diff options
author | Jaegeuk Kim <jaegeuk.kim@samsung.com> | 2012-11-28 13:37:31 +0900 |
---|---|---|
committer | Jaegeuk Kim <jaegeuk.kim@samsung.com> | 2012-12-11 13:43:40 +0900 |
commit | 39a53e0ce0df01b3cf4bb898c7ae2fd2189647d5 (patch) | |
tree | 45c7028592e7520eb94afc8cd31f757f6a2c7553 /fs/f2fs/node.h | |
parent | dd31866b0d55c9b70722ebad6ccd643223d9269e (diff) | |
download | linux-39a53e0ce0df01b3cf4bb898c7ae2fd2189647d5.tar.bz2 |
f2fs: add superblock and major in-memory structure
This adds the following major in-memory structures in f2fs.
- f2fs_sb_info:
contains f2fs-specific information, two special inode pointers for node and
meta address spaces, and orphan inode management.
- f2fs_inode_info:
contains vfs_inode and other fs-specific information.
- f2fs_nm_info:
contains node manager information such as NAT entry cache, free nid list,
and NAT page management.
- f2fs_node_info:
represents a node as node id, inode number, block address, and its version.
- f2fs_sm_info:
contains segment manager information such as SIT entry cache, free segment
map, current active logs, dirty segment management, and segment utilization.
The specific structures are sit_info, free_segmap_info, dirty_seglist_info,
curseg_info.
In addition, add F2FS_SUPER_MAGIC in magic.h.
Signed-off-by: Chul Lee <chur.lee@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
Diffstat (limited to 'fs/f2fs/node.h')
-rw-r--r-- | fs/f2fs/node.h | 353 |
1 files changed, 353 insertions, 0 deletions
diff --git a/fs/f2fs/node.h b/fs/f2fs/node.h new file mode 100644 index 000000000000..5d525ed312ba --- /dev/null +++ b/fs/f2fs/node.h @@ -0,0 +1,353 @@ +/** + * fs/f2fs/node.h + * + * Copyright (c) 2012 Samsung Electronics Co., Ltd. + * http://www.samsung.com/ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ +/* start node id of a node block dedicated to the given node id */ +#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) + +/* node block offset on the NAT area dedicated to the given start node id */ +#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK) + +/* # of pages to perform readahead before building free nids */ +#define FREE_NID_PAGES 4 + +/* maximum # of free node ids to produce during build_free_nids */ +#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES) + +/* maximum readahead size for node during getting data blocks */ +#define MAX_RA_NODE 128 + +/* maximum cached nat entries to manage memory footprint */ +#define NM_WOUT_THRESHOLD (64 * NAT_ENTRY_PER_BLOCK) + +/* vector size for gang look-up from nat cache that consists of radix tree */ +#define NATVEC_SIZE 64 + +/* + * For node information + */ +struct node_info { + nid_t nid; /* node id */ + nid_t ino; /* inode number of the node's owner */ + block_t blk_addr; /* block address of the node */ + unsigned char version; /* version of the node */ +}; + +struct nat_entry { + struct list_head list; /* for clean or dirty nat list */ + bool checkpointed; /* whether it is checkpointed or not */ + struct node_info ni; /* in-memory node information */ +}; + +#define nat_get_nid(nat) (nat->ni.nid) +#define nat_set_nid(nat, n) (nat->ni.nid = n) +#define nat_get_blkaddr(nat) (nat->ni.blk_addr) +#define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b) +#define nat_get_ino(nat) (nat->ni.ino) +#define nat_set_ino(nat, i) (nat->ni.ino = i) +#define nat_get_version(nat) (nat->ni.version) +#define nat_set_version(nat, v) (nat->ni.version = v) + +#define __set_nat_cache_dirty(nm_i, ne) \ + list_move_tail(&ne->list, &nm_i->dirty_nat_entries); +#define __clear_nat_cache_dirty(nm_i, ne) \ + list_move_tail(&ne->list, &nm_i->nat_entries); +#define inc_node_version(version) (++version) + +static inline void node_info_from_raw_nat(struct node_info *ni, + struct f2fs_nat_entry *raw_ne) +{ + ni->ino = le32_to_cpu(raw_ne->ino); + ni->blk_addr = le32_to_cpu(raw_ne->block_addr); + ni->version = raw_ne->version; +} + +/* + * For free nid mangement + */ +enum nid_state { + NID_NEW, /* newly added to free nid list */ + NID_ALLOC /* it is allocated */ +}; + +struct free_nid { + struct list_head list; /* for free node id list */ + nid_t nid; /* node id */ + int state; /* in use or not: NID_NEW or NID_ALLOC */ +}; + +static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + struct free_nid *fnid; + + if (nm_i->fcnt <= 0) + return -1; + spin_lock(&nm_i->free_nid_list_lock); + fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list); + *nid = fnid->nid; + spin_unlock(&nm_i->free_nid_list_lock); + return 0; +} + +/* + * inline functions + */ +static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); +} + +static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + pgoff_t block_off; + pgoff_t block_addr; + int seg_off; + + block_off = NAT_BLOCK_OFFSET(start); + seg_off = block_off >> sbi->log_blocks_per_seg; + + block_addr = (pgoff_t)(nm_i->nat_blkaddr + + (seg_off << sbi->log_blocks_per_seg << 1) + + (block_off & ((1 << sbi->log_blocks_per_seg) - 1))); + + if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) + block_addr += sbi->blocks_per_seg; + + return block_addr; +} + +static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, + pgoff_t block_addr) +{ + struct f2fs_nm_info *nm_i = NM_I(sbi); + + block_addr -= nm_i->nat_blkaddr; + if ((block_addr >> sbi->log_blocks_per_seg) % 2) + block_addr -= sbi->blocks_per_seg; + else + block_addr += sbi->blocks_per_seg; + + return block_addr + nm_i->nat_blkaddr; +} + +static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) +{ + unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); + + if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) + f2fs_clear_bit(block_off, nm_i->nat_bitmap); + else + f2fs_set_bit(block_off, nm_i->nat_bitmap); +} + +static inline void fill_node_footer(struct page *page, nid_t nid, + nid_t ino, unsigned int ofs, bool reset) +{ + void *kaddr = page_address(page); + struct f2fs_node *rn = (struct f2fs_node *)kaddr; + if (reset) + memset(rn, 0, sizeof(*rn)); + rn->footer.nid = cpu_to_le32(nid); + rn->footer.ino = cpu_to_le32(ino); + rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT); +} + +static inline void copy_node_footer(struct page *dst, struct page *src) +{ + void *src_addr = page_address(src); + void *dst_addr = page_address(dst); + struct f2fs_node *src_rn = (struct f2fs_node *)src_addr; + struct f2fs_node *dst_rn = (struct f2fs_node *)dst_addr; + memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); +} + +static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) +{ + struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); + struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); + void *kaddr = page_address(page); + struct f2fs_node *rn = (struct f2fs_node *)kaddr; + rn->footer.cp_ver = ckpt->checkpoint_ver; + rn->footer.next_blkaddr = blkaddr; +} + +static inline nid_t ino_of_node(struct page *node_page) +{ + void *kaddr = page_address(node_page); + struct f2fs_node *rn = (struct f2fs_node *)kaddr; + return le32_to_cpu(rn->footer.ino); +} + +static inline nid_t nid_of_node(struct page *node_page) +{ + void *kaddr = page_address(node_page); + struct f2fs_node *rn = (struct f2fs_node *)kaddr; + return le32_to_cpu(rn->footer.nid); +} + +static inline unsigned int ofs_of_node(struct page *node_page) +{ + void *kaddr = page_address(node_page); + struct f2fs_node *rn = (struct f2fs_node *)kaddr; + unsigned flag = le32_to_cpu(rn->footer.flag); + return flag >> OFFSET_BIT_SHIFT; +} + +static inline unsigned long long cpver_of_node(struct page *node_page) +{ + void *kaddr = page_address(node_page); + struct f2fs_node *rn = (struct f2fs_node *)kaddr; + return le64_to_cpu(rn->footer.cp_ver); +} + +static inline block_t next_blkaddr_of_node(struct page *node_page) +{ + void *kaddr = page_address(node_page); + struct f2fs_node *rn = (struct f2fs_node *)kaddr; + return le32_to_cpu(rn->footer.next_blkaddr); +} + +/* + * f2fs assigns the following node offsets described as (num). + * N = NIDS_PER_BLOCK + * + * Inode block (0) + * |- direct node (1) + * |- direct node (2) + * |- indirect node (3) + * | `- direct node (4 => 4 + N - 1) + * |- indirect node (4 + N) + * | `- direct node (5 + N => 5 + 2N - 1) + * `- double indirect node (5 + 2N) + * `- indirect node (6 + 2N) + * `- direct node (x(N + 1)) + */ +static inline bool IS_DNODE(struct page *node_page) +{ + unsigned int ofs = ofs_of_node(node_page); + if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || + ofs == 5 + 2 * NIDS_PER_BLOCK) + return false; + if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { + ofs -= 6 + 2 * NIDS_PER_BLOCK; + if ((long int)ofs % (NIDS_PER_BLOCK + 1)) + return false; + } + return true; +} + +static inline void set_nid(struct page *p, int off, nid_t nid, bool i) +{ + struct f2fs_node *rn = (struct f2fs_node *)page_address(p); + + wait_on_page_writeback(p); + + if (i) + rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); + else + rn->in.nid[off] = cpu_to_le32(nid); + set_page_dirty(p); +} + +static inline nid_t get_nid(struct page *p, int off, bool i) +{ + struct f2fs_node *rn = (struct f2fs_node *)page_address(p); + if (i) + return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); + return le32_to_cpu(rn->in.nid[off]); +} + +/* + * Coldness identification: + * - Mark cold files in f2fs_inode_info + * - Mark cold node blocks in their node footer + * - Mark cold data pages in page cache + */ +static inline int is_cold_file(struct inode *inode) +{ + return F2FS_I(inode)->i_advise & FADVISE_COLD_BIT; +} + +static inline int is_cold_data(struct page *page) +{ + return PageChecked(page); +} + +static inline void set_cold_data(struct page *page) +{ + SetPageChecked(page); +} + +static inline void clear_cold_data(struct page *page) +{ + ClearPageChecked(page); +} + +static inline int is_cold_node(struct page *page) +{ + void *kaddr = page_address(page); + struct f2fs_node *rn = (struct f2fs_node *)kaddr; + unsigned int flag = le32_to_cpu(rn->footer.flag); + return flag & (0x1 << COLD_BIT_SHIFT); +} + +static inline unsigned char is_fsync_dnode(struct page *page) +{ + void *kaddr = page_address(page); + struct f2fs_node *rn = (struct f2fs_node *)kaddr; + unsigned int flag = le32_to_cpu(rn->footer.flag); + return flag & (0x1 << FSYNC_BIT_SHIFT); +} + +static inline unsigned char is_dent_dnode(struct page *page) +{ + void *kaddr = page_address(page); + struct f2fs_node *rn = (struct f2fs_node *)kaddr; + unsigned int flag = le32_to_cpu(rn->footer.flag); + return flag & (0x1 << DENT_BIT_SHIFT); +} + +static inline void set_cold_node(struct inode *inode, struct page *page) +{ + struct f2fs_node *rn = (struct f2fs_node *)page_address(page); + unsigned int flag = le32_to_cpu(rn->footer.flag); + + if (S_ISDIR(inode->i_mode)) + flag &= ~(0x1 << COLD_BIT_SHIFT); + else + flag |= (0x1 << COLD_BIT_SHIFT); + rn->footer.flag = cpu_to_le32(flag); +} + +static inline void set_fsync_mark(struct page *page, int mark) +{ + void *kaddr = page_address(page); + struct f2fs_node *rn = (struct f2fs_node *)kaddr; + unsigned int flag = le32_to_cpu(rn->footer.flag); + if (mark) + flag |= (0x1 << FSYNC_BIT_SHIFT); + else + flag &= ~(0x1 << FSYNC_BIT_SHIFT); + rn->footer.flag = cpu_to_le32(flag); +} + +static inline void set_dentry_mark(struct page *page, int mark) +{ + void *kaddr = page_address(page); + struct f2fs_node *rn = (struct f2fs_node *)kaddr; + unsigned int flag = le32_to_cpu(rn->footer.flag); + if (mark) + flag |= (0x1 << DENT_BIT_SHIFT); + else + flag &= ~(0x1 << DENT_BIT_SHIFT); + rn->footer.flag = cpu_to_le32(flag); +} |