summaryrefslogtreecommitdiffstats
path: root/fs/btrfs/ctree.h
diff options
context:
space:
mode:
authorRobbie Ko <robbieko@synology.com>2018-08-06 10:30:30 +0800
committerDavid Sterba <dsterba@suse.com>2018-08-17 18:35:43 +0200
commit8ecebf4d767e2307a946c8905278d6358eda35c3 (patch)
tree4844a64d348f597f6548f739b21c18770ee7889c /fs/btrfs/ctree.h
parent39379faaad79e3cf403a6904a08676b7850043ae (diff)
downloadlinux-8ecebf4d767e2307a946c8905278d6358eda35c3.tar.bz2
Btrfs: fix unexpected failure of nocow buffered writes after snapshotting when low on space
Commit e9894fd3e3b3 ("Btrfs: fix snapshot vs nocow writting") forced nocow writes to fallback to COW, during writeback, when a snapshot is created. This resulted in writes made before creating the snapshot to unexpectedly fail with ENOSPC during writeback when success (0) was returned to user space through the write system call. The steps leading to this problem are: 1. When it's not possible to allocate data space for a write, the buffered write path checks if a NOCOW write is possible. If it is, it will not reserve space and success (0) is returned to user space. 2. Then when a snapshot is created, the root's will_be_snapshotted atomic is incremented and writeback is triggered for all inode's that belong to the root being snapshotted. Incrementing that atomic forces all previous writes to fallback to COW during writeback (running delalloc). 3. This results in the writeback for the inodes to fail and therefore setting the ENOSPC error in their mappings, so that a subsequent fsync on them will report the error to user space. So it's not a completely silent data loss (since fsync will report ENOSPC) but it's a very unexpected and undesirable behaviour, because if a clean shutdown/unmount of the filesystem happens without previous calls to fsync, it is expected to have the data present in the files after mounting the filesystem again. So fix this by adding a new atomic named snapshot_force_cow to the root structure which prevents this behaviour and works the following way: 1. It is incremented when we start to create a snapshot after triggering writeback and before waiting for writeback to finish. 2. This new atomic is now what is used by writeback (running delalloc) to decide whether we need to fallback to COW or not. Because we incremented this new atomic after triggering writeback in the snapshot creation ioctl, we ensure that all buffered writes that happened before snapshot creation will succeed and not fallback to COW (which would make them fail with ENOSPC). 3. The existing atomic, will_be_snapshotted, is kept because it is used to force new buffered writes, that start after we started snapshotting, to reserve data space even when NOCOW is possible. This makes these writes fail early with ENOSPC when there's no available space to allocate, preventing the unexpected behaviour of writeback later failing with ENOSPC due to a fallback to COW mode. Fixes: e9894fd3e3b3 ("Btrfs: fix snapshot vs nocow writting") Signed-off-by: Robbie Ko <robbieko@synology.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Diffstat (limited to 'fs/btrfs/ctree.h')
-rw-r--r--fs/btrfs/ctree.h1
1 files changed, 1 insertions, 0 deletions
diff --git a/fs/btrfs/ctree.h b/fs/btrfs/ctree.h
index 318be7864072..a67cc190a84b 100644
--- a/fs/btrfs/ctree.h
+++ b/fs/btrfs/ctree.h
@@ -1280,6 +1280,7 @@ struct btrfs_root {
int send_in_progress;
struct btrfs_subvolume_writers *subv_writers;
atomic_t will_be_snapshotted;
+ atomic_t snapshot_force_cow;
/* For qgroup metadata reserved space */
spinlock_t qgroup_meta_rsv_lock;