summaryrefslogtreecommitdiffstats
path: root/drivers/thermal/power_allocator.c
diff options
context:
space:
mode:
authorAmit Kucheria <amit.kucheria@linaro.org>2020-05-11 17:55:01 +0530
committerDaniel Lezcano <daniel.lezcano@linaro.org>2020-05-22 18:48:54 +0200
commit0015d9a2a72745308ef9728a746ff7b1e82138bc (patch)
tree9dd4e0dc208f154e26e4f6d56913aa8bad045873 /drivers/thermal/power_allocator.c
parent6abea5d2af4cdd508b04d94ed9382c3710b99dfc (diff)
downloadlinux-0015d9a2a72745308ef9728a746ff7b1e82138bc.tar.bz2
thermal/governors: Prefix all source files with gov_
Bang-bang governor source file is prefixed with gov_. Do the same for other governors for consistency so they're easy to find in the sources. Signed-off-by: Amit Kucheria <amit.kucheria@linaro.org> Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org> Link: https://lore.kernel.org/r/b9a85d3204712f14e320504948c12712dc0b291b.1589199124.git.amit.kucheria@linaro.org
Diffstat (limited to 'drivers/thermal/power_allocator.c')
-rw-r--r--drivers/thermal/power_allocator.c654
1 files changed, 0 insertions, 654 deletions
diff --git a/drivers/thermal/power_allocator.c b/drivers/thermal/power_allocator.c
deleted file mode 100644
index 44636475b2a3..000000000000
--- a/drivers/thermal/power_allocator.c
+++ /dev/null
@@ -1,654 +0,0 @@
-/*
- * A power allocator to manage temperature
- *
- * Copyright (C) 2014 ARM Ltd.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed "as is" WITHOUT ANY WARRANTY of any
- * kind, whether express or implied; without even the implied warranty
- * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- */
-
-#define pr_fmt(fmt) "Power allocator: " fmt
-
-#include <linux/rculist.h>
-#include <linux/slab.h>
-#include <linux/thermal.h>
-
-#define CREATE_TRACE_POINTS
-#include <trace/events/thermal_power_allocator.h>
-
-#include "thermal_core.h"
-
-#define INVALID_TRIP -1
-
-#define FRAC_BITS 10
-#define int_to_frac(x) ((x) << FRAC_BITS)
-#define frac_to_int(x) ((x) >> FRAC_BITS)
-
-/**
- * mul_frac() - multiply two fixed-point numbers
- * @x: first multiplicand
- * @y: second multiplicand
- *
- * Return: the result of multiplying two fixed-point numbers. The
- * result is also a fixed-point number.
- */
-static inline s64 mul_frac(s64 x, s64 y)
-{
- return (x * y) >> FRAC_BITS;
-}
-
-/**
- * div_frac() - divide two fixed-point numbers
- * @x: the dividend
- * @y: the divisor
- *
- * Return: the result of dividing two fixed-point numbers. The
- * result is also a fixed-point number.
- */
-static inline s64 div_frac(s64 x, s64 y)
-{
- return div_s64(x << FRAC_BITS, y);
-}
-
-/**
- * struct power_allocator_params - parameters for the power allocator governor
- * @allocated_tzp: whether we have allocated tzp for this thermal zone and
- * it needs to be freed on unbind
- * @err_integral: accumulated error in the PID controller.
- * @prev_err: error in the previous iteration of the PID controller.
- * Used to calculate the derivative term.
- * @trip_switch_on: first passive trip point of the thermal zone. The
- * governor switches on when this trip point is crossed.
- * If the thermal zone only has one passive trip point,
- * @trip_switch_on should be INVALID_TRIP.
- * @trip_max_desired_temperature: last passive trip point of the thermal
- * zone. The temperature we are
- * controlling for.
- */
-struct power_allocator_params {
- bool allocated_tzp;
- s64 err_integral;
- s32 prev_err;
- int trip_switch_on;
- int trip_max_desired_temperature;
-};
-
-/**
- * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
- * @tz: thermal zone we are operating in
- *
- * For thermal zones that don't provide a sustainable_power in their
- * thermal_zone_params, estimate one. Calculate it using the minimum
- * power of all the cooling devices as that gives a valid value that
- * can give some degree of functionality. For optimal performance of
- * this governor, provide a sustainable_power in the thermal zone's
- * thermal_zone_params.
- */
-static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
-{
- u32 sustainable_power = 0;
- struct thermal_instance *instance;
- struct power_allocator_params *params = tz->governor_data;
-
- list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
- struct thermal_cooling_device *cdev = instance->cdev;
- u32 min_power;
-
- if (instance->trip != params->trip_max_desired_temperature)
- continue;
-
- if (power_actor_get_min_power(cdev, tz, &min_power))
- continue;
-
- sustainable_power += min_power;
- }
-
- return sustainable_power;
-}
-
-/**
- * estimate_pid_constants() - Estimate the constants for the PID controller
- * @tz: thermal zone for which to estimate the constants
- * @sustainable_power: sustainable power for the thermal zone
- * @trip_switch_on: trip point number for the switch on temperature
- * @control_temp: target temperature for the power allocator governor
- * @force: whether to force the update of the constants
- *
- * This function is used to update the estimation of the PID
- * controller constants in struct thermal_zone_parameters.
- * Sustainable power is provided in case it was estimated. The
- * estimated sustainable_power should not be stored in the
- * thermal_zone_parameters so it has to be passed explicitly to this
- * function.
- *
- * If @force is not set, the values in the thermal zone's parameters
- * are preserved if they are not zero. If @force is set, the values
- * in thermal zone's parameters are overwritten.
- */
-static void estimate_pid_constants(struct thermal_zone_device *tz,
- u32 sustainable_power, int trip_switch_on,
- int control_temp, bool force)
-{
- int ret;
- int switch_on_temp;
- u32 temperature_threshold;
-
- ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp);
- if (ret)
- switch_on_temp = 0;
-
- temperature_threshold = control_temp - switch_on_temp;
- /*
- * estimate_pid_constants() tries to find appropriate default
- * values for thermal zones that don't provide them. If a
- * system integrator has configured a thermal zone with two
- * passive trip points at the same temperature, that person
- * hasn't put any effort to set up the thermal zone properly
- * so just give up.
- */
- if (!temperature_threshold)
- return;
-
- if (!tz->tzp->k_po || force)
- tz->tzp->k_po = int_to_frac(sustainable_power) /
- temperature_threshold;
-
- if (!tz->tzp->k_pu || force)
- tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
- temperature_threshold;
-
- if (!tz->tzp->k_i || force)
- tz->tzp->k_i = int_to_frac(10) / 1000;
- /*
- * The default for k_d and integral_cutoff is 0, so we can
- * leave them as they are.
- */
-}
-
-/**
- * pid_controller() - PID controller
- * @tz: thermal zone we are operating in
- * @control_temp: the target temperature in millicelsius
- * @max_allocatable_power: maximum allocatable power for this thermal zone
- *
- * This PID controller increases the available power budget so that the
- * temperature of the thermal zone gets as close as possible to
- * @control_temp and limits the power if it exceeds it. k_po is the
- * proportional term when we are overshooting, k_pu is the
- * proportional term when we are undershooting. integral_cutoff is a
- * threshold below which we stop accumulating the error. The
- * accumulated error is only valid if the requested power will make
- * the system warmer. If the system is mostly idle, there's no point
- * in accumulating positive error.
- *
- * Return: The power budget for the next period.
- */
-static u32 pid_controller(struct thermal_zone_device *tz,
- int control_temp,
- u32 max_allocatable_power)
-{
- s64 p, i, d, power_range;
- s32 err, max_power_frac;
- u32 sustainable_power;
- struct power_allocator_params *params = tz->governor_data;
-
- max_power_frac = int_to_frac(max_allocatable_power);
-
- if (tz->tzp->sustainable_power) {
- sustainable_power = tz->tzp->sustainable_power;
- } else {
- sustainable_power = estimate_sustainable_power(tz);
- estimate_pid_constants(tz, sustainable_power,
- params->trip_switch_on, control_temp,
- true);
- }
-
- err = control_temp - tz->temperature;
- err = int_to_frac(err);
-
- /* Calculate the proportional term */
- p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
-
- /*
- * Calculate the integral term
- *
- * if the error is less than cut off allow integration (but
- * the integral is limited to max power)
- */
- i = mul_frac(tz->tzp->k_i, params->err_integral);
-
- if (err < int_to_frac(tz->tzp->integral_cutoff)) {
- s64 i_next = i + mul_frac(tz->tzp->k_i, err);
-
- if (abs(i_next) < max_power_frac) {
- i = i_next;
- params->err_integral += err;
- }
- }
-
- /*
- * Calculate the derivative term
- *
- * We do err - prev_err, so with a positive k_d, a decreasing
- * error (i.e. driving closer to the line) results in less
- * power being applied, slowing down the controller)
- */
- d = mul_frac(tz->tzp->k_d, err - params->prev_err);
- d = div_frac(d, tz->passive_delay);
- params->prev_err = err;
-
- power_range = p + i + d;
-
- /* feed-forward the known sustainable dissipatable power */
- power_range = sustainable_power + frac_to_int(power_range);
-
- power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
-
- trace_thermal_power_allocator_pid(tz, frac_to_int(err),
- frac_to_int(params->err_integral),
- frac_to_int(p), frac_to_int(i),
- frac_to_int(d), power_range);
-
- return power_range;
-}
-
-/**
- * divvy_up_power() - divvy the allocated power between the actors
- * @req_power: each actor's requested power
- * @max_power: each actor's maximum available power
- * @num_actors: size of the @req_power, @max_power and @granted_power's array
- * @total_req_power: sum of @req_power
- * @power_range: total allocated power
- * @granted_power: output array: each actor's granted power
- * @extra_actor_power: an appropriately sized array to be used in the
- * function as temporary storage of the extra power given
- * to the actors
- *
- * This function divides the total allocated power (@power_range)
- * fairly between the actors. It first tries to give each actor a
- * share of the @power_range according to how much power it requested
- * compared to the rest of the actors. For example, if only one actor
- * requests power, then it receives all the @power_range. If
- * three actors each requests 1mW, each receives a third of the
- * @power_range.
- *
- * If any actor received more than their maximum power, then that
- * surplus is re-divvied among the actors based on how far they are
- * from their respective maximums.
- *
- * Granted power for each actor is written to @granted_power, which
- * should've been allocated by the calling function.
- */
-static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
- u32 total_req_power, u32 power_range,
- u32 *granted_power, u32 *extra_actor_power)
-{
- u32 extra_power, capped_extra_power;
- int i;
-
- /*
- * Prevent division by 0 if none of the actors request power.
- */
- if (!total_req_power)
- total_req_power = 1;
-
- capped_extra_power = 0;
- extra_power = 0;
- for (i = 0; i < num_actors; i++) {
- u64 req_range = (u64)req_power[i] * power_range;
-
- granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range,
- total_req_power);
-
- if (granted_power[i] > max_power[i]) {
- extra_power += granted_power[i] - max_power[i];
- granted_power[i] = max_power[i];
- }
-
- extra_actor_power[i] = max_power[i] - granted_power[i];
- capped_extra_power += extra_actor_power[i];
- }
-
- if (!extra_power)
- return;
-
- /*
- * Re-divvy the reclaimed extra among actors based on
- * how far they are from the max
- */
- extra_power = min(extra_power, capped_extra_power);
- if (capped_extra_power > 0)
- for (i = 0; i < num_actors; i++)
- granted_power[i] += (extra_actor_power[i] *
- extra_power) / capped_extra_power;
-}
-
-static int allocate_power(struct thermal_zone_device *tz,
- int control_temp)
-{
- struct thermal_instance *instance;
- struct power_allocator_params *params = tz->governor_data;
- u32 *req_power, *max_power, *granted_power, *extra_actor_power;
- u32 *weighted_req_power;
- u32 total_req_power, max_allocatable_power, total_weighted_req_power;
- u32 total_granted_power, power_range;
- int i, num_actors, total_weight, ret = 0;
- int trip_max_desired_temperature = params->trip_max_desired_temperature;
-
- mutex_lock(&tz->lock);
-
- num_actors = 0;
- total_weight = 0;
- list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
- if ((instance->trip == trip_max_desired_temperature) &&
- cdev_is_power_actor(instance->cdev)) {
- num_actors++;
- total_weight += instance->weight;
- }
- }
-
- if (!num_actors) {
- ret = -ENODEV;
- goto unlock;
- }
-
- /*
- * We need to allocate five arrays of the same size:
- * req_power, max_power, granted_power, extra_actor_power and
- * weighted_req_power. They are going to be needed until this
- * function returns. Allocate them all in one go to simplify
- * the allocation and deallocation logic.
- */
- BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
- BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
- BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
- BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power));
- req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL);
- if (!req_power) {
- ret = -ENOMEM;
- goto unlock;
- }
-
- max_power = &req_power[num_actors];
- granted_power = &req_power[2 * num_actors];
- extra_actor_power = &req_power[3 * num_actors];
- weighted_req_power = &req_power[4 * num_actors];
-
- i = 0;
- total_weighted_req_power = 0;
- total_req_power = 0;
- max_allocatable_power = 0;
-
- list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
- int weight;
- struct thermal_cooling_device *cdev = instance->cdev;
-
- if (instance->trip != trip_max_desired_temperature)
- continue;
-
- if (!cdev_is_power_actor(cdev))
- continue;
-
- if (cdev->ops->get_requested_power(cdev, tz, &req_power[i]))
- continue;
-
- if (!total_weight)
- weight = 1 << FRAC_BITS;
- else
- weight = instance->weight;
-
- weighted_req_power[i] = frac_to_int(weight * req_power[i]);
-
- if (power_actor_get_max_power(cdev, tz, &max_power[i]))
- continue;
-
- total_req_power += req_power[i];
- max_allocatable_power += max_power[i];
- total_weighted_req_power += weighted_req_power[i];
-
- i++;
- }
-
- power_range = pid_controller(tz, control_temp, max_allocatable_power);
-
- divvy_up_power(weighted_req_power, max_power, num_actors,
- total_weighted_req_power, power_range, granted_power,
- extra_actor_power);
-
- total_granted_power = 0;
- i = 0;
- list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
- if (instance->trip != trip_max_desired_temperature)
- continue;
-
- if (!cdev_is_power_actor(instance->cdev))
- continue;
-
- power_actor_set_power(instance->cdev, instance,
- granted_power[i]);
- total_granted_power += granted_power[i];
-
- i++;
- }
-
- trace_thermal_power_allocator(tz, req_power, total_req_power,
- granted_power, total_granted_power,
- num_actors, power_range,
- max_allocatable_power, tz->temperature,
- control_temp - tz->temperature);
-
- kfree(req_power);
-unlock:
- mutex_unlock(&tz->lock);
-
- return ret;
-}
-
-/**
- * get_governor_trips() - get the number of the two trip points that are key for this governor
- * @tz: thermal zone to operate on
- * @params: pointer to private data for this governor
- *
- * The power allocator governor works optimally with two trips points:
- * a "switch on" trip point and a "maximum desired temperature". These
- * are defined as the first and last passive trip points.
- *
- * If there is only one trip point, then that's considered to be the
- * "maximum desired temperature" trip point and the governor is always
- * on. If there are no passive or active trip points, then the
- * governor won't do anything. In fact, its throttle function
- * won't be called at all.
- */
-static void get_governor_trips(struct thermal_zone_device *tz,
- struct power_allocator_params *params)
-{
- int i, last_active, last_passive;
- bool found_first_passive;
-
- found_first_passive = false;
- last_active = INVALID_TRIP;
- last_passive = INVALID_TRIP;
-
- for (i = 0; i < tz->trips; i++) {
- enum thermal_trip_type type;
- int ret;
-
- ret = tz->ops->get_trip_type(tz, i, &type);
- if (ret) {
- dev_warn(&tz->device,
- "Failed to get trip point %d type: %d\n", i,
- ret);
- continue;
- }
-
- if (type == THERMAL_TRIP_PASSIVE) {
- if (!found_first_passive) {
- params->trip_switch_on = i;
- found_first_passive = true;
- } else {
- last_passive = i;
- }
- } else if (type == THERMAL_TRIP_ACTIVE) {
- last_active = i;
- } else {
- break;
- }
- }
-
- if (last_passive != INVALID_TRIP) {
- params->trip_max_desired_temperature = last_passive;
- } else if (found_first_passive) {
- params->trip_max_desired_temperature = params->trip_switch_on;
- params->trip_switch_on = INVALID_TRIP;
- } else {
- params->trip_switch_on = INVALID_TRIP;
- params->trip_max_desired_temperature = last_active;
- }
-}
-
-static void reset_pid_controller(struct power_allocator_params *params)
-{
- params->err_integral = 0;
- params->prev_err = 0;
-}
-
-static void allow_maximum_power(struct thermal_zone_device *tz)
-{
- struct thermal_instance *instance;
- struct power_allocator_params *params = tz->governor_data;
-
- mutex_lock(&tz->lock);
- list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
- if ((instance->trip != params->trip_max_desired_temperature) ||
- (!cdev_is_power_actor(instance->cdev)))
- continue;
-
- instance->target = 0;
- mutex_lock(&instance->cdev->lock);
- instance->cdev->updated = false;
- mutex_unlock(&instance->cdev->lock);
- thermal_cdev_update(instance->cdev);
- }
- mutex_unlock(&tz->lock);
-}
-
-/**
- * power_allocator_bind() - bind the power_allocator governor to a thermal zone
- * @tz: thermal zone to bind it to
- *
- * Initialize the PID controller parameters and bind it to the thermal
- * zone.
- *
- * Return: 0 on success, or -ENOMEM if we ran out of memory.
- */
-static int power_allocator_bind(struct thermal_zone_device *tz)
-{
- int ret;
- struct power_allocator_params *params;
- int control_temp;
-
- params = kzalloc(sizeof(*params), GFP_KERNEL);
- if (!params)
- return -ENOMEM;
-
- if (!tz->tzp) {
- tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
- if (!tz->tzp) {
- ret = -ENOMEM;
- goto free_params;
- }
-
- params->allocated_tzp = true;
- }
-
- if (!tz->tzp->sustainable_power)
- dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
-
- get_governor_trips(tz, params);
-
- if (tz->trips > 0) {
- ret = tz->ops->get_trip_temp(tz,
- params->trip_max_desired_temperature,
- &control_temp);
- if (!ret)
- estimate_pid_constants(tz, tz->tzp->sustainable_power,
- params->trip_switch_on,
- control_temp, false);
- }
-
- reset_pid_controller(params);
-
- tz->governor_data = params;
-
- return 0;
-
-free_params:
- kfree(params);
-
- return ret;
-}
-
-static void power_allocator_unbind(struct thermal_zone_device *tz)
-{
- struct power_allocator_params *params = tz->governor_data;
-
- dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
-
- if (params->allocated_tzp) {
- kfree(tz->tzp);
- tz->tzp = NULL;
- }
-
- kfree(tz->governor_data);
- tz->governor_data = NULL;
-}
-
-static int power_allocator_throttle(struct thermal_zone_device *tz, int trip)
-{
- int ret;
- int switch_on_temp, control_temp;
- struct power_allocator_params *params = tz->governor_data;
-
- /*
- * We get called for every trip point but we only need to do
- * our calculations once
- */
- if (trip != params->trip_max_desired_temperature)
- return 0;
-
- ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
- &switch_on_temp);
- if (!ret && (tz->temperature < switch_on_temp)) {
- tz->passive = 0;
- reset_pid_controller(params);
- allow_maximum_power(tz);
- return 0;
- }
-
- tz->passive = 1;
-
- ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
- &control_temp);
- if (ret) {
- dev_warn(&tz->device,
- "Failed to get the maximum desired temperature: %d\n",
- ret);
- return ret;
- }
-
- return allocate_power(tz, control_temp);
-}
-
-static struct thermal_governor thermal_gov_power_allocator = {
- .name = "power_allocator",
- .bind_to_tz = power_allocator_bind,
- .unbind_from_tz = power_allocator_unbind,
- .throttle = power_allocator_throttle,
-};
-THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator);