diff options
author | Dmitry Monakhov <dmonakhov@openvz.org> | 2012-09-29 00:14:55 -0400 |
---|---|---|
committer | Theodore Ts'o <tytso@mit.edu> | 2012-09-29 00:14:55 -0400 |
commit | 28a535f9a0df060569dcc786e5bc2e1de43d7dc7 (patch) | |
tree | 07db5cecf251794492ae92c0714d400423feb5cc /fs/ext4/indirect.c | |
parent | 82e54229118785badffb4ef5ba4803df25fe007f (diff) | |
download | linux-28a535f9a0df060569dcc786e5bc2e1de43d7dc7.tar.bz2 |
ext4: completed_io locking cleanup
Current unwritten extent conversion state-machine is very fuzzy.
- For unknown reason it performs conversion under i_mutex. What for?
My diagnosis:
We already protect extent tree with i_data_sem, truncate and punch_hole
should wait for DIO, so the only data we have to protect is end_io->flags
modification, but only flush_completed_IO and end_io_work modified this
flags and we can serialize them via i_completed_io_lock.
Currently all these games with mutex_trylock result in the following deadlock
truncate: kworker:
ext4_setattr ext4_end_io_work
mutex_lock(i_mutex)
inode_dio_wait(inode) ->BLOCK
DEADLOCK<- mutex_trylock()
inode_dio_done()
#TEST_CASE1_BEGIN
MNT=/mnt_scrach
unlink $MNT/file
fallocate -l $((1024*1024*1024)) $MNT/file
aio-stress -I 100000 -O -s 100m -n -t 1 -c 10 -o 2 -o 3 $MNT/file
sleep 2
truncate -s 0 $MNT/file
#TEST_CASE1_END
Or use 286's xfstests https://github.com/dmonakhov/xfstests/blob/devel/286
This patch makes state machine simple and clean:
(1) xxx_end_io schedule final extent conversion simply by calling
ext4_add_complete_io(), which append it to ei->i_completed_io_list
NOTE1: because of (2A) work should be queued only if
->i_completed_io_list was empty, otherwise the work is scheduled already.
(2) ext4_flush_completed_IO is responsible for handling all pending
end_io from ei->i_completed_io_list
Flushing sequence consists of following stages:
A) LOCKED: Atomically drain completed_io_list to local_list
B) Perform extents conversion
C) LOCKED: move converted io's to to_free list for final deletion
This logic depends on context which we was called from.
D) Final end_io context destruction
NOTE1: i_mutex is no longer required because end_io->flags modification
is protected by ei->ext4_complete_io_lock
Full list of changes:
- Move all completion end_io related routines to page-io.c in order to improve
logic locality
- Move open coded logic from various xx_end_xx routines to ext4_add_complete_io()
- remove EXT4_IO_END_FSYNC
- Improve SMP scalability by removing useless i_mutex which does not
protect io->flags anymore.
- Reduce lock contention on i_completed_io_lock by optimizing list walk.
- Rename ext4_end_io_nolock to end4_end_io and make it static
- Check flush completion status to ext4_ext_punch_hole(). Because it is
not good idea to punch blocks from corrupted inode.
Changes since V3 (in request to Jan's comments):
Fall back to active flush_completed_IO() approach in order to prevent
performance issues with nolocked DIO reads.
Changes since V2:
Fix use-after-free caused by race truncate vs end_io_work
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Diffstat (limited to 'fs/ext4/indirect.c')
-rw-r--r-- | fs/ext4/indirect.c | 6 |
1 files changed, 2 insertions, 4 deletions
diff --git a/fs/ext4/indirect.c b/fs/ext4/indirect.c index 830e1b2bf145..61f13e57975e 100644 --- a/fs/ext4/indirect.c +++ b/fs/ext4/indirect.c @@ -807,11 +807,9 @@ ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb, retry: if (rw == READ && ext4_should_dioread_nolock(inode)) { - if (unlikely(!list_empty(&ei->i_completed_io_list))) { - mutex_lock(&inode->i_mutex); + if (unlikely(!list_empty(&ei->i_completed_io_list))) ext4_flush_completed_IO(inode); - mutex_unlock(&inode->i_mutex); - } + ret = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, offset, nr_segs, |