if (bcp == NULL) {
+ /*
+ * There is no corresponding entry in the table built
+ * in pass one, so this buffer has not been cancelled.
+ */
+ ASSERT(!(flags & XFS_BLI_CANCEL));
+ return 0;
+ }
+
+ /*
+ * Search for an entry in the buffer cancel table that
+ * matches our buffer.
+ */
+ prevp = NULL;
+ while (bcp != NULL) {
+ if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
+ /*
+ * We've go a match, so return 1 so that the
+ * recovery of this buffer is cancelled.
+ * If this buffer is actually a buffer cancel
+ * log item, then decrement the refcount on the
+ * one in the table and remove it if this is the
+ * last reference.
+ */
+ if (flags & XFS_BLI_CANCEL) {
+ bcp->bc_refcount--;
+ if (bcp->bc_refcount == 0) {
+ if (prevp == NULL) {
+ *bucket = bcp->bc_next;
+ } else {
+ prevp->bc_next = bcp->bc_next;
+ }
+ kmem_free(bcp,
+ sizeof(xfs_buf_cancel_t));
+ }
+ }
+ return 1;
+ }
+ prevp = bcp;
+ bcp = bcp->bc_next;
+ }
+ /*
+ * We didn't find a corresponding entry in the table, so
+ * return 0 so that the buffer is NOT cancelled.
+ */
+ ASSERT(!(flags & XFS_BLI_CANCEL));
+ return 0;
+}
+
+STATIC int
+xlog_recover_do_buffer_pass2(
+ xlog_t *log,
+ xfs_buf_log_format_t *buf_f)
+{
+ xfs_buf_log_format_v1_t *obuf_f;
+ xfs_daddr_t blkno = 0;
+ ushort flags = 0;
+ uint len = 0;
+
+ switch (buf_f->blf_type) {
+ case XFS_LI_BUF:
+ blkno = buf_f->blf_blkno;
+ flags = buf_f->blf_flags;
+ len = buf_f->blf_len;
+ break;
+ case XFS_LI_6_1_BUF:
+ case XFS_LI_5_3_BUF:
+ obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
+ blkno = (xfs_daddr_t) obuf_f->blf_blkno;
+ flags = obuf_f->blf_flags;
+ len = (xfs_daddr_t) obuf_f->blf_len;
+ break;
+ }
+
+ return xlog_check_buffer_cancelled(log, blkno, len, flags);
+}
+
+/*
+ * Perform recovery for a buffer full of inodes. In these buffers,
+ * the only data which should be recovered is that which corresponds
+ * to the di_next_unlinked pointers in the on disk inode structures.
+ * The rest of the data for the inodes is always logged through the
+ * inodes themselves rather than the inode buffer and is recovered
+ * in xlog_recover_do_inode_trans().
+ *
+ * The only time when buffers full of inodes are fully recovered is
+ * when the buffer is full of newly allocated inodes. In this case
+ * the buffer will not be marked as an inode buffer and so will be
+ * sent to xlog_recover_do_reg_buffer() below during recovery.
+ */
+STATIC int
+xlog_recover_do_inode_buffer(
+ xfs_mount_t *mp,
+ xlog_recover_item_t *item,
+ xfs_buf_t *bp,
+ xfs_buf_log_format_t *buf_f)
+{
+ int i;
+ int item_index;
+ int bit;
+ int nbits;
+ int reg_buf_offset;
+ int reg_buf_bytes;
+ int next_unlinked_offset;
+ int inodes_per_buf;
+ xfs_agino_t *logged_nextp;
+ xfs_agino_t *buffer_nextp;
+ xfs_buf_log_format_v1_t *obuf_f;
+ unsigned int *data_map = NULL;
+ unsigned int map_size = 0;
+
+ switch (buf_f->blf_type) {
+ case XFS_LI_BUF:
+ data_map = buf_f->blf_data_map;
+ map_size = buf_f->blf_map_size;
+ break;
+ case XFS_LI_6_1_BUF:
+ case XFS_LI_5_3_BUF:
+ obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
+ data_map = obuf_f->blf_data_map;
+ map_size = obuf_f->blf_map_size;
+ break;
+ }
+ /*
+ * Set the variables corresponding to the current region to
+ * 0 so that we'll initialize them on the first pass through
+ * the loop.
+ */
+ reg_buf_offset = 0;
+ reg_buf_bytes = 0;
+ bit = 0;
+ nbits = 0;
+ item_index = 0;
+ inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
+ for (i = 0; i < inodes_per_buf; i++) {
+ next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
+ offsetof(xfs_dinode_t, di_next_unlinked);
+
+ while (next_unlinked_offset >=
+ (reg_buf_offset + reg_buf_bytes)) {
+ /*
+ * The next di_next_unlinked field is beyond
+ * the current logged region. Find the next
+ * logged region that contains or is beyond
+ * the current di_next_unlinked field.
+ */
+ bit += nbits;
+ bit = xfs_next_bit(data_map, map_size, bit);
+
+ /*
+ * If there are no more logged regions in the
+ * buffer, then we're done.
+ */
+ if (bit == -1) {
+ return 0;
+ }
+
+ nbits = xfs_contig_bits(data_map, map_size,
+ bit);
+ ASSERT(nbits > 0);
+ reg_buf_offset = bit << XFS_BLI_SHIFT;
+ reg_buf_bytes = nbits << XFS_BLI_SHIFT;
+ item_index++;
+ }
+
+ /*
+ * If the current logged region starts after the current
+ * di_next_unlinked field, then move on to the next
+ * di_next_unlinked field.
+ */
+ if (next_unlinked_offset < reg_buf_offset) {
+ continue;
+ }
+
+ ASSERT(item->ri_buf[item_index].i_addr != NULL);
+ ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
+ ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
+
+ /*
+ * The current logged region contains a copy of the
+ * current di_next_unlinked field. Extract its value
+ * and copy it to the buffer copy.
+ */
+ logged_nextp = (xfs_agino_t *)
+ ((char *)(item->ri_buf[item_index].i_addr) +
+ (next_unlinked_offset - reg_buf_offset));
+ if (unlikely(*logged_nextp == 0)) {
+ xfs_fs_cmn_err(CE_ALERT, mp,
+ "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
+ item, bp);
+ XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
+ XFS_ERRLEVEL_LOW, mp);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+
+ buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
+ next_unlinked_offset);
+ INT_SET(*buffer_nextp, ARCH_CONVERT, *logged_nextp);
+ }
+
+ return 0;
+}
+
+/*
+ * Perform a 'normal' buffer recovery. Each logged region of the
+ * buffer should be copied over the corresponding region in the
+ * given buffer. The bitmap in the buf log format structure indicates
+ * where to place the logged data.
+ */
+/*ARGSUSED*/
+STATIC void
+xlog_recover_do_reg_buffer(
+ xfs_mount_t *mp,
+ xlog_recover_item_t *item,
+ xfs_buf_t *bp,
+ xfs_buf_log_format_t *buf_f)
+{
+ int i;
+ int bit;
+ int nbits;
+ xfs_buf_log_format_v1_t *obuf_f;
+ unsigned int *data_map = NULL;
+ unsigned int map_size = 0;
+ int error;
+
+ switch (buf_f->blf_type) {
+ case XFS_LI_BUF:
+ data_map = buf_f->blf_data_map;
+ map_size = buf_f->blf_map_size;
+ break;
+ case XFS_LI_6_1_BUF:
+ case XFS_LI_5_3_BUF:
+ obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
+ data_map = obuf_f->blf_data_map;
+ map_size = obuf_f->blf_map_size;
+ break;
+ }
+ bit = 0;
+ i = 1; /* 0 is the buf format structure */
+ while (1) {
+ bit = xfs_next_bit(data_map, map_size, bit);
+ if (bit == -1)
+ break;
+ nbits = xfs_contig_bits(data_map, map_size, bit);
+ ASSERT(nbits > 0);
+ ASSERT(item->ri_buf[i].i_addr != 0);
+ ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
+ ASSERT(XFS_BUF_COUNT(bp) >=
+ ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
+
+ /*
+ * Do a sanity check if this is a dquot buffer. Just checking
+ * the first dquot in the buffer should do. XXXThis is
+ * probably a good thing to do for other buf types also.
+ */
+ error = 0;
+ if (buf_f->blf_flags & (XFS_BLI_UDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
+ error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
+ item->ri_buf[i].i_addr,
+ -1, 0, XFS_QMOPT_DOWARN,
+ "dquot_buf_recover");
+ }
+ if (!error)
+ memcpy(xfs_buf_offset(bp,
+ (uint)bit << XFS_BLI_SHIFT), /* dest */
+ item->ri_buf[i].i_addr, /* source */
+ nbits<<XFS_BLI_SHIFT); /* length */
+ i++;
+ bit += nbits;
+ }
+
+ /* Shouldn't be any more regions */
+ ASSERT(i == item->ri_total);
+}
+
+/*
+ * Do some primitive error checking on ondisk dquot data structures.
+ */
+int
+xfs_qm_dqcheck(
+ xfs_disk_dquot_t *ddq,
+ xfs_dqid_t id,
+ uint type, /* used only when IO_dorepair is true */
+ uint flags,
+ char *str)
+{
+ xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
+ int errs = 0;
+
+ /*
+ * We can encounter an uninitialized dquot buffer for 2 reasons:
+ * 1. If we crash while deleting the quotainode(s), and those blks got
+ * used for user data. This is because we take the path of regular
+ * file deletion; however, the size field of quotainodes is never
+ * updated, so all the tricks that we play in itruncate_finish
+ * don't quite matter.
+ *
+ * 2. We don't play the quota buffers when there's a quotaoff logitem.
+ * But the allocation will be replayed so we'll end up with an
+ * uninitialized quota block.
+ *
+ * This is all fine; things are still consistent, and we haven't lost
+ * any quota information. Just don't complain about bad dquot blks.
+ */
+ if (INT_GET(ddq->d_magic, ARCH_CONVERT) != XFS_DQUOT_MAGIC) {
+ if (flags & XFS_QMOPT_DOWARN)
+ cmn_err(CE_ALERT,
+ "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
+ str, id,
+ INT_GET(ddq->d_magic, ARCH_CONVERT), XFS_DQUOT_MAGIC);
+ errs++;
+ }
+ if (INT_GET(ddq->d_version, ARCH_CONVERT) != XFS_DQUOT_VERSION) {
+ if (flags & XFS_QMOPT_DOWARN)
+ cmn_err(CE_ALERT,
+ "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
+ str, id,
+ INT_GET(ddq->d_magic, ARCH_CONVERT), XFS_DQUOT_VERSION);
+ errs++;
+ }
+
+ if (INT_GET(ddq->d_flags, ARCH_CONVERT) != XFS_DQ_USER &&
+ INT_GET(ddq->d_flags, ARCH_CONVERT) != XFS_DQ_GROUP) {
+ if (flags & XFS_QMOPT_DOWARN)
+ cmn_err(CE_ALERT,
+ "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
+ str, id, INT_GET(ddq->d_flags, ARCH_CONVERT));
+ errs++;
+ }
+
+ if (id != -1 && id != INT_GET(ddq->d_id, ARCH_CONVERT)) {
+ if (flags & XFS_QMOPT_DOWARN)
+ cmn_err(CE_ALERT,
+ "%s : ondisk-dquot 0x%p, ID mismatch: "
+ "0x%x expected, found id 0x%x",
+ str, ddq, id, INT_GET(ddq->d_id, ARCH_CONVERT));
+ errs++;
+ }
+
+ if (!errs && ddq->d_id) {
+ if (INT_GET(ddq->d_blk_softlimit, ARCH_CONVERT) &&
+ INT_GET(ddq->d_bcount, ARCH_CONVERT) >=
+ INT_GET(ddq->d_blk_softlimit, ARCH_CONVERT)) {
+ if (!ddq->d_btimer) {
+ if (flags & XFS_QMOPT_DOWARN)
+ cmn_err(CE_ALERT,
+ "%s : Dquot ID 0x%x (0x%p) "
+ "BLK TIMER NOT STARTED",
+ str, (int)
+ INT_GET(ddq->d_id, ARCH_CONVERT), ddq);
+ errs++;
+ }
+ }
+ if (INT_GET(ddq->d_ino_softlimit, ARCH_CONVERT) &&
+ INT_GET(ddq->d_icount, ARCH_CONVERT) >=
+ INT_GET(ddq->d_ino_softlimit, ARCH_CONVERT)) {
+ if (!ddq->d_itimer) {
+ if (flags & XFS_QMOPT_DOWARN)
+ cmn_err(CE_ALERT,
+ "%s : Dquot ID 0x%x (0x%p) "
+ "INODE TIMER NOT STARTED",
+ str, (int)
+ INT_GET(ddq->d_id, ARCH_CONVERT), ddq);
+ errs++;
+ }
+ }
+ if (INT_GET(ddq->d_rtb_softlimit, ARCH_CONVERT) &&
+ INT_GET(ddq->d_rtbcount, ARCH_CONVERT) >=
+ INT_GET(ddq->d_rtb_softlimit, ARCH_CONVERT)) {
+ if (!ddq->d_rtbtimer) {
+ if (flags & XFS_QMOPT_DOWARN)
+ cmn_err(CE_ALERT,
+ "%s : Dquot ID 0x%x (0x%p) "
+ "RTBLK TIMER NOT STARTED",
+ str, (int)
+ INT_GET(ddq->d_id, ARCH_CONVERT), ddq);
+ errs++;
+ }
+ }
+ }
+
+ if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
+ return errs;
+
+ if (flags & XFS_QMOPT_DOWARN)
+ cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
+
+ /*
+ * Typically, a repair is only requested by quotacheck.
+ */
+ ASSERT(id != -1);
+ ASSERT(flags & XFS_QMOPT_DQREPAIR);
+ memset(d, 0, sizeof(xfs_dqblk_t));
+ INT_SET(d->dd_diskdq.d_magic, ARCH_CONVERT, XFS_DQUOT_MAGIC);
+ INT_SET(d->dd_diskdq.d_version, ARCH_CONVERT, XFS_DQUOT_VERSION);
+ INT_SET(d->dd_diskdq.d_id, ARCH_CONVERT, id);
+ INT_SET(d->dd_diskdq.d_flags, ARCH_CONVERT, type);
+
+ return errs;
+}
+
+/*
+ * Perform a dquot buffer recovery.
+ * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
+ * (ie. USR or GRP), then just toss this buffer away; don't recover it.
+ * Else, treat it as a regular buffer and do recovery.
+ */
+STATIC void
+xlog_recover_do_dquot_buffer(
+ xfs_mount_t *mp,
+ xlog_t *log,
+ xlog_recover_item_t *item,
+ xfs_buf_t *bp,
+ xfs_buf_log_format_t *buf_f)
+{
+ uint type;
+
+ /*
+ * Filesystems are required to send in quota flags at mount time.
+ */
+ if (mp->m_qflags == 0) {
+ return;
+ }
+
+ type = 0;
+ if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
+ type |= XFS_DQ_USER;
+ if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
+ type |= XFS_DQ_GROUP;
+ /*
+ * This type of quotas was turned off, so ignore this buffer
+ */
+ if (log->l_quotaoffs_flag & type)
+ return;
+
+ xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
+}
+
+/*
+ * This routine replays a modification made to a buffer at runtime.
+ * There are actually two types of buffer, regular and inode, which
+ * are handled differently. Inode buffers are handled differently
+ * in that we only recover a specific set of data from them, namely
+ * the inode di_next_unlinked fields. This is because all other inode
+ * data is actually logged via inode records and any data we replay
+ * here which overlaps that may be stale.
+ *
+ * When meta-data buffers are freed at run time we log a buffer item
+ * with the XFS_BLI_CANCEL bit set to indicate that previous copies
+ * of the buffer in the log should not be replayed at recovery time.
+ * This is so that if the blocks covered by the buffer are reused for
+ * file data before we crash we don't end up replaying old, freed
+ * meta-data into a user's file.
+ *
+ * To handle the cancellation of buffer log items, we make two passes
+ * over the log during recovery. During the first we build a table of
+ * those buffers which have been cancelled, and during the second we
+ * only replay those buffers which do not have corresponding cancel
+ * records in the table. See xlog_recover_do_buffer_pass[1,2] above
+ * for more details on the implementation of the table of cancel records.
+ */
+STATIC int
+xlog_recover_do_buffer_trans(
+ xlog_t *log,
+ xlog_recover_item_t *item,
+ int pass)
+{
+ xfs_buf_log_format_t *buf_f;
+ xfs_buf_log_format_v1_t *obuf_f;
+ xfs_mount_t *mp;
+ xfs_buf_t *bp;
+ int error;
+ int cancel;
+ xfs_daddr_t blkno;
+ int len;
+ ushort flags;
+
+ buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
+
+ if (pass == XLOG_RECOVER_PASS1) {
+ /*
+ * In this pass we're only looking for buf items
+ * with the XFS_BLI_CANCEL bit set.
+ */
+ xlog_recover_do_buffer_pass1(log, buf_f);
+ return 0;
+ } else {
+ /*
+ * In this pass we want to recover all the buffers
+ * which have not been cancelled and are not
+ * cancellation buffers themselves. The routine
+ * we call here will tell us whether or not to
+ * continue with the replay of this buffer.
+ */
+ cancel = xlog_recover_do_buffer_pass2(log, buf_f);
+ if (cancel) {
+ return 0;
+ }
+ }
+ switch (buf_f->blf_type) {
+ case XFS_LI_BUF:
+ blkno = buf_f->blf_blkno;
+ len = buf_f->blf_len;
+ flags = buf_f->blf_flags;
+ break;
+ case XFS_LI_6_1_BUF:
+ case XFS_LI_5_3_BUF:
+ obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
+ blkno = obuf_f->blf_blkno;
+ len = obuf_f->blf_len;
+ flags = obuf_f->blf_flags;
+ break;
+ default:
+ xfs_fs_cmn_err(CE_ALERT, log->l_mp,
+ "xfs_log_recover: unknown buffer type 0x%x, dev %s",
+ buf_f->blf_type, XFS_BUFTARG_NAME(log->l_targ));
+ XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
+ XFS_ERRLEVEL_LOW, log->l_mp);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+
+ mp = log->l_mp;
+ if (flags & XFS_BLI_INODE_BUF) {
+ bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
+ XFS_BUF_LOCK);
+ } else {
+ bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
+ }
+ if (XFS_BUF_ISERROR(bp)) {
+ xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
+ bp, blkno);
+ error = XFS_BUF_GETERROR(bp);
+ xfs_buf_relse(bp);
+ return error;
+ }
+
+ error = 0;
+ if (flags & XFS_BLI_INODE_BUF) {
+ error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
+ } else if (flags & (XFS_BLI_UDQUOT_BUF | XFS_BLI_GDQUOT_BUF)) {
+ xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
+ } else {
+ xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
+ }
+ if (error)
+ return XFS_ERROR(error);
+
+ /*
+ * Perform delayed write on the buffer. Asynchronous writes will be
+ * slower when taking into account all the buffers to be flushed.
+ *
+ * Also make sure that only inode buffers with good sizes stay in
+ * the buffer cache. The kernel moves inodes in buffers of 1 block
+ * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
+ * buffers in the log can be a different size if the log was generated
+ * by an older kernel using unclustered inode buffers or a newer kernel
+ * running with a different inode cluster size. Regardless, if the
+ * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
+ * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
+ * the buffer out of the buffer cache so that the buffer won't
+ * overlap with future reads of those inodes.
+ */
+ if (XFS_DINODE_MAGIC ==
+ INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) &&
+ (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
+ (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
+ XFS_BUF_STALE(bp);
+ error = xfs_bwrite(mp, bp);
+ } else {
+ ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
+ XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
+ XFS_BUF_SET_FSPRIVATE(bp, mp);
+ XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
+ xfs_bdwrite(mp, bp);
+ }
+
+ return (error);
+}
+
+STATIC int
+xlog_recover_do_inode_trans(
+ xlog_t *log,
+ xlog_recover_item_t *item,
+ int pass)
+{
+ xfs_inode_log_format_t *in_f;
+ xfs_mount_t *mp;
+ xfs_buf_t *bp;
+ xfs_imap_t imap;
+ xfs_dinode_t *dip;
+ xfs_ino_t ino;
+ int len;
+ xfs_caddr_t src;
+ xfs_caddr_t dest;
+ int error;
+ int attr_index;
+ uint fields;
+ xfs_dinode_core_t *dicp;
+
+ if (pass == XLOG_RECOVER_PASS1) {
+ return 0;
+ }
+
+ in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
+ ino = in_f->ilf_ino;
+ mp = log->l_mp;
+ if (ITEM_TYPE(item) == XFS_LI_INODE) {
+ imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
+ imap.im_len = in_f->ilf_len;
+ imap.im_boffset = in_f->ilf_boffset;
+ } else {
+ /*
+ * It's an old inode format record. We don't know where
+ * its cluster is located on disk, and we can't allow
+ * xfs_imap() to figure it out because the inode btrees
+ * are not ready to be used. Therefore do not pass the
+ * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
+ * us only the single block in which the inode lives
+ * rather than its cluster, so we must make sure to
+ * invalidate the buffer when we write it out below.
+ */
+ imap.im_blkno = 0;
+ xfs_imap(log->l_mp, NULL, ino, &imap, 0);
+ }
+
+ /*
+ * Inode buffers can be freed, look out for it,
+ * and do not replay the inode.
+ */
+ if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0))
+ return 0;
+
+ bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
+ XFS_BUF_LOCK);
+ if (XFS_BUF_ISERROR(bp)) {
+ xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
+ bp, imap.im_blkno);
+ error = XFS_BUF_GETERROR(bp);
+ xfs_buf_relse(bp);
+ return error;
+ }
+ error = 0;
+ ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
+ dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
+
+ /*
+ * Make sure the place we're flushing out to really looks
+ * like an inode!
+ */
+ if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) {
+ xfs_buf_relse(bp);
+ xfs_fs_cmn_err(CE_ALERT, mp,
+ "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
+ dip, bp, ino);
+ XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
+ XFS_ERRLEVEL_LOW, mp);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+ dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr);
+ if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
+ xfs_buf_relse(bp);
+ xfs_fs_cmn_err(CE_ALERT, mp,
+ "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
+ item, ino);
+ XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
+ XFS_ERRLEVEL_LOW, mp);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+
+ /* Skip replay when the on disk inode is newer than the log one */
+ if (dicp->di_flushiter <
+ INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) {
+ /*
+ * Deal with the wrap case, DI_MAX_FLUSH is less
+ * than smaller numbers
+ */
+ if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)
+ == DI_MAX_FLUSH) &&
+ (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) {
+ /* do nothing */
+ } else {
+ xfs_buf_relse(bp);
+ return 0;
+ }
+ }
+ /* Take the opportunity to reset the flush iteration count */
+ dicp->di_flushiter = 0;
+
+ if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
+ if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
+ (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
+ XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
+ XFS_ERRLEVEL_LOW, mp, dicp);
+ xfs_buf_relse(bp);
+ xfs_fs_cmn_err(CE_ALERT, mp,
+ "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
+ item, dip, bp, ino);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+ } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
+ if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
+ (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
+ (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
+ XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
+ XFS_ERRLEVEL_LOW, mp, dicp);
+ xfs_buf_relse(bp);
+ xfs_fs_cmn_err(CE_ALERT, mp,
+ "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
+ item, dip, bp, ino);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+ }
+ if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
+ XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
+ XFS_ERRLEVEL_LOW, mp, dicp);
+ xfs_buf_relse(bp);
+ xfs_fs_cmn_err(CE_ALERT, mp,
+ "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
+ item, dip, bp, ino,
+ dicp->di_nextents + dicp->di_anextents,
+ dicp->di_nblocks);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+ if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
+ XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
+ XFS_ERRLEVEL_LOW, mp, dicp);
+ xfs_buf_relse(bp);
+ xfs_fs_cmn_err(CE_ALERT, mp,
+ "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
+ item, dip, bp, ino, dicp->di_forkoff);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+ if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
+ XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
+ XFS_ERRLEVEL_LOW, mp, dicp);
+ xfs_buf_relse(bp);
+ xfs_fs_cmn_err(CE_ALERT, mp,
+ "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
+ item->ri_buf[1].i_len, item);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+
+ /* The core is in in-core format */
+ xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
+ (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1);
+
+ /* the rest is in on-disk format */
+ if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
+ memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
+ item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
+ item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t));
+ }
+
+ fields = in_f->ilf_fields;
+ switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
+ case XFS_ILOG_DEV:
+ INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev);
+
+ break;
+ case XFS_ILOG_UUID:
+ dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
+ break;
+ }
+
+ if (in_f->ilf_size == 2)
+ goto write_inode_buffer;
+ len = item->ri_buf[2].i_len;
+ src = item->ri_buf[2].i_addr;
+ ASSERT(in_f->ilf_size <= 4);
+ ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
+ ASSERT(!(fields & XFS_ILOG_DFORK) ||
+ (len == in_f->ilf_dsize));
+
+ switch (fields & XFS_ILOG_DFORK) {
+ case XFS_ILOG_DDATA:
+ case XFS_ILOG_DEXT:
+ memcpy(&dip->di_u, src, len);
+ break;
+
+ case XFS_ILOG_DBROOT:
+ xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
+ &(dip->di_u.di_bmbt),
+ XFS_DFORK_DSIZE(dip, mp));
+ break;
+
+ default:
+ /*
+ * There are no data fork flags set.
+ */
+ ASSERT((fields & XFS_ILOG_DFORK) == 0);
+ break;
+ }
+
+ /*
+ * If we logged any attribute data, recover it. There may or
+ * may not have been any other non-core data logged in this
+ * transaction.
+ */
+ if (in_f->ilf_fields & XFS_ILOG_AFORK) {
+ if (in_f->ilf_fields & XFS_ILOG_DFORK) {
+ attr_index = 3;
+ } else {
+ attr_index = 2;
+ }
+ len = item->ri_buf[attr_index].i_len;
+ src = item->ri_buf[attr_index].i_addr;
+ ASSERT(len == in_f->ilf_asize);
+
+ switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
+ case XFS_ILOG_ADATA:
+ case XFS_ILOG_AEXT:
+ dest = XFS_DFORK_APTR(dip);
+ ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
+ memcpy(dest, src, len);
+ break;
+
+ case XFS_ILOG_ABROOT:
+ dest = XFS_DFORK_APTR(dip);
+ xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
+ (xfs_bmdr_block_t*)dest,
+ XFS_DFORK_ASIZE(dip, mp));
+ break;
+
+ default:
+ xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
+ ASSERT(0);
+ xfs_buf_relse(bp);
+ return XFS_ERROR(EIO);
+ }
+ }
+
+write_inode_buffer:
+ if (ITEM_TYPE(item) == XFS_LI_INODE) {
+ ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
+ XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
+ XFS_BUF_SET_FSPRIVATE(bp, mp);
+ XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
+ xfs_bdwrite(mp, bp);
+ } else {
+ XFS_BUF_STALE(bp);
+ error = xfs_bwrite(mp, bp);
+ }
+
+ return (error);
+}
+
+/*
+ * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
+ * structure, so that we know not to do any dquot item or dquot buffer recovery,
+ * of that type.
+ */
+STATIC int
+xlog_recover_do_quotaoff_trans(
+ xlog_t *log,
+ xlog_recover_item_t *item,
+ int pass)
+{
+ xfs_qoff_logformat_t *qoff_f;
+
+ if (pass == XLOG_RECOVER_PASS2) {
+ return (0);
+ }
+
+ qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
+ ASSERT(qoff_f);
+
+ /*
+ * The logitem format's flag tells us if this was user quotaoff,
+ * group quotaoff or both.
+ */
+ if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
+ log->l_quotaoffs_flag |= XFS_DQ_USER;
+ if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
+ log->l_quotaoffs_flag |= XFS_DQ_GROUP;
+
+ return (0);
+}
+
+/*
+ * Recover a dquot record
+ */
+STATIC int
+xlog_recover_do_dquot_trans(
+ xlog_t *log,
+ xlog_recover_item_t *item,
+ int pass)
+{
+ xfs_mount_t *mp;
+ xfs_buf_t *bp;
+ struct xfs_disk_dquot *ddq, *recddq;
+ int error;
+ xfs_dq_logformat_t *dq_f;
+ uint type;
+
+ if (pass == XLOG_RECOVER_PASS1) {
+ return 0;
+ }
+ mp = log->l_mp;
+
+ /*
+ * Filesystems are required to send in quota flags at mount time.
+ */
+ if (mp->m_qflags == 0)
+ return (0);
+
+ recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
+ ASSERT(recddq);
+ /*
+ * This type of quotas was turned off, so ignore this record.
+ */
+ type = INT_GET(recddq->d_flags, ARCH_CONVERT) &
+ (XFS_DQ_USER | XFS_DQ_GROUP);
+ ASSERT(type);
+ if (log->l_quotaoffs_flag & type)
+ return (0);
+
+ /*
+ * At this point we know that quota was _not_ turned off.
+ * Since the mount flags are not indicating to us otherwise, this
+ * must mean that quota is on, and the dquot needs to be replayed.
+ * Remember that we may not have fully recovered the superblock yet,
+ * so we can't do the usual trick of looking at the SB quota bits.
+ *
+ * The other possibility, of course, is that the quota subsystem was
+ * removed since the last mount - ENOSYS.
+ */
+ dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
+ ASSERT(dq_f);
+ if ((error = xfs_qm_dqcheck(recddq,
+ dq_f->qlf_id,
+ 0, XFS_QMOPT_DOWARN,
+ "xlog_recover_do_dquot_trans (log copy)"))) {
+ return XFS_ERROR(EIO);
+ }
+ ASSERT(dq_f->qlf_len == 1);
+
+ error = xfs_read_buf(mp, mp->m_ddev_targp,
+ dq_f->qlf_blkno,
+ XFS_FSB_TO_BB(mp, dq_f->qlf_len),
+ 0, &bp);
+ if (error) {
+ xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
+ bp, dq_f->qlf_blkno);
+ return error;
+ }
+ ASSERT(bp);
+ ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
+
+ /*
+ * At least the magic num portion should be on disk because this
+ * was among a chunk of dquots created earlier, and we did some
+ * minimal initialization then.
+ */
+ if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
+ "xlog_recover_do_dquot_trans")) {
+ xfs_buf_relse(bp);
+ return XFS_ERROR(EIO);
+ }
+
+ memcpy(ddq, recddq, item->ri_buf[1].i_len);
+
+ ASSERT(dq_f->qlf_size == 2);
+ ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
+ XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
+ XFS_BUF_SET_FSPRIVATE(bp, mp);
+ XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
+ xfs_bdwrite(mp, bp);
+
+ return (0);
+}
+
+/*
+ * This routine is called to create an in-core extent free intent
+ * item from the efi format structure which was logged on disk.
+ * It allocates an in-core efi, copies the extents from the format
+ * structure into it, and adds the efi to the AIL with the given
+ * LSN.
+ */
+STATIC void
+xlog_recover_do_efi_trans(
+ xlog_t *log,
+ xlog_recover_item_t *item,
+ xfs_lsn_t lsn,
+ int pass)
+{
+ xfs_mount_t *mp;
+ xfs_efi_log_item_t *efip;
+ xfs_efi_log_format_t *efi_formatp;
+ SPLDECL(s);
+
+ if (pass == XLOG_RECOVER_PASS1) {
+ return;
+ }
+
+ efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
+ ASSERT(item->ri_buf[0].i_len ==
+ (sizeof(xfs_efi_log_format_t) +
+ ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t))));
+
+ mp = log->l_mp;
+ efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
+ memcpy((char *)&(efip->efi_format), (char *)efi_formatp,
+ sizeof(xfs_efi_log_format_t) +
+ ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t)));
+ efip->efi_next_extent = efi_formatp->efi_nextents;
+ efip->efi_flags |= XFS_EFI_COMMITTED;
+
+ AIL_LOCK(mp,s);
+ /*
+ * xfs_trans_update_ail() drops the AIL lock.
+ */
+ xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s);
+}
+
+
+/*
+ * This routine is called when an efd format structure is found in
+ * a committed transaction in the log. It's purpose is to cancel
+ * the corresponding efi if it was still in the log. To do this
+ * it searches the AIL for the efi with an id equal to that in the
+ * efd format structure. If we find it, we remove the efi from the
+ * AIL and free it.
+ */
+STATIC void
+xlog_recover_do_efd_trans(
+ xlog_t *log,
+ xlog_recover_item_t *item,
+ int pass)
+{
+ xfs_mount_t *mp;
+ xfs_efd_log_format_t *efd_formatp;
+ xfs_efi_log_item_t *efip = NULL;
+ xfs_log_item_t *lip;
+ int gen;
+ int nexts;
+ __uint64_t efi_id;
+ SPLDECL(s);
+
+ if (pass == XLOG_RECOVER_PASS1) {
+ return;
+ }
+
+ efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
+ ASSERT(item->ri_buf[0].i_len ==
+ (sizeof(xfs_efd_log_format_t) +
+ ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_t))));
+ efi_id = efd_formatp->efd_efi_id;
+
+ /*
+ * Search for the efi with the id in the efd format structure
+ * in the AIL.
+ */
+ mp = log->l_mp;
+ AIL_LOCK(mp,s);
+ lip = xfs_trans_first_ail(mp, &gen);
+ while (lip != NULL) {
+ if (lip->li_type == XFS_LI_EFI) {
+ efip = (xfs_efi_log_item_t *)lip;
+ if (efip->efi_format.efi_id == efi_id) {
+ /*
+ * xfs_trans_delete_ail() drops the
+ * AIL lock.
+ */
+ xfs_trans_delete_ail(mp, lip, s);
+ break;
+ }
+ }
+ lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
+ }
+ if (lip == NULL) {
+ AIL_UNLOCK(mp, s);
+ }
+
+ /*
+ * If we found it, then free it up. If it wasn't there, it
+ * must have been overwritten in the log. Oh well.
+ */
+ if (lip != NULL) {
+ nexts = efip->efi_format.efi_nextents;
+ if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
+ kmem_free(lip, sizeof(xfs_efi_log_item_t) +
+ ((nexts - 1) * sizeof(xfs_extent_t)));
+ } else {
+ kmem_zone_free(xfs_efi_zone, efip);
+ }
+ }
+}
+
+/*
+ * Perform the transaction
+ *
+ * If the transaction modifies a buffer or inode, do it now. Otherwise,
+ * EFIs and EFDs get queued up by adding entries into the AIL for them.
+ */
+STATIC int
+xlog_recover_do_trans(
+ xlog_t *log,
+ xlog_recover_t *trans,
+ int pass)
+{
+ int error = 0;
+ xlog_recover_item_t *item, *first_item;
+
+ if ((error = xlog_recover_reorder_trans(log, trans)))
+ return error;
+ first_item = item = trans->r_itemq;
+ do {
+ /*
+ * we don't need to worry about the block number being
+ * truncated in > 1 TB buffers because in user-land,
+ * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
+ * the blkno's will get through the user-mode buffer
+ * cache properly. The only bad case is o32 kernels
+ * where xfs_daddr_t is 32-bits but mount will warn us
+ * off a > 1 TB filesystem before we get here.
+ */
+ if ((ITEM_TYPE(item) == XFS_LI_BUF) ||
+ (ITEM_TYPE(item) == XFS_LI_6_1_BUF) ||
+ (ITEM_TYPE(item) == XFS_LI_5_3_BUF)) {
+ if ((error = xlog_recover_do_buffer_trans(log, item,
+ pass)))
+ break;
+ } else if ((ITEM_TYPE(item) == XFS_LI_INODE) ||
+ (ITEM_TYPE(item) == XFS_LI_6_1_INODE) ||
+ (ITEM_TYPE(item) == XFS_LI_5_3_INODE)) {
+ if ((error = xlog_recover_do_inode_trans(log, item,
+ pass)))
+ break;
+ } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
+ xlog_recover_do_efi_trans(log, item, trans->r_lsn,
+ pass);
+ } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
+ xlog_recover_do_efd_trans(log, item, pass);
+ } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
+ if ((error = xlog_recover_do_dquot_trans(log, item,
+ pass)))
+ break;
+ } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
+ if ((error = xlog_recover_do_quotaoff_trans(log, item,
+ pass)))
+ break;
+ } else {
+ xlog_warn("XFS: xlog_recover_do_trans");
+ ASSERT(0);
+ error = XFS_ERROR(EIO);
+ break;
+ }
+ item = item->ri_next;
+ } while (first_item != item);
+
+ return error;
+}
+
+/*
+ * Free up any resources allocated by the transaction
+ *
+ * Remember that EFIs, EFDs, and IUNLINKs are handled later.
+ */
+STATIC void
+xlog_recover_free_trans(
+ xlog_recover_t *trans)
+{
+ xlog_recover_item_t *first_item, *item, *free_item;
+ int i;
+
+ item = first_item = trans->r_itemq;
+ do {
+ free_item = item;
+ item = item->ri_next;
+ /* Free the regions in the item. */
+ for (i = 0; i < free_item->ri_cnt; i++) {
+ kmem_free(free_item->ri_buf[i].i_addr,
+ free_item->ri_buf[i].i_len);
+ }
+ /* Free the item itself */
+ kmem_free(free_item->ri_buf,
+ (free_item->ri_total * sizeof(xfs_log_iovec_t)));
+ kmem_free(free_item, sizeof(xlog_recover_item_t));
+ } while (first_item != item);
+ /* Free the transaction recover structure */
+ kmem_free(trans, sizeof(xlog_recover_t));
+}
+
+STATIC int
+xlog_recover_commit_trans(
+ xlog_t *log,
+ xlog_recover_t **q,
+ xlog_recover_t *trans,
+ int pass)
+{
+ int error;
+
+ if ((error = xlog_recover_unlink_tid(q, trans)))
+ return error;
+ if ((error = xlog_recover_do_trans(log, trans, pass)))
+ return error;
+ xlog_recover_free_trans(trans); /* no error */
+ return 0;
+}
+
+STATIC int
+xlog_recover_unmount_trans(
+ xlog_recover_t *trans)
+{
+ /* Do nothing now */
+ xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
+ return 0;
+}
+
+/*
+ * There are two valid states of the r_state field. 0 indicates that the
+ * transaction structure is in a normal state. We have either seen the
+ * start of the transaction or the last operation we added was not a partial
+ * operation. If the last operation we added to the transaction was a
+ * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
+ *
+ * NOTE: skip LRs with 0 data length.
+ */
+STATIC int
+xlog_recover_process_data(
+ xlog_t *log,
+ xlog_recover_t *rhash[],
+ xlog_rec_header_t *rhead,
+ xfs_caddr_t dp,
+ int pass)
+{
+ xfs_caddr_t lp;
+ int num_logops;
+ xlog_op_header_t *ohead;
+ xlog_recover_t *trans;
+ xlog_tid_t tid;
+ int error;
+ unsigned long hash;
+ uint flags;
+
+ lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT);
+ num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT);
+
+ /* check the log format matches our own - else we can't recover */
+ if (xlog_header_check_recover(log->l_mp, rhead))
+ return (XFS_ERROR(EIO));
+
+ while ((dp < lp) && num_logops) {
+ ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
+ ohead = (xlog_op_header_t *)dp;
+ dp += sizeof(xlog_op_header_t);
+ if (ohead->oh_clientid != XFS_TRANSACTION &&
+ ohead->oh_clientid != XFS_LOG) {
+ xlog_warn(
+ "XFS: xlog_recover_process_data: bad clientid");
+ ASSERT(0);
+ return (XFS_ERROR(EIO));
+ }
+ tid = INT_GET(ohead->oh_tid, ARCH_CONVERT);
+ hash = XLOG_RHASH(tid);
+ trans = xlog_recover_find_tid(rhash[hash], tid);
+ if (trans == NULL) { /* not found; add new tid */
+ if (ohead->oh_flags & XLOG_START_TRANS)
+ xlog_recover_new_tid(&rhash[hash], tid,
+ INT_GET(rhead->h_lsn, ARCH_CONVERT));
+ } else {
+ ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp);
+ flags = ohead->oh_flags & ~XLOG_END_TRANS;
+ if (flags & XLOG_WAS_CONT_TRANS)
+ flags &= ~XLOG_CONTINUE_TRANS;
+ switch (flags) {
+ case XLOG_COMMIT_TRANS:
+ error = xlog_recover_commit_trans(log,
+ &rhash[hash], trans, pass);
+ break;
+ case XLOG_UNMOUNT_TRANS:
+ error = xlog_recover_unmount_trans(trans);
+ break;
+ case XLOG_WAS_CONT_TRANS:
+ error = xlog_recover_add_to_cont_trans(trans,
+ dp, INT_GET(ohead->oh_len,
+ ARCH_CONVERT));
+ break;
+ case XLOG_START_TRANS:
+ xlog_warn(
+ "XFS: xlog_recover_process_data: bad transaction");
+ ASSERT(0);
+ error = XFS_ERROR(EIO);
+ break;
+ case 0:
+ case XLOG_CONTINUE_TRANS:
+ error = xlog_recover_add_to_trans(trans,
+ dp, INT_GET(ohead->oh_len,
+ ARCH_CONVERT));
+ break;
+ default:
+ xlog_warn(
+ "XFS: xlog_recover_process_data: bad flag");
+ ASSERT(0);
+ error = XFS_ERROR(EIO);
+ break;
+ }
+ if (error)
+ return error;
+ }
+ dp += INT_GET(ohead->oh_len, ARCH_CONVERT);
+ num_logops--;
+ }
+ return 0;
+}
+
+/*
+ * Process an extent free intent item that was recovered from
+ * the log. We need to free the extents that it describes.
+ */
+STATIC void
+xlog_recover_process_efi(
+ xfs_mount_t *mp,
+ xfs_efi_log_item_t *efip)
+{
+ xfs_efd_log_item_t *efdp;
+ xfs_trans_t *tp;
+ int i;
+ xfs_extent_t *extp;
+ xfs_fsblock_t startblock_fsb;
+
+ ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
+
+ /*
+ * First check the validity of the extents described by the
+ * EFI. If any are bad, then assume that all are bad and
+ * just toss the EFI.
+ */
+ for (i = 0; i < efip->efi_format.efi_nextents; i++) {
+ extp = &(efip->efi_format.efi_extents[i]);
+ startblock_fsb = XFS_BB_TO_FSB(mp,
+ XFS_FSB_TO_DADDR(mp, extp->ext_start));
+ if ((startblock_fsb == 0) ||
+ (extp->ext_len == 0) ||
+ (startblock_fsb >= mp->m_sb.sb_dblocks) ||
+ (extp->ext_len >= mp->m_sb.sb_agblocks)) {
+ /*
+ * This will pull the EFI from the AIL and
+ * free the memory associated with it.
+ */
+ xfs_efi_release(efip, efip->efi_format.efi_nextents);
+ return;
+ }
+ }
+
+ tp = xfs_trans_alloc(mp, 0);
+ xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
+ efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
+
+ for (i = 0; i < efip->efi_format.efi_nextents; i++) {
+ extp = &(efip->efi_format.efi_extents[i]);
+ xfs_free_extent(tp, extp->ext_start, extp->ext_len);
+ xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
+ extp->ext_len);
+ }
+
+ efip->efi_flags |= XFS_EFI_RECOVERED;
+ xfs_trans_commit(tp, 0, NULL);
+}
+
+/*
+ * Verify that once we've encountered something other than an EFI
+ * in the AIL that there are no more EFIs in the AIL.
+ */
+#if defined(DEBUG)
+STATIC void
+xlog_recover_check_ail(
+ xfs_mount_t *mp,
+ xfs_log_item_t *lip,
+ int gen)
+{
+ int orig_gen = gen;
+
+ do {
+ ASSERT(lip->li_type != XFS_LI_EFI);
+ lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
+ /*
+ * The check will be bogus if we restart from the
+ * beginning of the AIL, so ASSERT that we don't.
+ * We never should since we're holding the AIL lock
+ * the entire time.
+ */
+ ASSERT(gen == orig_gen);
+ } while (lip != NULL);
+}
+#endif /* DEBUG */
+
+/*
+ * When this is called, all of the EFIs which did not have
+ * corresponding EFDs should be in the AIL. What we do now
+ * is free the extents associated with each one.
+ *
+ * Since we process the EFIs in normal transactions, they
+ * will be removed at some point after the commit. This prevents
+ * us from just walking down the list processing each one.
+ * We'll use a flag in the EFI to skip those that we've already
+ * processed and use the AIL iteration mechanism's generation
+ * count to try to speed this up at least a bit.
+ *
+ * When we start, we know that the EFIs are the only things in
+ * the AIL. As we process them, however, other items are added
+ * to the AIL. Since everything added to the AIL must come after
+ * everything already in the AIL, we stop processing as soon as
+ * we see something other than an EFI in the AIL.
+ */
+STATIC void
+xlog_recover_process_efis(
+ xlog_t *log)
+{
+ xfs_log_item_t *lip;
+ xfs_efi_log_item_t *efip;
+ int gen;
+ xfs_mount_t *mp;
+ SPLDECL(s);
+
+ mp = log->l_mp;
+ AIL_LOCK(mp,s);
+
+ lip = xfs_trans_first_ail(mp, &gen);
+ while (lip != NULL) {
+ /*
+ * We're done when we see something other than an EFI.
+ */
+ if (lip->li_type != XFS_LI_EFI) {
+ xlog_recover_check_ail(mp, lip, gen);
+ break;
+ }
+
+ /*
+ * Skip EFIs that we've already processed.
+ */
+ efip = (xfs_efi_log_item_t *)lip;
+ if (efip->efi_flags & XFS_EFI_RECOVERED) {
+ lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
+ continue;
+ }
+
+ AIL_UNLOCK(mp, s);
+ xlog_recover_process_efi(mp, efip);
+ AIL_LOCK(mp,s);
+ lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
+ }
+ AIL_UNLOCK(mp, s);
+}
+
+/*
+ * This routine performs a transaction to null out a bad inode pointer
+ * in an agi unlinked inode hash bucket.
+ */
+STATIC void
+xlog_recover_clear_agi_bucket(
+ xfs_mount_t *mp,
+ xfs_agnumber_t agno,
+ int bucket)
+{
+ xfs_trans_t *tp;
+ xfs_agi_t *agi;
+ xfs_buf_t *agibp;
+ int offset;
+ int error;
+
+ tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
+ xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
+
+ error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
+ XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
+ XFS_FSS_TO_BB(mp, 1), 0, &agibp);
+ if (error) {
+ xfs_trans_cancel(tp, XFS_TRANS_ABORT);
+ return;
+ }
+
+ agi = XFS_BUF_TO_AGI(agibp);
+ if (INT_GET(agi->agi_magicnum, ARCH_CONVERT) != XFS_AGI_MAGIC) {
+ xfs_trans_cancel(tp, XFS_TRANS_ABORT);
+ return;
+ }
+ ASSERT(INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC);
+
+ INT_SET(agi->agi_unlinked[bucket], ARCH_CONVERT, NULLAGINO);
+ offset = offsetof(xfs_agi_t, agi_unlinked) +
+ (sizeof(xfs_agino_t) * bucket);
+ xfs_trans_log_buf(tp, agibp, offset,
+ (offset + sizeof(xfs_agino_t) - 1));
+
+ (void) xfs_trans_commit(tp, 0, NULL);
+}
+
+/*
+ * xlog_iunlink_recover
+ *
+ * This is called during recovery to process any inodes which
+ * we unlinked but not freed when the system crashed. These
+ * inodes will be on the lists in the AGI blocks. What we do
+ * here is scan all the AGIs and fully truncate and free any
+ * inodes found on the lists. Each inode is removed from the
+ * lists when it has been fully truncated and is freed. The
+ * freeing of the inode and its removal from the list must be
+ * atomic.
+ */
+void
+xlog_recover_process_iunlinks(
+ xlog_t *log)
+{
+ xfs_mount_t *mp;
+ xfs_agnumber_t agno;
+ xfs_agi_t *agi;
+ xfs_buf_t *agibp;
+ xfs_buf_t *ibp;
+ xfs_dinode_t *dip;
+ xfs_inode_t *ip;
+ xfs_agino_t agino;
+ xfs_ino_t ino;
+ int bucket;
+ int error;
+ uint mp_dmevmask;
+
+ mp = log->l_mp;
+
+ /*
+ * Prevent any DMAPI event from being sent while in this function.
+ */
+ mp_dmevmask = mp->m_dmevmask;
+ mp->m_dmevmask = 0;
+
+ for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
+ /*
+ * Find the agi for this ag.
+ */
+ agibp = xfs_buf_read(mp->m_ddev_targp,
+ XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
+ XFS_FSS_TO_BB(mp, 1), 0);
+ if (XFS_BUF_ISERROR(agibp)) {
+ xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
+ log->l_mp, agibp,
+ XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
+ }
+ agi = XFS_BUF_TO_AGI(agibp);
+ ASSERT(XFS_AGI_MAGIC ==
+ INT_GET(agi->agi_magicnum, ARCH_CONVERT));
+
+ for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
+
+ agino = INT_GET(agi->agi_unlinked[bucket], ARCH_CONVERT);
+ while (agino != NULLAGINO) {
+
+ /*
+ * Release the agi buffer so that it can
+ * be acquired in the normal course of the
+ * transaction to truncate and free the inode.
+ */
+ xfs_buf_relse(agibp);
+
+ ino = XFS_AGINO_TO_INO(mp, agno, agino);
+ error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
+ ASSERT(error || (ip != NULL));
+
+ if (!error) {
+ /*
+ * Get the on disk inode to find the
+ * next inode in the bucket.
+ */
+ error = xfs_itobp(mp, NULL, ip, &dip,
+ &ibp, 0);
+ ASSERT(error || (dip != NULL));
+ }
+
+ if (!error) {
+ ASSERT(ip->i_d.di_nlink == 0);
+
+ /* setup for the next pass */
+ agino = INT_GET(dip->di_next_unlinked,
+ ARCH_CONVERT);
+ xfs_buf_relse(ibp);
+ /*
+ * Prevent any DMAPI event from
+ * being sent when the
+ * reference on the inode is
+ * dropped.
+ */
+ ip->i_d.di_dmevmask = 0;
+
+ /*
+ * If this is a new inode, handle
+ * it specially. Otherwise,
+ * just drop our reference to the
+ * inode. If there are no
+ * other references, this will
+ * send the inode to
+ * xfs_inactive() which will
+ * truncate the file and free
+ * the inode.
+ */
+ if (ip->i_d.di_mode == 0)
+ xfs_iput_new(ip, 0);
+ else
+ VN_RELE(XFS_ITOV(ip));
+ } else {
+ /*
+ * We can't read in the inode
+ * this bucket points to, or
+ * this inode is messed up. Just
+ * ditch this bucket of inodes. We
+ * will lose some inodes and space,
+ * but at least we won't hang. Call
+ * xlog_recover_clear_agi_bucket()
+ * to perform a transaction to clear
+ * the inode pointer in the bucket.
+ */
+ xlog_recover_clear_agi_bucket(mp, agno,
+ bucket);
+
+ agino = NULLAGINO;
+ }
+
+ /*
+ * Reacquire the agibuffer and continue around
+ * the loop.
+ */
+ agibp = xfs_buf_read(mp->m_ddev_targp,
+ XFS_AG_DADDR(mp, agno,
+ XFS_AGI_DADDR(mp)),
+ XFS_FSS_TO_BB(mp, 1), 0);
+ if (XFS_BUF_ISERROR(agibp)) {
+ xfs_ioerror_alert(
+ "xlog_recover_process_iunlinks(#2)",
+ log->l_mp, agibp,
+ XFS_AG_DADDR(mp, agno,
+ XFS_AGI_DADDR(mp)));
+ }
+ agi = XFS_BUF_TO_AGI(agibp);
+ ASSERT(XFS_AGI_MAGIC == INT_GET(
+ agi->agi_magicnum, ARCH_CONVERT));
+ }
+ }
+
+ /*
+ * Release the buffer for the current agi so we can
+ * go on to the next one.
+ */
+ xfs_buf_relse(agibp);
+ }
+
+ mp->m_dmevmask = mp_dmevmask;
+}
+
+
+#ifdef DEBUG
+STATIC void
+xlog_pack_data_checksum(
+ xlog_t *log,
+ xlog_in_core_t *iclog,
+ int size)
+{
+ int i;
+ uint *up;
+ uint chksum = 0;
+
+ up = (uint *)iclog->ic_datap;
+ /* divide length by 4 to get # words */
+ for (i = 0; i < (size >> 2); i++) {
+ chksum ^= INT_GET(*up, ARCH_CONVERT);
+ up++;
+ }
+ INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum);
+}
+#else
+#define xlog_pack_data_checksum(log, iclog, size)
+#endif
+
+/*
+ * Stamp cycle number in every block
+ */
+void
+xlog_pack_data(
+ xlog_t *log,
+ xlog_in_core_t *iclog,
+ int roundoff)
+{
+ int i, j, k;
+ int size = iclog->ic_offset + roundoff;
+ uint cycle_lsn;
+ xfs_caddr_t dp;
+ xlog_in_core_2_t *xhdr;
+
+ xlog_pack_data_checksum(log, iclog, size);
+
+ cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
+
+ dp = iclog->ic_datap;
+ for (i = 0; i < BTOBB(size) &&
+ i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
+ iclog->ic_header.h_cycle_data[i] = *(uint *)dp;
+ *(uint *)dp = cycle_lsn;
+ dp += BBSIZE;
+ }
+
+ if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
+ xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
+ for ( ; i < BTOBB(size); i++) {
+ j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
+ k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
+ xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp;
+ *(uint *)dp = cycle_lsn;
+ dp += BBSIZE;
+ }
+
+ for (i = 1; i < log->l_iclog_heads; i++) {
+ xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
+ }
+ }
+}
+
+#if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
+STATIC void
+xlog_unpack_data_checksum(
+ xlog_rec_header_t *rhead,
+ xfs_caddr_t dp,
+ xlog_t *log)
+{
+ uint *up = (uint *)dp;
+ uint chksum = 0;
+ int i;
+
+ /* divide length by 4 to get # words */
+ for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) {
+ chksum ^= INT_GET(*up, ARCH_CONVERT);
+ up++;
+ }
+ if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) {
+ if (rhead->h_chksum ||
+ ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
+ cmn_err(CE_DEBUG,
+ "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)",
+ INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum);
+ cmn_err(CE_DEBUG,
+"XFS: Disregard message if filesystem was created with non-DEBUG kernel");
+ if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
+ cmn_err(CE_DEBUG,
+ "XFS: LogR this is a LogV2 filesystem");
+ }
+ log->l_flags |= XLOG_CHKSUM_MISMATCH;
+ }
+ }
+}
+#else
+#define xlog_unpack_data_checksum(rhead, dp, log)
+#endif
+
+STATIC void
+xlog_unpack_data(
+ xlog_rec_header_t *rhead,
+ xfs_caddr_t dp,
+ xlog_t *log)
+{
+ int i, j, k;
+ xlog_in_core_2_t *xhdr;
+
+ for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) &&
+ i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
+ *(uint *)dp = *(uint *)&rhead->h_cycle_data[i];
+ dp += BBSIZE;
+ }
+
+ if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
+ xhdr = (xlog_in_core_2_t *)rhead;
+ for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) {
+ j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
+ k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
+ *(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
+ dp += BBSIZE;
+ }
+ }
+
+ xlog_unpack_data_checksum(rhead, dp, log);
+}
+
+STATIC int
+xlog_valid_rec_header(
+ xlog_t *log,
+ xlog_rec_header_t *rhead,
+ xfs_daddr_t blkno)
+{
+ int hlen;
+
+ if (unlikely(
+ (INT_GET(rhead->h_magicno, ARCH_CONVERT) !=
+ XLOG_HEADER_MAGIC_NUM))) {
+ XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
+ XFS_ERRLEVEL_LOW, log->l_mp);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+ if (unlikely(
+ (!rhead->h_version ||
+ (INT_GET(rhead->h_version, ARCH_CONVERT) &
+ (~XLOG_VERSION_OKBITS)) != 0))) {
+ xlog_warn("XFS: %s: unrecognised log version (%d).",
+ __FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT));
+ return XFS_ERROR(EIO);
+ }
+
+ /* LR body must have data or it wouldn't have been written */
+ hlen = INT_GET(rhead->h_len, ARCH_CONVERT);
+ if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
+ XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
+ XFS_ERRLEVEL_LOW, log->l_mp);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+ if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
+ XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
+ XFS_ERRLEVEL_LOW, log->l_mp);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+ return 0;
+}
+
+/*
+ * Read the log from tail to head and process the log records found.
+ * Handle the two cases where the tail and head are in the same cycle
+ * and where the active portion of the log wraps around the end of
+ * the physical log separately. The pass parameter is passed through
+ * to the routines called to process the data and is not looked at
+ * here.
+ */
+STATIC int
+xlog_do_recovery_pass(
+ xlog_t *log,
+ xfs_daddr_t head_blk,
+ xfs_daddr_t tail_blk,
+ int pass)
+{
+ xlog_rec_header_t *rhead;
+ xfs_daddr_t blk_no;
+ xfs_caddr_t bufaddr, offset;
+ xfs_buf_t *hbp, *dbp;
+ int error = 0, h_size;
+ int bblks, split_bblks;
+ int hblks, split_hblks, wrapped_hblks;
+ xlog_recover_t *rhash[XLOG_RHASH_SIZE];
+
+ ASSERT(head_blk != tail_blk);
+
+ /*
+ * Read the header of the tail block and get the iclog buffer size from
+ * h_size. Use this to tell how many sectors make up the log header.
+ */
+ if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
+ /*
+ * When using variable length iclogs, read first sector of
+ * iclog header and extract the header size from it. Get a
+ * new hbp that is the correct size.
+ */
+ hbp = xlog_get_bp(log, 1);
+ if (!hbp)
+ return ENOMEM;
+ if ((error = xlog_bread(log, tail_blk, 1, hbp)))
+ goto bread_err1;
+ offset = xlog_align(log, tail_blk, 1, hbp);
+ rhead = (xlog_rec_header_t *)offset;
+ error = xlog_valid_rec_header(log, rhead, tail_blk);
+ if (error)
+ goto bread_err1;
+ h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
+ if ((INT_GET(rhead->h_version, ARCH_CONVERT)
+ & XLOG_VERSION_2) &&
+ (h_size > XLOG_HEADER_CYCLE_SIZE)) {
+ hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
+ if (h_size % XLOG_HEADER_CYCLE_SIZE)
+ hblks++;
+ xlog_put_bp(hbp);
+ hbp = xlog_get_bp(log, hblks);
+ } else {
+ hblks = 1;
+ }
+ } else {
+ ASSERT(log->l_sectbb_log == 0);
+ hblks = 1;
+ hbp = xlog_get_bp(log, 1);
+ h_size = XLOG_BIG_RECORD_BSIZE;
+ }
+
+ if (!hbp)
+ return ENOMEM;
+ dbp = xlog_get_bp(log, BTOBB(h_size));
+ if (!dbp) {
+ xlog_put_bp(hbp);
+ return ENOMEM;
+ }
+
+ memset(rhash, 0, sizeof(rhash));
+ if (tail_blk <= head_blk) {
+ for (blk_no = tail_blk; blk_no < head_blk; ) {
+ if ((error = xlog_bread(log, blk_no, hblks, hbp)))
+ goto bread_err2;
+ offset = xlog_align(log, blk_no, hblks, hbp);
+ rhead = (xlog_rec_header_t *)offset;
+ error = xlog_valid_rec_header(log, rhead, blk_no);
+ if (error)
+ goto bread_err2;
+
+ /* blocks in data section */
+ bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
+ error = xlog_bread(log, blk_no + hblks, bblks, dbp);
+ if (error)
+ goto bread_err2;
+ offset = xlog_align(log, blk_no + hblks, bblks, dbp);
+ xlog_unpack_data(rhead, offset, log);
+ if ((error = xlog_recover_process_data(log,
+ rhash, rhead, offset, pass)))
+ goto bread_err2;
+ blk_no += bblks + hblks;
+ }
+ } else {
+ /*
+ * Perform recovery around the end of the physical log.
+ * When the head is not on the same cycle number as the tail,
+ * we can't do a sequential recovery as above.
+ */
+ blk_no = tail_blk;
+ while (blk_no < log->l_logBBsize) {
+ /*
+ * Check for header wrapping around physical end-of-log
+ */
+ offset = NULL;
+ split_hblks = 0;
+ wrapped_hblks = 0;
+ if (blk_no + hblks <= log->l_logBBsize) {
+ /* Read header in one read */
+ error = xlog_bread(log, blk_no, hblks, hbp);
+ if (error)
+ goto bread_err2;
+ offset = xlog_align(log, blk_no, hblks, hbp);
+ } else {
+ /* This LR is split across physical log end */
+ if (blk_no != log->l_logBBsize) {
+ /* some data before physical log end */
+ ASSERT(blk_no <= INT_MAX);
+ split_hblks = log->l_logBBsize - (int)blk_no;
+ ASSERT(split_hblks > 0);
+ if ((error = xlog_bread(log, blk_no,
+ split_hblks, hbp)))
+ goto bread_err2;
+ offset = xlog_align(log, blk_no,
+ split_hblks, hbp);
+ }
+ /*
+ * Note: this black magic still works with
+ * large sector sizes (non-512) only because:
+ * - we increased the buffer size originally
+ * by 1 sector giving us enough extra space
+ * for the second read;
+ * - the log start is guaranteed to be sector
+ * aligned;
+ * - we read the log end (LR header start)
+ * _first_, then the log start (LR header end)
+ * - order is important.
+ */
+ bufaddr = XFS_BUF_PTR(hbp);
+ XFS_BUF_SET_PTR(hbp,
+ bufaddr + BBTOB(split_hblks),
+ BBTOB(hblks - split_hblks));
+ wrapped_hblks = hblks - split_hblks;
+ error = xlog_bread(log, 0, wrapped_hblks, hbp);
+ if (error)
+ goto bread_err2;
+ XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
+ if (!offset)
+ offset = xlog_align(log, 0,
+ wrapped_hblks, hbp);
+ }
+ rhead = (xlog_rec_header_t *)offset;
+ error = xlog_valid_rec_header(log, rhead,
+ split_hblks ? blk_no : 0);
+ if (error)
+ goto bread_err2;
+
+ bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
+ blk_no += hblks;
+
+ /* Read in data for log record */
+ if (blk_no + bblks <= log->l_logBBsize) {
+ error = xlog_bread(log, blk_no, bblks, dbp);
+ if (error)
+ goto bread_err2;
+ offset = xlog_align(log, blk_no, bblks, dbp);
+ } else {
+ /* This log record is split across the
+ * physical end of log */
+ offset = NULL;
+ split_bblks = 0;
+ if (blk_no != log->l_logBBsize) {
+ /* some data is before the physical
+ * end of log */
+ ASSERT(!wrapped_hblks);
+ ASSERT(blk_no <= INT_MAX);
+ split_bblks =
+ log->l_logBBsize - (int)blk_no;
+ ASSERT(split_bblks > 0);
+ if ((error = xlog_bread(log, blk_no,
+ split_bblks, dbp)))
+ goto bread_err2;
+ offset = xlog_align(log, blk_no,
+ split_bblks, dbp);
+ }
+ /*
+ * Note: this black magic still works with
+ * large sector sizes (non-512) only because:
+ * - we increased the buffer size originally
+ * by 1 sector giving us enough extra space
+ * for the second read;
+ * - the log start is guaranteed to be sector
+ * aligned;
+ * - we read the log end (LR header start)
+ * _first_, then the log start (LR header end)
+ * - order is important.
+ */
+ bufaddr = XFS_BUF_PTR(dbp);
+ XFS_BUF_SET_PTR(dbp,
+ bufaddr + BBTOB(split_bblks),
+ BBTOB(bblks - split_bblks));
+ if ((error = xlog_bread(log, wrapped_hblks,
+ bblks - split_bblks, dbp)))
+ goto bread_err2;
+ XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
+ if (!offset)
+ offset = xlog_align(log, wrapped_hblks,
+ bblks - split_bblks, dbp);
+ }
+ xlog_unpack_data(rhead, offset, log);
+ if ((error = xlog_recover_process_data(log, rhash,
+ rhead, offset, pass)))
+ goto bread_err2;
+ blk_no += bblks;
+ }
+
+ ASSERT(blk_no >= log->l_logBBsize);
+ blk_no -= log->l_logBBsize;
+
+ /* read first part of physical log */
+ while (blk_no < head_blk) {
+ if ((error = xlog_bread(log, blk_no, hblks, hbp)))
+ goto bread_err2;
+ offset = xlog_align(log, blk_no, hblks, hbp);
+ rhead = (xlog_rec_header_t *)offset;
+ error = xlog_valid_rec_header(log, rhead, blk_no);
+ if (error)
+ goto bread_err2;
+ bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
+ if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
+ goto bread_err2;
+ offset = xlog_align(log, blk_no+hblks, bblks, dbp);
+ xlog_unpack_data(rhead, offset, log);
+ if ((error = xlog_recover_process_data(log, rhash,
+ rhead, offset, pass)))
+ goto bread_err2;
+ blk_no += bblks + hblks;
+ }
+ }
+
+ bread_err2:
+ xlog_put_bp(dbp);
+ bread_err1:
+ xlog_put_bp(hbp);
+ return error;
+}
+
+/*
+ * Do the recovery of the log. We actually do this in two phases.
+ * The two passes are necessary in order to implement the function
+ * of cancelling a record written into the log. The first pass
+ * determines those things which have been cancelled, and the
+ * second pass replays log items normally except for those which
+ * have been cancelled. The handling of the replay and cancellations
+ * takes place in the log item type specific routines.
+ *
+ * The table of items which have cancel records in the log is allocated
+ * and freed at this level, since only here do we know when all of
+ * the log recovery has been completed.
+ */
+STATIC int
+xlog_do_log_recovery(
+ xlog_t *log,
+ xfs_daddr_t head_blk,
+ xfs_daddr_t tail_blk)
+{
+ int error;
+
+ ASSERT(head_blk != tail_blk);
+
+ /*
+ * First do a pass to find all of the cancelled buf log items.
+ * Store them in the buf_cancel_table for use in the second pass.
+ */
+ log->l_buf_cancel_table =
+ (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
+ sizeof(xfs_buf_cancel_t*),
+ KM_SLEEP);
+ error = xlog_do_recovery_pass(log, head_blk, tail_blk,
+ XLOG_RECOVER_PASS1);
+ if (error != 0) {
+ kmem_free(log->l_buf_cancel_table,
+ XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
+ log->l_buf_cancel_table = NULL;
+ return error;
+ }
+ /*
+ * Then do a second pass to actually recover the items in the log.
+ * When it is complete free the table of buf cancel items.
+ */
+ error = xlog_do_recovery_pass(log, head_blk, tail_blk,
+ XLOG_RECOVER_PASS2);
+#ifdef DEBUG
+ {
+ int i;
+
+ for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
+ ASSERT(log->l_buf_cancel_table[i] == NULL);
+ }
+#endif /* DEBUG */
+
+ kmem_free(log->l_buf_cancel_table,
+ XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
+ log->l_buf_cancel_table = NULL;
+
+ return error;
+}
+
+/*
+ * Do the actual recovery
+ */
+STATIC int
+xlog_do_recover(
+ xlog_t *log,
+ xfs_daddr_t head_blk,
+ xfs_daddr_t tail_blk)
+{
+ int error;
+ xfs_buf_t *bp;
+ xfs_sb_t *sbp;
+
+ /*
+ * First replay the images in the log.
+ */
+ error = xlog_do_log_recovery(log, head_blk, tail_blk);
+ if (error) {
+ return error;
+ }
+
+ XFS_bflush(log->l_mp->m_ddev_targp);
+
+ /*
+ * If IO errors happened during recovery, bail out.
+ */
+ if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
+ return (EIO);
+ }
+
+ /*
+ * We now update the tail_lsn since much of the recovery has completed
+ * and there may be space available to use. If there were no extent
+ * or iunlinks, we can free up the entire log and set the tail_lsn to
+ * be the last_sync_lsn. This was set in xlog_find_tail to be the
+ * lsn of the last known good LR on disk. If there are extent frees
+ * or iunlinks they will have some entries in the AIL; so we look at
+ * the AIL to determine how to set the tail_lsn.
+ */
+ xlog_assign_tail_lsn(log->l_mp);
+
+ /*
+ * Now that we've finished replaying all buffer and inode
+ * updates, re-read in the superblock.
+ */
+ bp = xfs_getsb(log->l_mp, 0);
+ XFS_BUF_UNDONE(bp);
+ XFS_BUF_READ(bp);
+ xfsbdstrat(log->l_mp, bp);
+ if ((error = xfs_iowait(bp))) {
+ xfs_ioerror_alert("xlog_do_recover",
+ log->l_mp, bp, XFS_BUF_ADDR(bp));
+ ASSERT(0);
+ xfs_buf_relse(bp);
+ return error;
+ }
+
+ /* Convert superblock from on-disk format */
+ sbp = &log->l_mp->m_sb;
+ xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS);
+ ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
+ ASSERT(XFS_SB_GOOD_VERSION(sbp));
+ xfs_buf_relse(bp);
+
+ xlog_recover_check_summary(log);
+
+ /* Normal transactions can now occur */
+ log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
+ return 0;
+}
+
+/*
+ * Perform recovery and re-initialize some log variables in xlog_find_tail.
+ *
+ * Return error or zero.
+ */
+int
+xlog_recover(
+ xlog_t *log,
+ int readonly)
+{
+ xfs_daddr_t head_blk, tail_blk;
+ int error;
+
+ /* find the tail of the log */
+ if ((error = xlog_find_tail(log, &head_blk, &tail_blk, readonly)))
+ return error;
+
+ if (tail_blk != head_blk) {
+ /* There used to be a comment here:
+ *
+ * disallow recovery on read-only mounts. note -- mount
+ * checks for ENOSPC and turns it into an intelligent
+ * error message.
+ * ...but this is no longer true. Now, unless you specify
+ * NORECOVERY (in which case this function would never be
+ * called), we just go ahead and recover. We do this all
+ * under the vfs layer, so we can get away with it unless
+ * the device itself is read-only, in which case we fail.
+ */
+ if ((error = xfs_dev_is_read_only(log->l_mp,
+ "recovery required"))) {
+ return error;
+ }
+
+ cmn_err(CE_NOTE,
+ "Starting XFS recovery on filesystem: %s (dev: %s)",
+ log->l_mp->m_fsname, XFS_BUFTARG_NAME(log->l_targ));
+
+ error = xlog_do_recover(log, head_blk, tail_blk);
+ log->l_flags |= XLOG_RECOVERY_NEEDED;
+ }
+ return error;
+}
+
+/*
+ * In the first part of recovery we replay inodes and buffers and build
+ * up the list of extent free items which need to be processed. Here
+ * we process the extent free items and clean up the on disk unlinked
+ * inode lists. This is separated from the first part of recovery so
+ * that the root and real-time bitmap inodes can be read in from disk in
+ * between the two stages. This is necessary so that we can free space
+ * in the real-time portion of the file system.
+ */
+int
+xlog_recover_finish(
+ xlog_t *log,
+ int mfsi_flags)
+{
+ /*
+ * Now we're ready to do the transactions needed for the
+ * rest of recovery. Start with completing all the extent
+ * free intent records and then process the unlinked inode
+ * lists. At this point, we essentially run in normal mode
+ * except that we're still performing recovery actions
+ * rather than accepting new requests.
+ */
+ if (log->l_flags & XLOG_RECOVERY_NEEDED) {
+ xlog_recover_process_efis(log);
+ /*
+ * Sync the log to get all the EFIs out of the AIL.
+ * This isn't absolutely necessary, but it helps in
+ * case the unlink transactions would have problems
+ * pushing the EFIs out of the way.
+ */
+ xfs_log_force(log->l_mp, (xfs_lsn_t)0,
+ (XFS_LOG_FORCE | XFS_LOG_SYNC));
+
+ if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
+ xlog_recover_process_iunlinks(log);
+ }
+
+ xlog_recover_check_summary(log);
+
+ cmn_err(CE_NOTE,
+ "Ending XFS recovery on filesystem: %s (dev: %s)",
+ log->l_mp->m_fsname, XFS_BUFTARG_NAME(log->l_targ));
+ log->l_flags &= ~XLOG_RECOVERY_NEEDED;
+ } else {
+ cmn_err(CE_DEBUG,
+ "!Ending clean XFS mount for filesystem: %s",
+ log->l_mp->m_fsname);
+ }
+ return 0;
+}
+
+
+#if defined(DEBUG)
+/*
+ * Read all of the agf and agi counters and check that they
+ * are consistent with the superblock counters.
+ */
+void
+xlog_recover_check_summary(
+ xlog_t *log)
+{
+ xfs_mount_t *mp;
+ xfs_agf_t *agfp;
+ xfs_agi_t *agip;
+ xfs_buf_t *agfbp;
+ xfs_buf_t *agibp;
+ xfs_daddr_t agfdaddr;
+ xfs_daddr_t agidaddr;
+ xfs_buf_t *sbbp;
+#ifdef XFS_LOUD_RECOVERY
+ xfs_sb_t *sbp;
+#endif
+ xfs_agnumber_t agno;
+ __uint64_t freeblks;
+ __uint64_t itotal;
+ __uint64_t ifree;
+
+ mp = log->l_mp;
+
+ freeblks = 0LL;
+ itotal = 0LL;
+ ifree = 0LL;
+ for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
+ agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
+ agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
+ XFS_FSS_TO_BB(mp, 1), 0);
+ if (XFS_BUF_ISERROR(agfbp)) {
+ xfs_ioerror_alert("xlog_recover_check_summary(agf)",
+ mp, agfbp, agfdaddr);
+ }
+ agfp = XFS_BUF_TO_AGF(agfbp);
+ ASSERT(XFS_AGF_MAGIC ==
+ INT_GET(agfp->agf_magicnum, ARCH_CONVERT));
+ ASSERT(XFS_AGF_GOOD_VERSION(
+ INT_GET(agfp->agf_versionnum, ARCH_CONVERT)));
+ ASSERT(INT_GET(agfp->agf_seqno, ARCH_CONVERT) == agno);
+
+ freeblks += INT_GET(agfp->agf_freeblks, ARCH_CONVERT) +
+ INT_GET(agfp->agf_flcount, ARCH_CONVERT);
+ xfs_buf_relse(agfbp);
+
+ agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
+ agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
+ XFS_FSS_TO_BB(mp, 1), 0);
+ if (XFS_BUF_ISERROR(agibp)) {
+ xfs_ioerror_alert("xlog_recover_check_summary(agi)",
+ mp, agibp, agidaddr);
+ }
+ agip = XFS_BUF_TO_AGI(agibp);
+ ASSERT(XFS_AGI_MAGIC ==
+ INT_GET(agip->agi_magicnum, ARCH_CONVERT));
+ ASSERT(XFS_AGI_GOOD_VERSION(
+ INT_GET(agip->agi_versionnum, ARCH_CONVERT)));
+ ASSERT(INT_GET(agip->agi_seqno, ARCH_CONVERT) == agno);
+
+ itotal += INT_GET(agip->agi_count, ARCH_CONVERT);
+ ifree += INT_GET(agip->agi_freecount, ARCH_CONVERT);
+ xfs_buf_relse(agibp);
+ }
+
+ sbbp = xfs_getsb(mp, 0);
+#ifdef XFS_LOUD_RECOVERY
+ sbp = &mp->m_sb;
+ xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS);
+ cmn_err(CE_NOTE,
+ "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
+ sbp->sb_icount, itotal);
+ cmn_err(CE_NOTE,
+ "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
+ sbp->sb_ifree, ifree);
+ cmn_err(CE_NOTE,
+ "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
+ sbp->sb_fdblocks, freeblks);
+#if 0
+ /*
+ * This is turned off until I account for the allocation
+ * btree blocks which live in free space.
+ */
+ ASSERT(sbp->sb_icount == itotal);
+ ASSERT(sbp->sb_ifree == ifree);
+ ASSERT(sbp->sb_fdblocks == freeblks);
+#endif
+#endif
+ xfs_buf_relse(sbbp);
+}
+#endif /* DEBUG */