diff options
author | Amit Kucheria <amit.kucheria@linaro.org> | 2020-05-11 17:55:01 +0530 |
---|---|---|
committer | Daniel Lezcano <daniel.lezcano@linaro.org> | 2020-05-22 18:48:54 +0200 |
commit | 0015d9a2a72745308ef9728a746ff7b1e82138bc (patch) | |
tree | 9dd4e0dc208f154e26e4f6d56913aa8bad045873 /drivers/thermal/power_allocator.c | |
parent | 6abea5d2af4cdd508b04d94ed9382c3710b99dfc (diff) | |
download | linux-0015d9a2a72745308ef9728a746ff7b1e82138bc.tar.bz2 |
thermal/governors: Prefix all source files with gov_
Bang-bang governor source file is prefixed with gov_. Do the same for
other governors for consistency so they're easy to find in the sources.
Signed-off-by: Amit Kucheria <amit.kucheria@linaro.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/b9a85d3204712f14e320504948c12712dc0b291b.1589199124.git.amit.kucheria@linaro.org
Diffstat (limited to 'drivers/thermal/power_allocator.c')
-rw-r--r-- | drivers/thermal/power_allocator.c | 654 |
1 files changed, 0 insertions, 654 deletions
diff --git a/drivers/thermal/power_allocator.c b/drivers/thermal/power_allocator.c deleted file mode 100644 index 44636475b2a3..000000000000 --- a/drivers/thermal/power_allocator.c +++ /dev/null @@ -1,654 +0,0 @@ -/* - * A power allocator to manage temperature - * - * Copyright (C) 2014 ARM Ltd. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * This program is distributed "as is" WITHOUT ANY WARRANTY of any - * kind, whether express or implied; without even the implied warranty - * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - */ - -#define pr_fmt(fmt) "Power allocator: " fmt - -#include <linux/rculist.h> -#include <linux/slab.h> -#include <linux/thermal.h> - -#define CREATE_TRACE_POINTS -#include <trace/events/thermal_power_allocator.h> - -#include "thermal_core.h" - -#define INVALID_TRIP -1 - -#define FRAC_BITS 10 -#define int_to_frac(x) ((x) << FRAC_BITS) -#define frac_to_int(x) ((x) >> FRAC_BITS) - -/** - * mul_frac() - multiply two fixed-point numbers - * @x: first multiplicand - * @y: second multiplicand - * - * Return: the result of multiplying two fixed-point numbers. The - * result is also a fixed-point number. - */ -static inline s64 mul_frac(s64 x, s64 y) -{ - return (x * y) >> FRAC_BITS; -} - -/** - * div_frac() - divide two fixed-point numbers - * @x: the dividend - * @y: the divisor - * - * Return: the result of dividing two fixed-point numbers. The - * result is also a fixed-point number. - */ -static inline s64 div_frac(s64 x, s64 y) -{ - return div_s64(x << FRAC_BITS, y); -} - -/** - * struct power_allocator_params - parameters for the power allocator governor - * @allocated_tzp: whether we have allocated tzp for this thermal zone and - * it needs to be freed on unbind - * @err_integral: accumulated error in the PID controller. - * @prev_err: error in the previous iteration of the PID controller. - * Used to calculate the derivative term. - * @trip_switch_on: first passive trip point of the thermal zone. The - * governor switches on when this trip point is crossed. - * If the thermal zone only has one passive trip point, - * @trip_switch_on should be INVALID_TRIP. - * @trip_max_desired_temperature: last passive trip point of the thermal - * zone. The temperature we are - * controlling for. - */ -struct power_allocator_params { - bool allocated_tzp; - s64 err_integral; - s32 prev_err; - int trip_switch_on; - int trip_max_desired_temperature; -}; - -/** - * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone - * @tz: thermal zone we are operating in - * - * For thermal zones that don't provide a sustainable_power in their - * thermal_zone_params, estimate one. Calculate it using the minimum - * power of all the cooling devices as that gives a valid value that - * can give some degree of functionality. For optimal performance of - * this governor, provide a sustainable_power in the thermal zone's - * thermal_zone_params. - */ -static u32 estimate_sustainable_power(struct thermal_zone_device *tz) -{ - u32 sustainable_power = 0; - struct thermal_instance *instance; - struct power_allocator_params *params = tz->governor_data; - - list_for_each_entry(instance, &tz->thermal_instances, tz_node) { - struct thermal_cooling_device *cdev = instance->cdev; - u32 min_power; - - if (instance->trip != params->trip_max_desired_temperature) - continue; - - if (power_actor_get_min_power(cdev, tz, &min_power)) - continue; - - sustainable_power += min_power; - } - - return sustainable_power; -} - -/** - * estimate_pid_constants() - Estimate the constants for the PID controller - * @tz: thermal zone for which to estimate the constants - * @sustainable_power: sustainable power for the thermal zone - * @trip_switch_on: trip point number for the switch on temperature - * @control_temp: target temperature for the power allocator governor - * @force: whether to force the update of the constants - * - * This function is used to update the estimation of the PID - * controller constants in struct thermal_zone_parameters. - * Sustainable power is provided in case it was estimated. The - * estimated sustainable_power should not be stored in the - * thermal_zone_parameters so it has to be passed explicitly to this - * function. - * - * If @force is not set, the values in the thermal zone's parameters - * are preserved if they are not zero. If @force is set, the values - * in thermal zone's parameters are overwritten. - */ -static void estimate_pid_constants(struct thermal_zone_device *tz, - u32 sustainable_power, int trip_switch_on, - int control_temp, bool force) -{ - int ret; - int switch_on_temp; - u32 temperature_threshold; - - ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp); - if (ret) - switch_on_temp = 0; - - temperature_threshold = control_temp - switch_on_temp; - /* - * estimate_pid_constants() tries to find appropriate default - * values for thermal zones that don't provide them. If a - * system integrator has configured a thermal zone with two - * passive trip points at the same temperature, that person - * hasn't put any effort to set up the thermal zone properly - * so just give up. - */ - if (!temperature_threshold) - return; - - if (!tz->tzp->k_po || force) - tz->tzp->k_po = int_to_frac(sustainable_power) / - temperature_threshold; - - if (!tz->tzp->k_pu || force) - tz->tzp->k_pu = int_to_frac(2 * sustainable_power) / - temperature_threshold; - - if (!tz->tzp->k_i || force) - tz->tzp->k_i = int_to_frac(10) / 1000; - /* - * The default for k_d and integral_cutoff is 0, so we can - * leave them as they are. - */ -} - -/** - * pid_controller() - PID controller - * @tz: thermal zone we are operating in - * @control_temp: the target temperature in millicelsius - * @max_allocatable_power: maximum allocatable power for this thermal zone - * - * This PID controller increases the available power budget so that the - * temperature of the thermal zone gets as close as possible to - * @control_temp and limits the power if it exceeds it. k_po is the - * proportional term when we are overshooting, k_pu is the - * proportional term when we are undershooting. integral_cutoff is a - * threshold below which we stop accumulating the error. The - * accumulated error is only valid if the requested power will make - * the system warmer. If the system is mostly idle, there's no point - * in accumulating positive error. - * - * Return: The power budget for the next period. - */ -static u32 pid_controller(struct thermal_zone_device *tz, - int control_temp, - u32 max_allocatable_power) -{ - s64 p, i, d, power_range; - s32 err, max_power_frac; - u32 sustainable_power; - struct power_allocator_params *params = tz->governor_data; - - max_power_frac = int_to_frac(max_allocatable_power); - - if (tz->tzp->sustainable_power) { - sustainable_power = tz->tzp->sustainable_power; - } else { - sustainable_power = estimate_sustainable_power(tz); - estimate_pid_constants(tz, sustainable_power, - params->trip_switch_on, control_temp, - true); - } - - err = control_temp - tz->temperature; - err = int_to_frac(err); - - /* Calculate the proportional term */ - p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err); - - /* - * Calculate the integral term - * - * if the error is less than cut off allow integration (but - * the integral is limited to max power) - */ - i = mul_frac(tz->tzp->k_i, params->err_integral); - - if (err < int_to_frac(tz->tzp->integral_cutoff)) { - s64 i_next = i + mul_frac(tz->tzp->k_i, err); - - if (abs(i_next) < max_power_frac) { - i = i_next; - params->err_integral += err; - } - } - - /* - * Calculate the derivative term - * - * We do err - prev_err, so with a positive k_d, a decreasing - * error (i.e. driving closer to the line) results in less - * power being applied, slowing down the controller) - */ - d = mul_frac(tz->tzp->k_d, err - params->prev_err); - d = div_frac(d, tz->passive_delay); - params->prev_err = err; - - power_range = p + i + d; - - /* feed-forward the known sustainable dissipatable power */ - power_range = sustainable_power + frac_to_int(power_range); - - power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power); - - trace_thermal_power_allocator_pid(tz, frac_to_int(err), - frac_to_int(params->err_integral), - frac_to_int(p), frac_to_int(i), - frac_to_int(d), power_range); - - return power_range; -} - -/** - * divvy_up_power() - divvy the allocated power between the actors - * @req_power: each actor's requested power - * @max_power: each actor's maximum available power - * @num_actors: size of the @req_power, @max_power and @granted_power's array - * @total_req_power: sum of @req_power - * @power_range: total allocated power - * @granted_power: output array: each actor's granted power - * @extra_actor_power: an appropriately sized array to be used in the - * function as temporary storage of the extra power given - * to the actors - * - * This function divides the total allocated power (@power_range) - * fairly between the actors. It first tries to give each actor a - * share of the @power_range according to how much power it requested - * compared to the rest of the actors. For example, if only one actor - * requests power, then it receives all the @power_range. If - * three actors each requests 1mW, each receives a third of the - * @power_range. - * - * If any actor received more than their maximum power, then that - * surplus is re-divvied among the actors based on how far they are - * from their respective maximums. - * - * Granted power for each actor is written to @granted_power, which - * should've been allocated by the calling function. - */ -static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors, - u32 total_req_power, u32 power_range, - u32 *granted_power, u32 *extra_actor_power) -{ - u32 extra_power, capped_extra_power; - int i; - - /* - * Prevent division by 0 if none of the actors request power. - */ - if (!total_req_power) - total_req_power = 1; - - capped_extra_power = 0; - extra_power = 0; - for (i = 0; i < num_actors; i++) { - u64 req_range = (u64)req_power[i] * power_range; - - granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range, - total_req_power); - - if (granted_power[i] > max_power[i]) { - extra_power += granted_power[i] - max_power[i]; - granted_power[i] = max_power[i]; - } - - extra_actor_power[i] = max_power[i] - granted_power[i]; - capped_extra_power += extra_actor_power[i]; - } - - if (!extra_power) - return; - - /* - * Re-divvy the reclaimed extra among actors based on - * how far they are from the max - */ - extra_power = min(extra_power, capped_extra_power); - if (capped_extra_power > 0) - for (i = 0; i < num_actors; i++) - granted_power[i] += (extra_actor_power[i] * - extra_power) / capped_extra_power; -} - -static int allocate_power(struct thermal_zone_device *tz, - int control_temp) -{ - struct thermal_instance *instance; - struct power_allocator_params *params = tz->governor_data; - u32 *req_power, *max_power, *granted_power, *extra_actor_power; - u32 *weighted_req_power; - u32 total_req_power, max_allocatable_power, total_weighted_req_power; - u32 total_granted_power, power_range; - int i, num_actors, total_weight, ret = 0; - int trip_max_desired_temperature = params->trip_max_desired_temperature; - - mutex_lock(&tz->lock); - - num_actors = 0; - total_weight = 0; - list_for_each_entry(instance, &tz->thermal_instances, tz_node) { - if ((instance->trip == trip_max_desired_temperature) && - cdev_is_power_actor(instance->cdev)) { - num_actors++; - total_weight += instance->weight; - } - } - - if (!num_actors) { - ret = -ENODEV; - goto unlock; - } - - /* - * We need to allocate five arrays of the same size: - * req_power, max_power, granted_power, extra_actor_power and - * weighted_req_power. They are going to be needed until this - * function returns. Allocate them all in one go to simplify - * the allocation and deallocation logic. - */ - BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power)); - BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power)); - BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power)); - BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power)); - req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL); - if (!req_power) { - ret = -ENOMEM; - goto unlock; - } - - max_power = &req_power[num_actors]; - granted_power = &req_power[2 * num_actors]; - extra_actor_power = &req_power[3 * num_actors]; - weighted_req_power = &req_power[4 * num_actors]; - - i = 0; - total_weighted_req_power = 0; - total_req_power = 0; - max_allocatable_power = 0; - - list_for_each_entry(instance, &tz->thermal_instances, tz_node) { - int weight; - struct thermal_cooling_device *cdev = instance->cdev; - - if (instance->trip != trip_max_desired_temperature) - continue; - - if (!cdev_is_power_actor(cdev)) - continue; - - if (cdev->ops->get_requested_power(cdev, tz, &req_power[i])) - continue; - - if (!total_weight) - weight = 1 << FRAC_BITS; - else - weight = instance->weight; - - weighted_req_power[i] = frac_to_int(weight * req_power[i]); - - if (power_actor_get_max_power(cdev, tz, &max_power[i])) - continue; - - total_req_power += req_power[i]; - max_allocatable_power += max_power[i]; - total_weighted_req_power += weighted_req_power[i]; - - i++; - } - - power_range = pid_controller(tz, control_temp, max_allocatable_power); - - divvy_up_power(weighted_req_power, max_power, num_actors, - total_weighted_req_power, power_range, granted_power, - extra_actor_power); - - total_granted_power = 0; - i = 0; - list_for_each_entry(instance, &tz->thermal_instances, tz_node) { - if (instance->trip != trip_max_desired_temperature) - continue; - - if (!cdev_is_power_actor(instance->cdev)) - continue; - - power_actor_set_power(instance->cdev, instance, - granted_power[i]); - total_granted_power += granted_power[i]; - - i++; - } - - trace_thermal_power_allocator(tz, req_power, total_req_power, - granted_power, total_granted_power, - num_actors, power_range, - max_allocatable_power, tz->temperature, - control_temp - tz->temperature); - - kfree(req_power); -unlock: - mutex_unlock(&tz->lock); - - return ret; -} - -/** - * get_governor_trips() - get the number of the two trip points that are key for this governor - * @tz: thermal zone to operate on - * @params: pointer to private data for this governor - * - * The power allocator governor works optimally with two trips points: - * a "switch on" trip point and a "maximum desired temperature". These - * are defined as the first and last passive trip points. - * - * If there is only one trip point, then that's considered to be the - * "maximum desired temperature" trip point and the governor is always - * on. If there are no passive or active trip points, then the - * governor won't do anything. In fact, its throttle function - * won't be called at all. - */ -static void get_governor_trips(struct thermal_zone_device *tz, - struct power_allocator_params *params) -{ - int i, last_active, last_passive; - bool found_first_passive; - - found_first_passive = false; - last_active = INVALID_TRIP; - last_passive = INVALID_TRIP; - - for (i = 0; i < tz->trips; i++) { - enum thermal_trip_type type; - int ret; - - ret = tz->ops->get_trip_type(tz, i, &type); - if (ret) { - dev_warn(&tz->device, - "Failed to get trip point %d type: %d\n", i, - ret); - continue; - } - - if (type == THERMAL_TRIP_PASSIVE) { - if (!found_first_passive) { - params->trip_switch_on = i; - found_first_passive = true; - } else { - last_passive = i; - } - } else if (type == THERMAL_TRIP_ACTIVE) { - last_active = i; - } else { - break; - } - } - - if (last_passive != INVALID_TRIP) { - params->trip_max_desired_temperature = last_passive; - } else if (found_first_passive) { - params->trip_max_desired_temperature = params->trip_switch_on; - params->trip_switch_on = INVALID_TRIP; - } else { - params->trip_switch_on = INVALID_TRIP; - params->trip_max_desired_temperature = last_active; - } -} - -static void reset_pid_controller(struct power_allocator_params *params) -{ - params->err_integral = 0; - params->prev_err = 0; -} - -static void allow_maximum_power(struct thermal_zone_device *tz) -{ - struct thermal_instance *instance; - struct power_allocator_params *params = tz->governor_data; - - mutex_lock(&tz->lock); - list_for_each_entry(instance, &tz->thermal_instances, tz_node) { - if ((instance->trip != params->trip_max_desired_temperature) || - (!cdev_is_power_actor(instance->cdev))) - continue; - - instance->target = 0; - mutex_lock(&instance->cdev->lock); - instance->cdev->updated = false; - mutex_unlock(&instance->cdev->lock); - thermal_cdev_update(instance->cdev); - } - mutex_unlock(&tz->lock); -} - -/** - * power_allocator_bind() - bind the power_allocator governor to a thermal zone - * @tz: thermal zone to bind it to - * - * Initialize the PID controller parameters and bind it to the thermal - * zone. - * - * Return: 0 on success, or -ENOMEM if we ran out of memory. - */ -static int power_allocator_bind(struct thermal_zone_device *tz) -{ - int ret; - struct power_allocator_params *params; - int control_temp; - - params = kzalloc(sizeof(*params), GFP_KERNEL); - if (!params) - return -ENOMEM; - - if (!tz->tzp) { - tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL); - if (!tz->tzp) { - ret = -ENOMEM; - goto free_params; - } - - params->allocated_tzp = true; - } - - if (!tz->tzp->sustainable_power) - dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n"); - - get_governor_trips(tz, params); - - if (tz->trips > 0) { - ret = tz->ops->get_trip_temp(tz, - params->trip_max_desired_temperature, - &control_temp); - if (!ret) - estimate_pid_constants(tz, tz->tzp->sustainable_power, - params->trip_switch_on, - control_temp, false); - } - - reset_pid_controller(params); - - tz->governor_data = params; - - return 0; - -free_params: - kfree(params); - - return ret; -} - -static void power_allocator_unbind(struct thermal_zone_device *tz) -{ - struct power_allocator_params *params = tz->governor_data; - - dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id); - - if (params->allocated_tzp) { - kfree(tz->tzp); - tz->tzp = NULL; - } - - kfree(tz->governor_data); - tz->governor_data = NULL; -} - -static int power_allocator_throttle(struct thermal_zone_device *tz, int trip) -{ - int ret; - int switch_on_temp, control_temp; - struct power_allocator_params *params = tz->governor_data; - - /* - * We get called for every trip point but we only need to do - * our calculations once - */ - if (trip != params->trip_max_desired_temperature) - return 0; - - ret = tz->ops->get_trip_temp(tz, params->trip_switch_on, - &switch_on_temp); - if (!ret && (tz->temperature < switch_on_temp)) { - tz->passive = 0; - reset_pid_controller(params); - allow_maximum_power(tz); - return 0; - } - - tz->passive = 1; - - ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature, - &control_temp); - if (ret) { - dev_warn(&tz->device, - "Failed to get the maximum desired temperature: %d\n", - ret); - return ret; - } - - return allocate_power(tz, control_temp); -} - -static struct thermal_governor thermal_gov_power_allocator = { - .name = "power_allocator", - .bind_to_tz = power_allocator_bind, - .unbind_from_tz = power_allocator_unbind, - .throttle = power_allocator_throttle, -}; -THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator); |