diff options
author | Chuanxiao <chuanxiao.dong@gmail.com> | 2010-08-05 23:06:04 +0800 |
---|---|---|
committer | David Woodhouse <David.Woodhouse@intel.com> | 2010-08-05 16:31:51 +0100 |
commit | 5bac3acfb82aa22c5e917063973db5482f7ff6ab (patch) | |
tree | c417a3a40f472b7b9a31adb0a692c32bdf492a32 /drivers | |
parent | d2350c2ab51df7088d3db73a4c85ad73ded37a01 (diff) | |
download | linux-5bac3acfb82aa22c5e917063973db5482f7ff6ab.tar.bz2 |
nand/denali Clean up all white spaces in code indent
Hi,
I have changed the outlook mail cliet to be linux mutt client and use my
personal gmail to submit patches.
Here are 5 new patches to fix nand/denali check patch errors. The other
4 patches will be sent out after this mail.
Thanks for your review.
>From d125ad3f57bbf517131dccad6b5933edf8c2632a Mon Sep 17 00:00:00 2001
From: Chuanxiao Dong <chuanxiao.dong@intel.com>
Date: Tue, 3 Aug 2010 15:54:48 +0800
Subject: [PATCH 1/5] mtd: denali.c: clean up all whitespaces in code indent
Signed-off-by: Chuanxiao Dong <chuanxiao.dong@intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Diffstat (limited to 'drivers')
-rw-r--r-- | drivers/mtd/nand/denali.c | 337 |
1 files changed, 168 insertions, 169 deletions
diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c index ca03428b59cc..ca02838a420e 100644 --- a/drivers/mtd/nand/denali.c +++ b/drivers/mtd/nand/denali.c @@ -29,7 +29,7 @@ MODULE_LICENSE("GPL"); -/* We define a module parameter that allows the user to override +/* We define a module parameter that allows the user to override * the hardware and decide what timing mode should be used. */ #define NAND_DEFAULT_TIMINGS -1 @@ -54,13 +54,13 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates INTR_STATUS0__RST_COMP | \ INTR_STATUS0__ERASE_COMP) -/* indicates whether or not the internal value for the flash bank is +/* indicates whether or not the internal value for the flash bank is valid or not */ -#define CHIP_SELECT_INVALID -1 +#define CHIP_SELECT_INVALID -1 #define SUPPORT_8BITECC 1 -/* This macro divides two integers and rounds fractional values up +/* This macro divides two integers and rounds fractional values up * to the nearest integer value. */ #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y))) @@ -83,7 +83,7 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates #define ADDR_CYCLE 1 #define STATUS_CYCLE 2 -/* this is a helper macro that allows us to +/* this is a helper macro that allows us to * format the bank into the proper bits for the controller */ #define BANK(x) ((x) << 24) @@ -95,28 +95,28 @@ static const struct pci_device_id denali_pci_ids[] = { }; -/* these are static lookup tables that give us easy access to - registers in the NAND controller. +/* these are static lookup tables that give us easy access to + registers in the NAND controller. */ -static const uint32_t intr_status_addresses[4] = {INTR_STATUS0, - INTR_STATUS1, - INTR_STATUS2, +static const uint32_t intr_status_addresses[4] = {INTR_STATUS0, + INTR_STATUS1, + INTR_STATUS2, INTR_STATUS3}; static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0, - DEVICE_RESET__BANK1, - DEVICE_RESET__BANK2, - DEVICE_RESET__BANK3}; + DEVICE_RESET__BANK1, + DEVICE_RESET__BANK2, + DEVICE_RESET__BANK3}; static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT, - INTR_STATUS1__TIME_OUT, - INTR_STATUS2__TIME_OUT, - INTR_STATUS3__TIME_OUT}; + INTR_STATUS1__TIME_OUT, + INTR_STATUS2__TIME_OUT, + INTR_STATUS3__TIME_OUT}; static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP, - INTR_STATUS1__RST_COMP, - INTR_STATUS2__RST_COMP, - INTR_STATUS3__RST_COMP}; + INTR_STATUS1__RST_COMP, + INTR_STATUS2__RST_COMP, + INTR_STATUS3__RST_COMP}; /* specifies the debug level of the driver */ static int nand_debug_level = 0; @@ -131,21 +131,21 @@ static uint32_t read_interrupt_status(struct denali_nand_info *denali); /* This is a wrapper for writing to the denali registers. * this allows us to create debug information so we can - * observe how the driver is programming the device. + * observe how the driver is programming the device. * it uses standard linux convention for (val, addr) */ static void denali_write32(uint32_t value, void *addr) { - iowrite32(value, addr); + iowrite32(value, addr); #if DEBUG_DENALI printk(KERN_ERR "wrote: 0x%x -> 0x%x\n", value, (uint32_t)((uint32_t)addr & 0x1fff)); #endif -} +} -/* Certain operations for the denali NAND controller use an indexed mode to read/write - data. The operation is performed by writing the address value of the command to - the device memory followed by the data. This function abstracts this common - operation. +/* Certain operations for the denali NAND controller use an indexed mode to read/write + data. The operation is performed by writing the address value of the command to + the device memory followed by the data. This function abstracts this common + operation. */ static void index_addr(struct denali_nand_info *denali, uint32_t address, uint32_t data) { @@ -161,7 +161,7 @@ static void index_addr_read_data(struct denali_nand_info *denali, *pdata = ioread32(denali->flash_mem + 0x10); } -/* We need to buffer some data for some of the NAND core routines. +/* We need to buffer some data for some of the NAND core routines. * The operations manage buffering that data. */ static void reset_buf(struct denali_nand_info *denali) { @@ -183,7 +183,7 @@ static void read_status(struct denali_nand_info *denali) reset_buf(denali); /* initiate a device status read */ - cmd = MODE_11 | BANK(denali->flash_bank); + cmd = MODE_11 | BANK(denali->flash_bank); index_addr(denali, cmd | COMMAND_CYCLE, 0x70); denali_write32(cmd | STATUS_CYCLE, denali->flash_mem); @@ -199,7 +199,7 @@ static void read_status(struct denali_nand_info *denali) static void reset_bank(struct denali_nand_info *denali) { uint32_t irq_status = 0; - uint32_t irq_mask = reset_complete[denali->flash_bank] | + uint32_t irq_mask = reset_complete[denali->flash_bank] | operation_timeout[denali->flash_bank]; int bank = 0; @@ -209,7 +209,7 @@ static void reset_bank(struct denali_nand_info *denali) denali_write32(bank, denali->flash_reg + DEVICE_RESET); irq_status = wait_for_irq(denali, irq_mask); - + if (irq_status & operation_timeout[denali->flash_bank]) { printk(KERN_ERR "reset bank failed.\n"); @@ -610,7 +610,7 @@ static void get_hynix_nand_para(struct denali_nand_info *denali) } /* determines how many NAND chips are connected to the controller. Note for - Intel CE4100 devices we don't support more than one device. + Intel CE4100 devices we don't support more than one device. */ static void find_valid_banks(struct denali_nand_info *denali) { @@ -641,8 +641,8 @@ static void find_valid_banks(struct denali_nand_info *denali) { /* Platform limitations of the CE4100 device limit * users to a single chip solution for NAND. - * Multichip support is not enabled. - */ + * Multichip support is not enabled. + */ if (denali->total_used_banks != 1) { printk(KERN_ERR "Sorry, Intel CE4100 only supports " @@ -885,7 +885,7 @@ static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali) dump_device_info(denali); /* If the user specified to override the default timings - * with a specific ONFI mode, we apply those changes here. + * with a specific ONFI mode, we apply those changes here. */ if (onfi_timing_mode != NAND_DEFAULT_TIMINGS) { @@ -912,7 +912,7 @@ static void NAND_LLD_Enable_Disable_Interrupts(struct denali_nand_info *denali, */ static inline bool is_flash_bank_valid(int flash_bank) { - return (flash_bank >= 0 && flash_bank < 4); + return (flash_bank >= 0 && flash_bank < 4); } static void denali_irq_init(struct denali_nand_info *denali) @@ -948,7 +948,7 @@ static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask } /* This function only returns when an interrupt that this driver cares about - * occurs. This is to reduce the overhead of servicing interrupts + * occurs. This is to reduce the overhead of servicing interrupts */ static inline uint32_t denali_irq_detected(struct denali_nand_info *denali) { @@ -1003,9 +1003,9 @@ static void print_irq_log(struct denali_nand_info *denali) } #endif -/* This is the interrupt service routine. It handles all interrupts - * sent to this device. Note that on CE4100, this is a shared - * interrupt. +/* This is the interrupt service routine. It handles all interrupts + * sent to this device. Note that on CE4100, this is a shared + * interrupt. */ static irqreturn_t denali_isr(int irq, void *dev_id) { @@ -1015,12 +1015,12 @@ static irqreturn_t denali_isr(int irq, void *dev_id) spin_lock(&denali->irq_lock); - /* check to see if a valid NAND chip has - * been selected. + /* check to see if a valid NAND chip has + * been selected. */ if (is_flash_bank_valid(denali->flash_bank)) { - /* check to see if controller generated + /* check to see if controller generated * the interrupt, since this is a shared interrupt */ if ((irq_status = denali_irq_detected(denali)) != 0) { @@ -1078,10 +1078,10 @@ static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) /* our interrupt was detected */ break; } - else + else { - /* these are not the interrupts you are looking for - - need to wait again */ + /* these are not the interrupts you are looking for - + * need to wait again */ spin_unlock_irq(&denali->irq_lock); #if DEBUG_DENALI print_irq_log(denali); @@ -1095,20 +1095,20 @@ static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) if (comp_res == 0) { /* timeout */ - printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n", - intr_status, irq_mask); + printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n", + intr_status, irq_mask); intr_status = 0; } return intr_status; } -/* This helper function setups the registers for ECC and whether or not +/* This helper function setups the registers for ECC and whether or not the spare area will be transfered. */ -static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, +static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, bool transfer_spare) { - int ecc_en_flag = 0, transfer_spare_flag = 0; + int ecc_en_flag = 0, transfer_spare_flag = 0; /* set ECC, transfer spare bits if needed */ ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0; @@ -1119,15 +1119,15 @@ static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, denali_write32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG); } -/* sends a pipeline command operation to the controller. See the Denali NAND - controller's user guide for more information (section 4.2.3.6). +/* sends a pipeline command operation to the controller. See the Denali NAND + controller's user guide for more information (section 4.2.3.6). */ -static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en, - bool transfer_spare, int access_type, +static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en, + bool transfer_spare, int access_type, int op) { int status = PASS; - uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0, + uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0, irq_mask = 0; if (op == DENALI_READ) irq_mask = INTR_STATUS0__LOAD_COMP; @@ -1145,32 +1145,32 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en /* clear interrupts */ - clear_interrupts(denali); + clear_interrupts(denali); addr = BANK(denali->flash_bank) | denali->page; if (op == DENALI_WRITE && access_type != SPARE_ACCESS) { - cmd = MODE_01 | addr; + cmd = MODE_01 | addr; denali_write32(cmd, denali->flash_mem); } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) { /* read spare area */ - cmd = MODE_10 | addr; + cmd = MODE_10 | addr; index_addr(denali, (uint32_t)cmd, access_type); - cmd = MODE_01 | addr; + cmd = MODE_01 | addr; denali_write32(cmd, denali->flash_mem); } else if (op == DENALI_READ) { /* setup page read request for access type */ - cmd = MODE_10 | addr; + cmd = MODE_10 | addr; index_addr(denali, (uint32_t)cmd, access_type); /* page 33 of the NAND controller spec indicates we should not - use the pipeline commands in Spare area only mode. So we + use the pipeline commands in Spare area only mode. So we don't. */ if (access_type == SPARE_ACCESS) @@ -1181,8 +1181,8 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en else { index_addr(denali, (uint32_t)cmd, 0x2000 | op | page_count); - - /* wait for command to be accepted + + /* wait for command to be accepted * can always use status0 bit as the mask is identical for each * bank. */ irq_status = wait_for_irq(denali, irq_mask); @@ -1204,13 +1204,13 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en } /* helper function that simply writes a buffer to the flash */ -static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_t *buf, - int len) +static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_t *buf, + int len) { uint32_t i = 0, *buf32; - /* verify that the len is a multiple of 4. see comment in - * read_data_from_flash_mem() */ + /* verify that the len is a multiple of 4. see comment in + * read_data_from_flash_mem() */ BUG_ON((len % 4) != 0); /* write the data to the flash memory */ @@ -1219,21 +1219,20 @@ static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_ { denali_write32(*buf32++, denali->flash_mem + 0x10); } - return i*4; /* intent is to return the number of bytes read */ + return i*4; /* intent is to return the number of bytes read */ } /* helper function that simply reads a buffer from the flash */ -static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *buf, +static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *buf, int len) { uint32_t i = 0, *buf32; /* we assume that len will be a multiple of 4, if not * it would be nice to know about it ASAP rather than - * have random failures... - * - * This assumption is based on the fact that this - * function is designed to be used to read flash pages, + * have random failures... + * This assumption is based on the fact that this + * function is designed to be used to read flash pages, * which are typically multiples of 4... */ @@ -1245,7 +1244,7 @@ static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *bu { *buf32++ = ioread32(denali->flash_mem + 0x10); } - return i*4; /* intent is to return the number of bytes read */ + return i*4; /* intent is to return the number of bytes read */ } /* writes OOB data to the device */ @@ -1253,14 +1252,14 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); uint32_t irq_status = 0; - uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP | + uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP | INTR_STATUS0__PROGRAM_FAIL; int status = 0; denali->page = page; - if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS, - DENALI_WRITE) == PASS) + if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS, + DENALI_WRITE) == PASS) { write_data_to_flash_mem(denali, buf, mtd->oobsize); @@ -1271,7 +1270,7 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) spin_unlock_irq(&denali->irq_lock); #endif - + /* wait for operation to complete */ irq_status = wait_for_irq(denali, irq_mask); @@ -1281,10 +1280,10 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) status = -EIO; } } - else - { + else + { printk(KERN_ERR "unable to send pipeline command\n"); - status = -EIO; + status = -EIO; } return status; } @@ -1300,12 +1299,12 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) #if DEBUG_DENALI printk("read_oob %d\n", page); #endif - if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, - DENALI_READ) == PASS) + if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, + DENALI_READ) == PASS) { - read_data_from_flash_mem(denali, buf, mtd->oobsize); + read_data_from_flash_mem(denali, buf, mtd->oobsize); - /* wait for command to be accepted + /* wait for command to be accepted * can always use status0 bit as the mask is identical for each * bank. */ irq_status = wait_for_irq(denali, irq_mask); @@ -1319,10 +1318,10 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) * instability with the controller if you do a block erase * and the last transaction was a SPARE_ACCESS. Block erase * is reliable (according to the MTD test infrastructure) - * if you are in MAIN_ACCESS. + * if you are in MAIN_ACCESS. */ addr = BANK(denali->flash_bank) | denali->page; - cmd = MODE_10 | addr; + cmd = MODE_10 | addr; index_addr(denali, (uint32_t)cmd, MAIN_ACCESS); #if DEBUG_DENALI @@ -1334,14 +1333,14 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) } } -/* this function examines buffers to see if they contain data that +/* this function examines buffers to see if they contain data that * indicate that the buffer is part of an erased region of flash. */ bool is_erased(uint8_t *buf, int len) { int i = 0; for (i = 0; i < len; i++) - { + { if (buf[i] != 0xFF) { return false; @@ -1358,7 +1357,7 @@ bool is_erased(uint8_t *buf, int len) #define ECC_ERR_DEVICE(x) ((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8) #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO) -static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, +static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, uint8_t *oobbuf, uint32_t irq_status) { bool check_erased_page = false; @@ -1370,27 +1369,27 @@ static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, uint32_t err_byte = 0, err_sector = 0, err_device = 0; uint32_t err_correction_value = 0; - do + do { - err_address = ioread32(denali->flash_reg + + err_address = ioread32(denali->flash_reg + ECC_ERROR_ADDRESS); err_sector = ECC_SECTOR(err_address); err_byte = ECC_BYTE(err_address); - err_correction_info = ioread32(denali->flash_reg + + err_correction_info = ioread32(denali->flash_reg + ERR_CORRECTION_INFO); - err_correction_value = + err_correction_value = ECC_CORRECTION_VALUE(err_correction_info); err_device = ECC_ERR_DEVICE(err_correction_info); if (ECC_ERROR_CORRECTABLE(err_correction_info)) { /* offset in our buffer is computed as: - sector number * sector size + offset in + sector number * sector size + offset in sector */ - int offset = err_sector * ECC_SECTOR_SIZE + + int offset = err_sector * ECC_SECTOR_SIZE + err_byte; if (offset < denali->mtd.writesize) { @@ -1407,15 +1406,15 @@ static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, } else { - /* if the error is not correctable, need to + /* if the error is not correctable, need to * look at the page to see if it is an erased page. - * if so, then it's not a real ECC error */ + * if so, then it's not a real ECC error */ check_erased_page = true; } -#if DEBUG_DENALI +#if DEBUG_DENALI printk("Detected ECC error in page %d: err_addr = 0x%08x," - " info to fix is 0x%08x\n", denali->page, err_address, + " info to fix is 0x%08x\n", denali->page, err_address, err_correction_info); #endif } while (!ECC_LAST_ERR(err_correction_info)); @@ -1458,9 +1457,9 @@ static void denali_setup_dma(struct denali_nand_info *denali, int op) index_addr(denali, mode | 0x14000, 0x2400); } -/* writes a page. user specifies type, and this function handles the +/* writes a page. user specifies type, and this function handles the configuration details. */ -static void write_page(struct mtd_info *mtd, struct nand_chip *chip, +static void write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, bool raw_xfer) { struct denali_nand_info *denali = mtd_to_denali(mtd); @@ -1470,7 +1469,7 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *chip, size_t size = denali->mtd.writesize + denali->mtd.oobsize; uint32_t irq_status = 0; - uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP | + uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP | INTR_STATUS0__PROGRAM_FAIL; /* if it is a raw xfer, we want to disable ecc, and send @@ -1486,15 +1485,15 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *chip, if (raw_xfer) { /* transfer the data to the spare area */ - memcpy(denali->buf.buf + mtd->writesize, - chip->oob_poi, - mtd->oobsize); + memcpy(denali->buf.buf + mtd->writesize, + chip->oob_poi, + mtd->oobsize); } pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE); clear_interrupts(denali); - denali_enable_dma(denali, true); + denali_enable_dma(denali, true); denali_setup_dma(denali, DENALI_WRITE); @@ -1504,53 +1503,53 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *chip, if (irq_status == 0) { printk(KERN_ERR "timeout on write_page (type = %d)\n", raw_xfer); - denali->status = - (irq_status & INTR_STATUS0__PROGRAM_FAIL) ? NAND_STATUS_FAIL : - PASS; + denali->status = + (irq_status & INTR_STATUS0__PROGRAM_FAIL) ? NAND_STATUS_FAIL : + PASS; } - denali_enable_dma(denali, false); + denali_enable_dma(denali, false); pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE); } /* NAND core entry points */ -/* this is the callback that the NAND core calls to write a page. Since - writing a page with ECC or without is similar, all the work is done +/* this is the callback that the NAND core calls to write a page. Since + writing a page with ECC or without is similar, all the work is done by write_page above. */ -static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, +static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { /* for regular page writes, we let HW handle all the ECC - * data written to the device. */ + * data written to the device. */ write_page(mtd, chip, buf, false); } -/* This is the callback that the NAND core calls to write a page without ECC. +/* This is the callback that the NAND core calls to write a page without ECC. raw access is similiar to ECC page writes, so all the work is done in the - write_page() function above. + write_page() function above. */ -static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, +static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { - /* for raw page writes, we want to disable ECC and simply write + /* for raw page writes, we want to disable ECC and simply write whatever data is in the buffer. */ write_page(mtd, chip, buf, true); } -static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, +static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) { - return write_oob_data(mtd, chip->oob_poi, page); + return write_oob_data(mtd, chip->oob_poi, page); } -static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, +static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, int page, int sndcmd) { read_oob_data(mtd, chip->oob_poi, page); - return 0; /* notify NAND core to send command to - * NAND device. */ + return 0; /* notify NAND core to send command to + NAND device. */ } static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, @@ -1563,7 +1562,7 @@ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, size_t size = denali->mtd.writesize + denali->mtd.oobsize; uint32_t irq_status = 0; - uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE | + uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE | INTR_STATUS0__ECC_ERR; bool check_erased_page = false; @@ -1581,7 +1580,7 @@ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE); memcpy(buf, denali->buf.buf, mtd->writesize); - + check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status); denali_enable_dma(denali, false); @@ -1600,7 +1599,7 @@ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, { denali->mtd.ecc_stats.failed++; } - } + } } return 0; } @@ -1616,7 +1615,7 @@ static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, uint32_t irq_status = 0; uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP; - + setup_ecc_for_xfer(denali, false, true); denali_enable_dma(denali, true); @@ -1687,21 +1686,21 @@ static void denali_erase(struct mtd_info *mtd, int page) printk("erase page: %d\n", page); #endif /* clear interrupts */ - clear_interrupts(denali); + clear_interrupts(denali); /* setup page read request for access type */ cmd = MODE_10 | BANK(denali->flash_bank) | page; index_addr(denali, (uint32_t)cmd, 0x1); /* wait for erase to complete or failure to occur */ - irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP | + irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP | INTR_STATUS0__ERASE_FAIL); - denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ? NAND_STATUS_FAIL : + denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ? NAND_STATUS_FAIL : PASS; } -static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, +static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); @@ -1710,7 +1709,7 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, printk("cmdfunc: 0x%x %d %d\n", cmd, col, page); #endif switch (cmd) - { + { case NAND_CMD_PAGEPROG: break; case NAND_CMD_STATUS: @@ -1720,19 +1719,19 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, reset_buf(denali); if (denali->flash_bank < denali->total_used_banks) { - /* write manufacturer information into nand + /* write manufacturer information into nand buffer for NAND subsystem to fetch. - */ - write_byte_to_buf(denali, denali->dev_info.wDeviceMaker); - write_byte_to_buf(denali, denali->dev_info.wDeviceID); - write_byte_to_buf(denali, denali->dev_info.bDeviceParam0); - write_byte_to_buf(denali, denali->dev_info.bDeviceParam1); - write_byte_to_buf(denali, denali->dev_info.bDeviceParam2); + */ + write_byte_to_buf(denali, denali->dev_info.wDeviceMaker); + write_byte_to_buf(denali, denali->dev_info.wDeviceID); + write_byte_to_buf(denali, denali->dev_info.bDeviceParam0); + write_byte_to_buf(denali, denali->dev_info.bDeviceParam1); + write_byte_to_buf(denali, denali->dev_info.bDeviceParam2); } - else + else { int i; - for (i = 0; i < 5; i++) + for (i = 0; i < 5; i++) write_byte_to_buf(denali, 0xff); } break; @@ -1753,7 +1752,7 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, } /* stubs for ECC functions not used by the NAND core */ -static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data, +static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data, uint8_t *ecc_code) { printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n"); @@ -1761,7 +1760,7 @@ static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data, return -EIO; } -static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data, +static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data, uint8_t *read_ecc, uint8_t *calc_ecc) { printk(KERN_ERR "denali_ecc_correct called unexpectedly\n"); @@ -1797,9 +1796,9 @@ static void denali_hw_init(struct denali_nand_info *denali) static struct nand_ecclayout nand_oob_slc = { .eccbytes = 4, .eccpos = { 0, 1, 2, 3 }, /* not used */ - .oobfree = {{ - .offset = ECC_BYTES_SLC, - .length = 64 - ECC_BYTES_SLC + .oobfree = {{ + .offset = ECC_BYTES_SLC, + .length = 64 - ECC_BYTES_SLC }} }; @@ -1807,9 +1806,9 @@ static struct nand_ecclayout nand_oob_slc = { static struct nand_ecclayout nand_oob_mlc_14bit = { .eccbytes = 14, .eccpos = { 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, /* not used */ - .oobfree = {{ - .offset = ECC_BYTES_MLC, - .length = 64 - ECC_BYTES_MLC + .oobfree = {{ + .offset = ECC_BYTES_MLC, + .length = 64 - ECC_BYTES_MLC }} }; @@ -1842,12 +1841,12 @@ void denali_drv_init(struct denali_nand_info *denali) denali->idx = 0; /* setup interrupt handler */ - /* the completion object will be used to notify + /* the completion object will be used to notify * the callee that the interrupt is done */ init_completion(&denali->complete); /* the spinlock will be used to synchronize the ISR - * with any element that might be access shared + * with any element that might be access shared * data (interrupt status) */ spin_lock_init(&denali->irq_lock); @@ -1880,9 +1879,9 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) } if (id->driver_data == INTEL_CE4100) { - /* Due to a silicon limitation, we can only support - * ONFI timing mode 1 and below. - */ + /* Due to a silicon limitation, we can only support + * ONFI timing mode 1 and below. + */ if (onfi_timing_mode < -1 || onfi_timing_mode > 1) { printk("Intel CE4100 only supports ONFI timing mode 1 " @@ -1918,7 +1917,7 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) printk(KERN_ERR "Spectra: no usable DMA configuration\n"); goto failed_enable; } - denali->buf.dma_buf = pci_map_single(dev, denali->buf.buf, DENALI_BUF_SIZE, + denali->buf.dma_buf = pci_map_single(dev, denali->buf.buf, DENALI_BUF_SIZE, PCI_DMA_BIDIRECTIONAL); if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) @@ -1976,8 +1975,8 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) NAND_Read_Device_ID(denali); - /* MTD supported page sizes vary by kernel. We validate our - kernel supports the device here. + /* MTD supported page sizes vary by kernel. We validate our + * kernel supports the device here. */ if (denali->dev_info.wPageSize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) { @@ -2009,18 +2008,18 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) denali->nand.read_byte = denali_read_byte; denali->nand.waitfunc = denali_waitfunc; - /* scan for NAND devices attached to the controller + /* scan for NAND devices attached to the controller * this is the first stage in a two step process to register - * with the nand subsystem */ + * with the nand subsystem */ if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) { ret = -ENXIO; goto failed_nand; } - - /* second stage of the NAND scan - * this stage requires information regarding ECC and - * bad block management. */ + + /* second stage of the NAND scan + * this stage requires information regarding ECC and + * bad block management. */ /* Bad block management */ denali->nand.bbt_td = &bbt_main_descr; @@ -2041,9 +2040,9 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) denali->nand.ecc.bytes = ECC_BYTES_SLC; } - /* These functions are required by the NAND core framework, otherwise, - the NAND core will assert. However, we don't need them, so we'll stub - them out. */ + /* These functions are required by the NAND core framework, otherwise, + * the NAND core will assert. However, we don't need them, so we'll stub + * them out. */ denali->nand.ecc.calculate = denali_ecc_calculate; denali->nand.ecc.correct = denali_ecc_correct; denali->nand.ecc.hwctl = denali_ecc_hwctl; @@ -2079,7 +2078,7 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) failed_remap_csr: pci_release_regions(dev); failed_req_csr: - pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE, + pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE, PCI_DMA_BIDIRECTIONAL); failed_enable: kfree(denali); @@ -2103,7 +2102,7 @@ static void denali_pci_remove(struct pci_dev *dev) iounmap(denali->flash_mem); pci_release_regions(dev); pci_disable_device(dev); - pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE, + pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE, PCI_DMA_BIDIRECTIONAL); pci_set_drvdata(dev, NULL); kfree(denali); |