summaryrefslogtreecommitdiffstats
path: root/drivers/net/s2io.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/net/s2io.c
downloadlinux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.bz2
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'drivers/net/s2io.c')
-rw-r--r--drivers/net/s2io.c4950
1 files changed, 4950 insertions, 0 deletions
diff --git a/drivers/net/s2io.c b/drivers/net/s2io.c
new file mode 100644
index 000000000000..9c224eba057d
--- /dev/null
+++ b/drivers/net/s2io.c
@@ -0,0 +1,4950 @@
+/************************************************************************
+ * s2io.c: A Linux PCI-X Ethernet driver for S2IO 10GbE Server NIC
+ * Copyright(c) 2002-2005 Neterion Inc.
+
+ * This software may be used and distributed according to the terms of
+ * the GNU General Public License (GPL), incorporated herein by reference.
+ * Drivers based on or derived from this code fall under the GPL and must
+ * retain the authorship, copyright and license notice. This file is not
+ * a complete program and may only be used when the entire operating
+ * system is licensed under the GPL.
+ * See the file COPYING in this distribution for more information.
+ *
+ * Credits:
+ * Jeff Garzik : For pointing out the improper error condition
+ * check in the s2io_xmit routine and also some
+ * issues in the Tx watch dog function. Also for
+ * patiently answering all those innumerable
+ * questions regaring the 2.6 porting issues.
+ * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
+ * macros available only in 2.6 Kernel.
+ * Francois Romieu : For pointing out all code part that were
+ * deprecated and also styling related comments.
+ * Grant Grundler : For helping me get rid of some Architecture
+ * dependent code.
+ * Christopher Hellwig : Some more 2.6 specific issues in the driver.
+ *
+ * The module loadable parameters that are supported by the driver and a brief
+ * explaination of all the variables.
+ * rx_ring_num : This can be used to program the number of receive rings used
+ * in the driver.
+ * rx_ring_len: This defines the number of descriptors each ring can have. This
+ * is also an array of size 8.
+ * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
+ * tx_fifo_len: This too is an array of 8. Each element defines the number of
+ * Tx descriptors that can be associated with each corresponding FIFO.
+ * in PCI Configuration space.
+ ************************************************************************/
+
+#include <linux/config.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/pci.h>
+#include <linux/kernel.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/skbuff.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/stddef.h>
+#include <linux/ioctl.h>
+#include <linux/timex.h>
+#include <linux/sched.h>
+#include <linux/ethtool.h>
+#include <linux/version.h>
+#include <linux/workqueue.h>
+
+#include <asm/io.h>
+#include <asm/system.h>
+#include <asm/uaccess.h>
+
+/* local include */
+#include "s2io.h"
+#include "s2io-regs.h"
+
+/* S2io Driver name & version. */
+static char s2io_driver_name[] = "s2io";
+static char s2io_driver_version[] = "Version 1.7.7.1";
+
+/*
+ * Cards with following subsystem_id have a link state indication
+ * problem, 600B, 600C, 600D, 640B, 640C and 640D.
+ * macro below identifies these cards given the subsystem_id.
+ */
+#define CARDS_WITH_FAULTY_LINK_INDICATORS(subid) \
+ (((subid >= 0x600B) && (subid <= 0x600D)) || \
+ ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0
+
+#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
+ ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
+#define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
+#define PANIC 1
+#define LOW 2
+static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
+{
+ int level = 0;
+ if ((sp->pkt_cnt[ring] - rxb_size) > 16) {
+ level = LOW;
+ if ((sp->pkt_cnt[ring] - rxb_size) < MAX_RXDS_PER_BLOCK) {
+ level = PANIC;
+ }
+ }
+
+ return level;
+}
+
+/* Ethtool related variables and Macros. */
+static char s2io_gstrings[][ETH_GSTRING_LEN] = {
+ "Register test\t(offline)",
+ "Eeprom test\t(offline)",
+ "Link test\t(online)",
+ "RLDRAM test\t(offline)",
+ "BIST Test\t(offline)"
+};
+
+static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
+ {"tmac_frms"},
+ {"tmac_data_octets"},
+ {"tmac_drop_frms"},
+ {"tmac_mcst_frms"},
+ {"tmac_bcst_frms"},
+ {"tmac_pause_ctrl_frms"},
+ {"tmac_any_err_frms"},
+ {"tmac_vld_ip_octets"},
+ {"tmac_vld_ip"},
+ {"tmac_drop_ip"},
+ {"tmac_icmp"},
+ {"tmac_rst_tcp"},
+ {"tmac_tcp"},
+ {"tmac_udp"},
+ {"rmac_vld_frms"},
+ {"rmac_data_octets"},
+ {"rmac_fcs_err_frms"},
+ {"rmac_drop_frms"},
+ {"rmac_vld_mcst_frms"},
+ {"rmac_vld_bcst_frms"},
+ {"rmac_in_rng_len_err_frms"},
+ {"rmac_long_frms"},
+ {"rmac_pause_ctrl_frms"},
+ {"rmac_discarded_frms"},
+ {"rmac_usized_frms"},
+ {"rmac_osized_frms"},
+ {"rmac_frag_frms"},
+ {"rmac_jabber_frms"},
+ {"rmac_ip"},
+ {"rmac_ip_octets"},
+ {"rmac_hdr_err_ip"},
+ {"rmac_drop_ip"},
+ {"rmac_icmp"},
+ {"rmac_tcp"},
+ {"rmac_udp"},
+ {"rmac_err_drp_udp"},
+ {"rmac_pause_cnt"},
+ {"rmac_accepted_ip"},
+ {"rmac_err_tcp"},
+};
+
+#define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
+#define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
+
+#define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
+#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
+
+
+/*
+ * Constants to be programmed into the Xena's registers, to configure
+ * the XAUI.
+ */
+
+#define SWITCH_SIGN 0xA5A5A5A5A5A5A5A5ULL
+#define END_SIGN 0x0
+
+static u64 default_mdio_cfg[] = {
+ /* Reset PMA PLL */
+ 0xC001010000000000ULL, 0xC0010100000000E0ULL,
+ 0xC0010100008000E4ULL,
+ /* Remove Reset from PMA PLL */
+ 0xC001010000000000ULL, 0xC0010100000000E0ULL,
+ 0xC0010100000000E4ULL,
+ END_SIGN
+};
+
+static u64 default_dtx_cfg[] = {
+ 0x8000051500000000ULL, 0x80000515000000E0ULL,
+ 0x80000515D93500E4ULL, 0x8001051500000000ULL,
+ 0x80010515000000E0ULL, 0x80010515001E00E4ULL,
+ 0x8002051500000000ULL, 0x80020515000000E0ULL,
+ 0x80020515F21000E4ULL,
+ /* Set PADLOOPBACKN */
+ 0x8002051500000000ULL, 0x80020515000000E0ULL,
+ 0x80020515B20000E4ULL, 0x8003051500000000ULL,
+ 0x80030515000000E0ULL, 0x80030515B20000E4ULL,
+ 0x8004051500000000ULL, 0x80040515000000E0ULL,
+ 0x80040515B20000E4ULL, 0x8005051500000000ULL,
+ 0x80050515000000E0ULL, 0x80050515B20000E4ULL,
+ SWITCH_SIGN,
+ /* Remove PADLOOPBACKN */
+ 0x8002051500000000ULL, 0x80020515000000E0ULL,
+ 0x80020515F20000E4ULL, 0x8003051500000000ULL,
+ 0x80030515000000E0ULL, 0x80030515F20000E4ULL,
+ 0x8004051500000000ULL, 0x80040515000000E0ULL,
+ 0x80040515F20000E4ULL, 0x8005051500000000ULL,
+ 0x80050515000000E0ULL, 0x80050515F20000E4ULL,
+ END_SIGN
+};
+
+
+/*
+ * Constants for Fixing the MacAddress problem seen mostly on
+ * Alpha machines.
+ */
+static u64 fix_mac[] = {
+ 0x0060000000000000ULL, 0x0060600000000000ULL,
+ 0x0040600000000000ULL, 0x0000600000000000ULL,
+ 0x0020600000000000ULL, 0x0060600000000000ULL,
+ 0x0020600000000000ULL, 0x0060600000000000ULL,
+ 0x0020600000000000ULL, 0x0060600000000000ULL,
+ 0x0020600000000000ULL, 0x0060600000000000ULL,
+ 0x0020600000000000ULL, 0x0060600000000000ULL,
+ 0x0020600000000000ULL, 0x0060600000000000ULL,
+ 0x0020600000000000ULL, 0x0060600000000000ULL,
+ 0x0020600000000000ULL, 0x0060600000000000ULL,
+ 0x0020600000000000ULL, 0x0060600000000000ULL,
+ 0x0020600000000000ULL, 0x0060600000000000ULL,
+ 0x0020600000000000ULL, 0x0000600000000000ULL,
+ 0x0040600000000000ULL, 0x0060600000000000ULL,
+ END_SIGN
+};
+
+/* Module Loadable parameters. */
+static unsigned int tx_fifo_num = 1;
+static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
+ {[0 ...(MAX_TX_FIFOS - 1)] = 0 };
+static unsigned int rx_ring_num = 1;
+static unsigned int rx_ring_sz[MAX_RX_RINGS] =
+ {[0 ...(MAX_RX_RINGS - 1)] = 0 };
+static unsigned int Stats_refresh_time = 4;
+static unsigned int rmac_pause_time = 65535;
+static unsigned int mc_pause_threshold_q0q3 = 187;
+static unsigned int mc_pause_threshold_q4q7 = 187;
+static unsigned int shared_splits;
+static unsigned int tmac_util_period = 5;
+static unsigned int rmac_util_period = 5;
+#ifndef CONFIG_S2IO_NAPI
+static unsigned int indicate_max_pkts;
+#endif
+
+/*
+ * S2IO device table.
+ * This table lists all the devices that this driver supports.
+ */
+static struct pci_device_id s2io_tbl[] __devinitdata = {
+ {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
+ PCI_ANY_ID, PCI_ANY_ID},
+ {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
+ PCI_ANY_ID, PCI_ANY_ID},
+ {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
+ PCI_ANY_ID, PCI_ANY_ID},
+ {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
+ PCI_ANY_ID, PCI_ANY_ID},
+ {0,}
+};
+
+MODULE_DEVICE_TABLE(pci, s2io_tbl);
+
+static struct pci_driver s2io_driver = {
+ .name = "S2IO",
+ .id_table = s2io_tbl,
+ .probe = s2io_init_nic,
+ .remove = __devexit_p(s2io_rem_nic),
+};
+
+/* A simplifier macro used both by init and free shared_mem Fns(). */
+#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
+
+/**
+ * init_shared_mem - Allocation and Initialization of Memory
+ * @nic: Device private variable.
+ * Description: The function allocates all the memory areas shared
+ * between the NIC and the driver. This includes Tx descriptors,
+ * Rx descriptors and the statistics block.
+ */
+
+static int init_shared_mem(struct s2io_nic *nic)
+{
+ u32 size;
+ void *tmp_v_addr, *tmp_v_addr_next;
+ dma_addr_t tmp_p_addr, tmp_p_addr_next;
+ RxD_block_t *pre_rxd_blk = NULL;
+ int i, j, blk_cnt;
+ int lst_size, lst_per_page;
+ struct net_device *dev = nic->dev;
+#ifdef CONFIG_2BUFF_MODE
+ unsigned long tmp;
+ buffAdd_t *ba;
+#endif
+
+ mac_info_t *mac_control;
+ struct config_param *config;
+
+ mac_control = &nic->mac_control;
+ config = &nic->config;
+
+
+ /* Allocation and initialization of TXDLs in FIOFs */
+ size = 0;
+ for (i = 0; i < config->tx_fifo_num; i++) {
+ size += config->tx_cfg[i].fifo_len;
+ }
+ if (size > MAX_AVAILABLE_TXDS) {
+ DBG_PRINT(ERR_DBG, "%s: Total number of Tx FIFOs ",
+ dev->name);
+ DBG_PRINT(ERR_DBG, "exceeds the maximum value ");
+ DBG_PRINT(ERR_DBG, "that can be used\n");
+ return FAILURE;
+ }
+
+ lst_size = (sizeof(TxD_t) * config->max_txds);
+ lst_per_page = PAGE_SIZE / lst_size;
+
+ for (i = 0; i < config->tx_fifo_num; i++) {
+ int fifo_len = config->tx_cfg[i].fifo_len;
+ int list_holder_size = fifo_len * sizeof(list_info_hold_t);
+ nic->list_info[i] = kmalloc(list_holder_size, GFP_KERNEL);
+ if (!nic->list_info[i]) {
+ DBG_PRINT(ERR_DBG,
+ "Malloc failed for list_info\n");
+ return -ENOMEM;
+ }
+ memset(nic->list_info[i], 0, list_holder_size);
+ }
+ for (i = 0; i < config->tx_fifo_num; i++) {
+ int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
+ lst_per_page);
+ mac_control->tx_curr_put_info[i].offset = 0;
+ mac_control->tx_curr_put_info[i].fifo_len =
+ config->tx_cfg[i].fifo_len - 1;
+ mac_control->tx_curr_get_info[i].offset = 0;
+ mac_control->tx_curr_get_info[i].fifo_len =
+ config->tx_cfg[i].fifo_len - 1;
+ for (j = 0; j < page_num; j++) {
+ int k = 0;
+ dma_addr_t tmp_p;
+ void *tmp_v;
+ tmp_v = pci_alloc_consistent(nic->pdev,
+ PAGE_SIZE, &tmp_p);
+ if (!tmp_v) {
+ DBG_PRINT(ERR_DBG,
+ "pci_alloc_consistent ");
+ DBG_PRINT(ERR_DBG, "failed for TxDL\n");
+ return -ENOMEM;
+ }
+ while (k < lst_per_page) {
+ int l = (j * lst_per_page) + k;
+ if (l == config->tx_cfg[i].fifo_len)
+ goto end_txd_alloc;
+ nic->list_info[i][l].list_virt_addr =
+ tmp_v + (k * lst_size);
+ nic->list_info[i][l].list_phy_addr =
+ tmp_p + (k * lst_size);
+ k++;
+ }
+ }
+ }
+ end_txd_alloc:
+
+ /* Allocation and initialization of RXDs in Rings */
+ size = 0;
+ for (i = 0; i < config->rx_ring_num; i++) {
+ if (config->rx_cfg[i].num_rxd % (MAX_RXDS_PER_BLOCK + 1)) {
+ DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
+ DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
+ i);
+ DBG_PRINT(ERR_DBG, "RxDs per Block");
+ return FAILURE;
+ }
+ size += config->rx_cfg[i].num_rxd;
+ nic->block_count[i] =
+ config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
+ nic->pkt_cnt[i] =
+ config->rx_cfg[i].num_rxd - nic->block_count[i];
+ }
+
+ for (i = 0; i < config->rx_ring_num; i++) {
+ mac_control->rx_curr_get_info[i].block_index = 0;
+ mac_control->rx_curr_get_info[i].offset = 0;
+ mac_control->rx_curr_get_info[i].ring_len =
+ config->rx_cfg[i].num_rxd - 1;
+ mac_control->rx_curr_put_info[i].block_index = 0;
+ mac_control->rx_curr_put_info[i].offset = 0;
+ mac_control->rx_curr_put_info[i].ring_len =
+ config->rx_cfg[i].num_rxd - 1;
+ blk_cnt =
+ config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
+ /* Allocating all the Rx blocks */
+ for (j = 0; j < blk_cnt; j++) {
+#ifndef CONFIG_2BUFF_MODE
+ size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t));
+#else
+ size = SIZE_OF_BLOCK;
+#endif
+ tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
+ &tmp_p_addr);
+ if (tmp_v_addr == NULL) {
+ /*
+ * In case of failure, free_shared_mem()
+ * is called, which should free any
+ * memory that was alloced till the
+ * failure happened.
+ */
+ nic->rx_blocks[i][j].block_virt_addr =
+ tmp_v_addr;
+ return -ENOMEM;
+ }
+ memset(tmp_v_addr, 0, size);
+ nic->rx_blocks[i][j].block_virt_addr = tmp_v_addr;
+ nic->rx_blocks[i][j].block_dma_addr = tmp_p_addr;
+ }
+ /* Interlinking all Rx Blocks */
+ for (j = 0; j < blk_cnt; j++) {
+ tmp_v_addr = nic->rx_blocks[i][j].block_virt_addr;
+ tmp_v_addr_next =
+ nic->rx_blocks[i][(j + 1) %
+ blk_cnt].block_virt_addr;
+ tmp_p_addr = nic->rx_blocks[i][j].block_dma_addr;
+ tmp_p_addr_next =
+ nic->rx_blocks[i][(j + 1) %
+ blk_cnt].block_dma_addr;
+
+ pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
+ pre_rxd_blk->reserved_1 = END_OF_BLOCK; /* last RxD
+ * marker.
+ */
+#ifndef CONFIG_2BUFF_MODE
+ pre_rxd_blk->reserved_2_pNext_RxD_block =
+ (unsigned long) tmp_v_addr_next;
+#endif
+ pre_rxd_blk->pNext_RxD_Blk_physical =
+ (u64) tmp_p_addr_next;
+ }
+ }
+
+#ifdef CONFIG_2BUFF_MODE
+ /*
+ * Allocation of Storages for buffer addresses in 2BUFF mode
+ * and the buffers as well.
+ */
+ for (i = 0; i < config->rx_ring_num; i++) {
+ blk_cnt =
+ config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
+ nic->ba[i] = kmalloc((sizeof(buffAdd_t *) * blk_cnt),
+ GFP_KERNEL);
+ if (!nic->ba[i])
+ return -ENOMEM;
+ for (j = 0; j < blk_cnt; j++) {
+ int k = 0;
+ nic->ba[i][j] = kmalloc((sizeof(buffAdd_t) *
+ (MAX_RXDS_PER_BLOCK + 1)),
+ GFP_KERNEL);
+ if (!nic->ba[i][j])
+ return -ENOMEM;
+ while (k != MAX_RXDS_PER_BLOCK) {
+ ba = &nic->ba[i][j][k];
+
+ ba->ba_0_org = kmalloc
+ (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
+ if (!ba->ba_0_org)
+ return -ENOMEM;
+ tmp = (unsigned long) ba->ba_0_org;
+ tmp += ALIGN_SIZE;
+ tmp &= ~((unsigned long) ALIGN_SIZE);
+ ba->ba_0 = (void *) tmp;
+
+ ba->ba_1_org = kmalloc
+ (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
+ if (!ba->ba_1_org)
+ return -ENOMEM;
+ tmp = (unsigned long) ba->ba_1_org;
+ tmp += ALIGN_SIZE;
+ tmp &= ~((unsigned long) ALIGN_SIZE);
+ ba->ba_1 = (void *) tmp;
+ k++;
+ }
+ }
+ }
+#endif
+
+ /* Allocation and initialization of Statistics block */
+ size = sizeof(StatInfo_t);
+ mac_control->stats_mem = pci_alloc_consistent
+ (nic->pdev, size, &mac_control->stats_mem_phy);
+
+ if (!mac_control->stats_mem) {
+ /*
+ * In case of failure, free_shared_mem() is called, which
+ * should free any memory that was alloced till the
+ * failure happened.
+ */
+ return -ENOMEM;
+ }
+ mac_control->stats_mem_sz = size;
+
+ tmp_v_addr = mac_control->stats_mem;
+ mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
+ memset(tmp_v_addr, 0, size);
+
+ DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
+ (unsigned long long) tmp_p_addr);
+
+ return SUCCESS;
+}
+
+/**
+ * free_shared_mem - Free the allocated Memory
+ * @nic: Device private variable.
+ * Description: This function is to free all memory locations allocated by
+ * the init_shared_mem() function and return it to the kernel.
+ */
+
+static void free_shared_mem(struct s2io_nic *nic)
+{
+ int i, j, blk_cnt, size;
+ void *tmp_v_addr;
+ dma_addr_t tmp_p_addr;
+ mac_info_t *mac_control;
+ struct config_param *config;
+ int lst_size, lst_per_page;
+
+
+ if (!nic)
+ return;
+
+ mac_control = &nic->mac_control;
+ config = &nic->config;
+
+ lst_size = (sizeof(TxD_t) * config->max_txds);
+ lst_per_page = PAGE_SIZE / lst_size;
+
+ for (i = 0; i < config->tx_fifo_num; i++) {
+ int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
+ lst_per_page);
+ for (j = 0; j < page_num; j++) {
+ int mem_blks = (j * lst_per_page);
+ if (!nic->list_info[i][mem_blks].list_virt_addr)
+ break;
+ pci_free_consistent(nic->pdev, PAGE_SIZE,
+ nic->list_info[i][mem_blks].
+ list_virt_addr,
+ nic->list_info[i][mem_blks].
+ list_phy_addr);
+ }
+ kfree(nic->list_info[i]);
+ }
+
+#ifndef CONFIG_2BUFF_MODE
+ size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t));
+#else
+ size = SIZE_OF_BLOCK;
+#endif
+ for (i = 0; i < config->rx_ring_num; i++) {
+ blk_cnt = nic->block_count[i];
+ for (j = 0; j < blk_cnt; j++) {
+ tmp_v_addr = nic->rx_blocks[i][j].block_virt_addr;
+ tmp_p_addr = nic->rx_blocks[i][j].block_dma_addr;
+ if (tmp_v_addr == NULL)
+ break;
+ pci_free_consistent(nic->pdev, size,
+ tmp_v_addr, tmp_p_addr);
+ }
+ }
+
+#ifdef CONFIG_2BUFF_MODE
+ /* Freeing buffer storage addresses in 2BUFF mode. */
+ for (i = 0; i < config->rx_ring_num; i++) {
+ blk_cnt =
+ config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
+ if (!nic->ba[i])
+ goto end_free;
+ for (j = 0; j < blk_cnt; j++) {
+ int k = 0;
+ if (!nic->ba[i][j]) {
+ kfree(nic->ba[i]);
+ goto end_free;
+ }
+ while (k != MAX_RXDS_PER_BLOCK) {
+ buffAdd_t *ba = &nic->ba[i][j][k];
+ if (!ba || !ba->ba_0_org || !ba->ba_1_org)
+ {
+ kfree(nic->ba[i]);
+ kfree(nic->ba[i][j]);
+ if(ba->ba_0_org)
+ kfree(ba->ba_0_org);
+ if(ba->ba_1_org)
+ kfree(ba->ba_1_org);
+ goto end_free;
+ }
+ kfree(ba->ba_0_org);
+ kfree(ba->ba_1_org);
+ k++;
+ }
+ kfree(nic->ba[i][j]);
+ }
+ kfree(nic->ba[i]);
+ }
+end_free:
+#endif
+
+ if (mac_control->stats_mem) {
+ pci_free_consistent(nic->pdev,
+ mac_control->stats_mem_sz,
+ mac_control->stats_mem,
+ mac_control->stats_mem_phy);
+ }
+}
+
+/**
+ * init_nic - Initialization of hardware
+ * @nic: device peivate variable
+ * Description: The function sequentially configures every block
+ * of the H/W from their reset values.
+ * Return Value: SUCCESS on success and
+ * '-1' on failure (endian settings incorrect).
+ */
+
+static int init_nic(struct s2io_nic *nic)
+{
+ XENA_dev_config_t __iomem *bar0 = nic->bar0;
+ struct net_device *dev = nic->dev;
+ register u64 val64 = 0;
+ void __iomem *add;
+ u32 time;
+ int i, j;
+ mac_info_t *mac_control;
+ struct config_param *config;
+ int mdio_cnt = 0, dtx_cnt = 0;
+ unsigned long long mem_share;
+
+ mac_control = &nic->mac_control;
+ config = &nic->config;
+
+ /* Initialize swapper control register */
+ if (s2io_set_swapper(nic)) {
+ DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
+ return -1;
+ }
+
+ /* Remove XGXS from reset state */
+ val64 = 0;
+ writeq(val64, &bar0->sw_reset);
+ val64 = readq(&bar0->sw_reset);
+ msleep(500);
+
+ /* Enable Receiving broadcasts */
+ add = &bar0->mac_cfg;
+ val64 = readq(&bar0->mac_cfg);
+ val64 |= MAC_RMAC_BCAST_ENABLE;
+ writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+ writel((u32) val64, add);
+ writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+ writel((u32) (val64 >> 32), (add + 4));
+
+ /* Read registers in all blocks */
+ val64 = readq(&bar0->mac_int_mask);
+ val64 = readq(&bar0->mc_int_mask);
+ val64 = readq(&bar0->xgxs_int_mask);
+
+ /* Set MTU */
+ val64 = dev->mtu;
+ writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
+
+ /*
+ * Configuring the XAUI Interface of Xena.
+ * ***************************************
+ * To Configure the Xena's XAUI, one has to write a series
+ * of 64 bit values into two registers in a particular
+ * sequence. Hence a macro 'SWITCH_SIGN' has been defined
+ * which will be defined in the array of configuration values
+ * (default_dtx_cfg & default_mdio_cfg) at appropriate places
+ * to switch writing from one regsiter to another. We continue
+ * writing these values until we encounter the 'END_SIGN' macro.
+ * For example, After making a series of 21 writes into
+ * dtx_control register the 'SWITCH_SIGN' appears and hence we
+ * start writing into mdio_control until we encounter END_SIGN.
+ */
+ while (1) {
+ dtx_cfg:
+ while (default_dtx_cfg[dtx_cnt] != END_SIGN) {
+ if (default_dtx_cfg[dtx_cnt] == SWITCH_SIGN) {
+ dtx_cnt++;
+ goto mdio_cfg;
+ }
+ SPECIAL_REG_WRITE(default_dtx_cfg[dtx_cnt],
+ &bar0->dtx_control, UF);
+ val64 = readq(&bar0->dtx_control);
+ dtx_cnt++;
+ }
+ mdio_cfg:
+ while (default_mdio_cfg[mdio_cnt] != END_SIGN) {
+ if (default_mdio_cfg[mdio_cnt] == SWITCH_SIGN) {
+ mdio_cnt++;
+ goto dtx_cfg;
+ }
+ SPECIAL_REG_WRITE(default_mdio_cfg[mdio_cnt],
+ &bar0->mdio_control, UF);
+ val64 = readq(&bar0->mdio_control);
+ mdio_cnt++;
+ }
+ if ((default_dtx_cfg[dtx_cnt] == END_SIGN) &&
+ (default_mdio_cfg[mdio_cnt] == END_SIGN)) {
+ break;
+ } else {
+ goto dtx_cfg;
+ }
+ }
+
+ /* Tx DMA Initialization */
+ val64 = 0;
+ writeq(val64, &bar0->tx_fifo_partition_0);
+ writeq(val64, &bar0->tx_fifo_partition_1);
+ writeq(val64, &bar0->tx_fifo_partition_2);
+ writeq(val64, &bar0->tx_fifo_partition_3);
+
+
+ for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
+ val64 |=
+ vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
+ 13) | vBIT(config->tx_cfg[i].fifo_priority,
+ ((i * 32) + 5), 3);
+
+ if (i == (config->tx_fifo_num - 1)) {
+ if (i % 2 == 0)
+ i++;
+ }
+
+ switch (i) {
+ case 1:
+ writeq(val64, &bar0->tx_fifo_partition_0);
+ val64 = 0;
+ break;
+ case 3:
+ writeq(val64, &bar0->tx_fifo_partition_1);
+ val64 = 0;
+ break;
+ case 5:
+ writeq(val64, &bar0->tx_fifo_partition_2);
+ val64 = 0;
+ break;
+ case 7:
+ writeq(val64, &bar0->tx_fifo_partition_3);
+ break;
+ }
+ }
+
+ /* Enable Tx FIFO partition 0. */
+ val64 = readq(&bar0->tx_fifo_partition_0);
+ val64 |= BIT(0); /* To enable the FIFO partition. */
+ writeq(val64, &bar0->tx_fifo_partition_0);
+
+ val64 = readq(&bar0->tx_fifo_partition_0);
+ DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
+ &bar0->tx_fifo_partition_0, (unsigned long long) val64);
+
+ /*
+ * Initialization of Tx_PA_CONFIG register to ignore packet
+ * integrity checking.
+ */
+ val64 = readq(&bar0->tx_pa_cfg);
+ val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
+ TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
+ writeq(val64, &bar0->tx_pa_cfg);
+
+ /* Rx DMA intialization. */
+ val64 = 0;
+ for (i = 0; i < config->rx_ring_num; i++) {
+ val64 |=
+ vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
+ 3);
+ }
+ writeq(val64, &bar0->rx_queue_priority);
+
+ /*
+ * Allocating equal share of memory to all the
+ * configured Rings.
+ */
+ val64 = 0;
+ for (i = 0; i < config->rx_ring_num; i++) {
+ switch (i) {
+ case 0:
+ mem_share = (64 / config->rx_ring_num +
+ 64 % config->rx_ring_num);
+ val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
+ continue;
+ case 1:
+ mem_share = (64 / config->rx_ring_num);
+ val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
+ continue;
+ case 2:
+ mem_share = (64 / config->rx_ring_num);
+ val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
+ continue;
+ case 3:
+ mem_share = (64 / config->rx_ring_num);
+ val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
+ continue;
+ case 4:
+ mem_share = (64 / config->rx_ring_num);
+ val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
+ continue;
+ case 5:
+ mem_share = (64 / config->rx_ring_num);
+ val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
+ continue;
+ case 6:
+ mem_share = (64 / config->rx_ring_num);
+ val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
+ continue;
+ case 7:
+ mem_share = (64 / config->rx_ring_num);
+ val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
+ continue;
+ }
+ }
+ writeq(val64, &bar0->rx_queue_cfg);
+
+ /*
+ * Initializing the Tx round robin registers to 0.
+ * Filling Tx and Rx round robin registers as per the
+ * number of FIFOs and Rings is still TODO.
+ */
+ writeq(0, &bar0->tx_w_round_robin_0);
+ writeq(0, &bar0->tx_w_round_robin_1);
+ writeq(0, &bar0->tx_w_round_robin_2);
+ writeq(0, &bar0->tx_w_round_robin_3);
+ writeq(0, &bar0->tx_w_round_robin_4);
+
+ /*
+ * TODO
+ * Disable Rx steering. Hard coding all packets be steered to
+ * Queue 0 for now.
+ */
+ val64 = 0x8080808080808080ULL;
+ writeq(val64, &bar0->rts_qos_steering);
+
+ /* UDP Fix */
+ val64 = 0;
+ for (i = 1; i < 8; i++)
+ writeq(val64, &bar0->rts_frm_len_n[i]);
+
+ /* Set rts_frm_len register for fifo 0 */
+ writeq(MAC_RTS_FRM_LEN_SET(dev->mtu + 22),
+ &bar0->rts_frm_len_n[0]);
+
+ /* Enable statistics */
+ writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
+ val64 = SET_UPDT_PERIOD(Stats_refresh_time) |
+ STAT_CFG_STAT_RO | STAT_CFG_STAT_EN;
+ writeq(val64, &bar0->stat_cfg);
+
+ /*
+ * Initializing the sampling rate for the device to calculate the
+ * bandwidth utilization.
+ */
+ val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
+ MAC_RX_LINK_UTIL_VAL(rmac_util_period);
+ writeq(val64, &bar0->mac_link_util);
+
+
+ /*
+ * Initializing the Transmit and Receive Traffic Interrupt
+ * Scheme.
+ */
+ /* TTI Initialization. Default Tx timer gets us about
+ * 250 interrupts per sec. Continuous interrupts are enabled
+ * by default.
+ */
+ val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078) |
+ TTI_DATA1_MEM_TX_URNG_A(0xA) |
+ TTI_DATA1_MEM_TX_URNG_B(0x10) |
+ TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN |
+ TTI_DATA1_MEM_TX_TIMER_CI_EN;
+ writeq(val64, &bar0->tti_data1_mem);
+
+ val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
+ TTI_DATA2_MEM_TX_UFC_B(0x20) |
+ TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
+ writeq(val64, &bar0->tti_data2_mem);
+
+ val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
+ writeq(val64, &bar0->tti_command_mem);
+
+ /*
+ * Once the operation completes, the Strobe bit of the command
+ * register will be reset. We poll for this particular condition
+ * We wait for a maximum of 500ms for the operation to complete,
+ * if it's not complete by then we return error.
+ */
+ time = 0;
+ while (TRUE) {
+ val64 = readq(&bar0->tti_command_mem);
+ if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
+ break;
+ }
+ if (time > 10) {
+ DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
+ dev->name);
+ return -1;
+ }
+ msleep(50);
+ time++;
+ }
+
+ /* RTI Initialization */
+ val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF) |
+ RTI_DATA1_MEM_RX_URNG_A(0xA) |
+ RTI_DATA1_MEM_RX_URNG_B(0x10) |
+ RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
+
+ writeq(val64, &bar0->rti_data1_mem);
+
+ val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
+ RTI_DATA2_MEM_RX_UFC_B(0x2) |
+ RTI_DATA2_MEM_RX_UFC_C(0x40) | RTI_DATA2_MEM_RX_UFC_D(0x80);
+ writeq(val64, &bar0->rti_data2_mem);
+
+ val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD;
+ writeq(val64, &bar0->rti_command_mem);
+
+ /*
+ * Once the operation completes, the Strobe bit of the command
+ * register will be reset. We poll for this particular condition
+ * We wait for a maximum of 500ms for the operation to complete,
+ * if it's not complete by then we return error.
+ */
+ time = 0;
+ while (TRUE) {
+ val64 = readq(&bar0->rti_command_mem);
+ if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
+ break;
+ }
+ if (time > 10) {
+ DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
+ dev->name);
+ return -1;
+ }
+ time++;
+ msleep(50);
+ }
+
+ /*
+ * Initializing proper values as Pause threshold into all
+ * the 8 Queues on Rx side.
+ */
+ writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
+ writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
+
+ /* Disable RMAC PAD STRIPPING */
+ add = &bar0->mac_cfg;
+ val64 = readq(&bar0->mac_cfg);
+ val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
+ writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+ writel((u32) (val64), add);
+ writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+ writel((u32) (val64 >> 32), (add + 4));
+ val64 = readq(&bar0->mac_cfg);
+
+ /*
+ * Set the time value to be inserted in the pause frame
+ * generated by xena.
+ */
+ val64 = readq(&bar0->rmac_pause_cfg);
+ val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
+ val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
+ writeq(val64, &bar0->rmac_pause_cfg);
+
+ /*
+ * Set the Threshold Limit for Generating the pause frame
+ * If the amount of data in any Queue exceeds ratio of
+ * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
+ * pause frame is generated
+ */
+ val64 = 0;
+ for (i = 0; i < 4; i++) {
+ val64 |=
+ (((u64) 0xFF00 | nic->mac_control.
+ mc_pause_threshold_q0q3)
+ << (i * 2 * 8));
+ }
+ writeq(val64, &bar0->mc_pause_thresh_q0q3);
+
+ val64 = 0;
+ for (i = 0; i < 4; i++) {
+ val64 |=
+ (((u64) 0xFF00 | nic->mac_control.
+ mc_pause_threshold_q4q7)
+ << (i * 2 * 8));
+ }
+ writeq(val64, &bar0->mc_pause_thresh_q4q7);
+
+ /*
+ * TxDMA will stop Read request if the number of read split has
+ * exceeded the limit pointed by shared_splits
+ */
+ val64 = readq(&bar0->pic_control);
+ val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
+ writeq(val64, &bar0->pic_control);
+
+ return SUCCESS;
+}
+
+/**
+ * en_dis_able_nic_intrs - Enable or Disable the interrupts
+ * @nic: device private variable,
+ * @mask: A mask indicating which Intr block must be modified and,
+ * @flag: A flag indicating whether to enable or disable the Intrs.
+ * Description: This function will either disable or enable the interrupts
+ * depending on the flag argument. The mask argument can be used to
+ * enable/disable any Intr block.
+ * Return Value: NONE.
+ */
+
+static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
+{
+ XENA_dev_config_t __iomem *bar0 = nic->bar0;
+ register u64 val64 = 0, temp64 = 0;
+
+ /* Top level interrupt classification */
+ /* PIC Interrupts */
+ if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
+ /* Enable PIC Intrs in the general intr mask register */
+ val64 = TXPIC_INT_M | PIC_RX_INT_M;
+ if (flag == ENABLE_INTRS) {
+ temp64 = readq(&bar0->general_int_mask);
+ temp64 &= ~((u64) val64);
+ writeq(temp64, &bar0->general_int_mask);
+ /*
+ * Disabled all PCIX, Flash, MDIO, IIC and GPIO
+ * interrupts for now.
+ * TODO
+ */
+ writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
+ /*
+ * No MSI Support is available presently, so TTI and
+ * RTI interrupts are also disabled.
+ */
+ } else if (flag == DISABLE_INTRS) {
+ /*
+ * Disable PIC Intrs in the general
+ * intr mask register
+ */
+ writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
+ temp64 = readq(&bar0->general_int_mask);
+ val64 |= temp64;
+ writeq(val64, &bar0->general_int_mask);
+ }
+ }
+
+ /* DMA Interrupts */
+ /* Enabling/Disabling Tx DMA interrupts */
+ if (mask & TX_DMA_INTR) {
+ /* Enable TxDMA Intrs in the general intr mask register */
+ val64 = TXDMA_INT_M;
+ if (flag == ENABLE_INTRS) {
+ temp64 = readq(&bar0->general_int_mask);
+ temp64 &= ~((u64) val64);
+ writeq(temp64, &bar0->general_int_mask);
+ /*
+ * Keep all interrupts other than PFC interrupt
+ * and PCC interrupt disabled in DMA level.
+ */
+ val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
+ TXDMA_PCC_INT_M);
+ writeq(val64, &bar0->txdma_int_mask);
+ /*
+ * Enable only the MISC error 1 interrupt in PFC block
+ */
+ val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
+ writeq(val64, &bar0->pfc_err_mask);
+ /*
+ * Enable only the FB_ECC error interrupt in PCC block
+ */
+ val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
+ writeq(val64, &bar0->pcc_err_mask);
+ } else if (flag == DISABLE_INTRS) {
+ /*
+ * Disable TxDMA Intrs in the general intr mask
+ * register
+ */
+ writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
+ writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
+ temp64 = readq(&bar0->general_int_mask);
+ val64 |= temp64;
+ writeq(val64, &bar0->general_int_mask);
+ }
+ }
+
+ /* Enabling/Disabling Rx DMA interrupts */
+ if (mask & RX_DMA_INTR) {
+ /* Enable RxDMA Intrs in the general intr mask register */
+ val64 = RXDMA_INT_M;
+ if (flag == ENABLE_INTRS) {
+ temp64 = readq(&bar0->general_int_mask);
+ temp64 &= ~((u64) val64);
+ writeq(temp64, &bar0->general_int_mask);
+ /*
+ * All RxDMA block interrupts are disabled for now
+ * TODO
+ */
+ writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
+ } else if (flag == DISABLE_INTRS) {
+ /*
+ * Disable RxDMA Intrs in the general intr mask
+ * register
+ */
+ writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
+ temp64 = readq(&bar0->general_int_mask);
+ val64 |= temp64;
+ writeq(val64, &bar0->general_int_mask);
+ }
+ }
+
+ /* MAC Interrupts */
+ /* Enabling/Disabling MAC interrupts */
+ if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
+ val64 = TXMAC_INT_M | RXMAC_INT_M;
+ if (flag == ENABLE_INTRS) {
+ temp64 = readq(&bar0->general_int_mask);
+ temp64 &= ~((u64) val64);
+ writeq(temp64, &bar0->general_int_mask);
+ /*
+ * All MAC block error interrupts are disabled for now
+ * except the link status change interrupt.
+ * TODO
+ */
+ val64 = MAC_INT_STATUS_RMAC_INT;
+ temp64 = readq(&bar0->mac_int_mask);
+ temp64 &= ~((u64) val64);
+ writeq(temp64, &bar0->mac_int_mask);
+
+ val64 = readq(&bar0->mac_rmac_err_mask);
+ val64 &= ~((u64) RMAC_LINK_STATE_CHANGE_INT);
+ writeq(val64, &bar0->mac_rmac_err_mask);
+ } else if (flag == DISABLE_INTRS) {
+ /*
+ * Disable MAC Intrs in the general intr mask register
+ */
+ writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
+ writeq(DISABLE_ALL_INTRS,
+ &bar0->mac_rmac_err_mask);
+
+ temp64 = readq(&bar0->general_int_mask);
+ val64 |= temp64;
+ writeq(val64, &bar0->general_int_mask);
+ }
+ }
+
+ /* XGXS Interrupts */
+ if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
+ val64 = TXXGXS_INT_M | RXXGXS_INT_M;
+ if (flag == ENABLE_INTRS) {
+ temp64 = readq(&bar0->general_int_mask);
+ temp64 &= ~((u64) val64);
+ writeq(temp64, &bar0->general_int_mask);
+ /*
+ * All XGXS block error interrupts are disabled for now
+ * TODO
+ */
+ writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
+ } else if (flag == DISABLE_INTRS) {
+ /*
+ * Disable MC Intrs in the general intr mask register
+ */
+ writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
+ temp64 = readq(&bar0->general_int_mask);
+ val64 |= temp64;
+ writeq(val64, &bar0->general_int_mask);
+ }
+ }
+
+ /* Memory Controller(MC) interrupts */
+ if (mask & MC_INTR) {
+ val64 = MC_INT_M;
+ if (flag == ENABLE_INTRS) {
+ temp64 = readq(&bar0->general_int_mask);
+ temp64 &= ~((u64) val64);
+ writeq(temp64, &bar0->general_int_mask);
+ /*
+ * All MC block error interrupts are disabled for now
+ * TODO
+ */
+ writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
+ } else if (flag == DISABLE_INTRS) {
+ /*
+ * Disable MC Intrs in the general intr mask register
+ */
+ writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
+ temp64 = readq(&bar0->general_int_mask);
+ val64 |= temp64;
+ writeq(val64, &bar0->general_int_mask);
+ }
+ }
+
+
+ /* Tx traffic interrupts */
+ if (mask & TX_TRAFFIC_INTR) {
+ val64 = TXTRAFFIC_INT_M;
+ if (flag == ENABLE_INTRS) {
+ temp64 = readq(&bar0->general_int_mask);
+ temp64 &= ~((u64) val64);
+ writeq(temp64, &bar0->general_int_mask);
+ /*
+ * Enable all the Tx side interrupts
+ * writing 0 Enables all 64 TX interrupt levels
+ */
+ writeq(0x0, &bar0->tx_traffic_mask);
+ } else if (flag == DISABLE_INTRS) {
+ /*
+ * Disable Tx Traffic Intrs in the general intr mask
+ * register.
+ */
+ writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
+ temp64 = readq(&bar0->general_int_mask);
+ val64 |= temp64;
+ writeq(val64, &bar0->general_int_mask);
+ }
+ }
+
+ /* Rx traffic interrupts */
+ if (mask & RX_TRAFFIC_INTR) {
+ val64 = RXTRAFFIC_INT_M;
+ if (flag == ENABLE_INTRS) {
+ temp64 = readq(&bar0->general_int_mask);
+ temp64 &= ~((u64) val64);
+ writeq(temp64, &bar0->general_int_mask);
+ /* writing 0 Enables all 8 RX interrupt levels */
+ writeq(0x0, &bar0->rx_traffic_mask);
+ } else if (flag == DISABLE_INTRS) {
+ /*
+ * Disable Rx Traffic Intrs in the general intr mask
+ * register.
+ */
+ writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
+ temp64 = readq(&bar0->general_int_mask);
+ val64 |= temp64;
+ writeq(val64, &bar0->general_int_mask);
+ }
+ }
+}
+
+/**
+ * verify_xena_quiescence - Checks whether the H/W is ready
+ * @val64 : Value read from adapter status register.
+ * @flag : indicates if the adapter enable bit was ever written once
+ * before.
+ * Description: Returns whether the H/W is ready to go or not. Depending
+ * on whether adapter enable bit was written or not the comparison
+ * differs and the calling function passes the input argument flag to
+ * indicate this.
+ * Return: 1 If xena is quiescence
+ * 0 If Xena is not quiescence
+ */
+
+static int verify_xena_quiescence(u64 val64, int flag)
+{
+ int ret = 0;
+ u64 tmp64 = ~((u64) val64);
+
+ if (!
+ (tmp64 &
+ (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
+ ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
+ ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
+ ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
+ ADAPTER_STATUS_P_PLL_LOCK))) {
+ if (flag == FALSE) {
+ if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
+ ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
+ ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
+
+ ret = 1;
+
+ }
+ } else {
+ if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
+ ADAPTER_STATUS_RMAC_PCC_IDLE) &&
+ (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
+ ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
+ ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
+
+ ret = 1;
+
+ }
+ }
+ }
+
+ return ret;
+}
+
+/**
+ * fix_mac_address - Fix for Mac addr problem on Alpha platforms
+ * @sp: Pointer to device specifc structure
+ * Description :
+ * New procedure to clear mac address reading problems on Alpha platforms
+ *
+ */
+
+static void fix_mac_address(nic_t * sp)
+{
+ XENA_dev_config_t __iomem *bar0 = sp->bar0;
+ u64 val64;
+ int i = 0;
+
+ while (fix_mac[i] != END_SIGN) {
+ writeq(fix_mac[i++], &bar0->gpio_control);
+ val64 = readq(&bar0->gpio_control);
+ }
+}
+
+/**
+ * start_nic - Turns the device on
+ * @nic : device private variable.
+ * Description:
+ * This function actually turns the device on. Before this function is
+ * called,all Registers are configured from their reset states
+ * and shared memory is allocated but the NIC is still quiescent. On
+ * calling this function, the device interrupts are cleared and the NIC is
+ * literally switched on by writing into the adapter control register.
+ * Return Value:
+ * SUCCESS on success and -1 on failure.
+ */
+
+static int start_nic(struct s2io_nic *nic)
+{
+ XENA_dev_config_t __iomem *bar0 = nic->bar0;
+ struct net_device *dev = nic->dev;
+ register u64 val64 = 0;
+ u16 interruptible, i;
+ u16 subid;
+ mac_info_t *mac_control;
+ struct config_param *config;
+
+ mac_control = &nic->mac_control;
+ config = &nic->config;
+
+ /* PRC Initialization and configuration */
+ for (i = 0; i < config->rx_ring_num; i++) {
+ writeq((u64) nic->rx_blocks[i][0].block_dma_addr,
+ &bar0->prc_rxd0_n[i]);
+
+ val64 = readq(&bar0->prc_ctrl_n[i]);
+#ifndef CONFIG_2BUFF_MODE
+ val64 |= PRC_CTRL_RC_ENABLED;
+#else
+ val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
+#endif
+ writeq(val64, &bar0->prc_ctrl_n[i]);
+ }
+
+#ifdef CONFIG_2BUFF_MODE
+ /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
+ val64 = readq(&bar0->rx_pa_cfg);
+ val64 |= RX_PA_CFG_IGNORE_L2_ERR;
+ writeq(val64, &bar0->rx_pa_cfg);
+#endif
+
+ /*
+ * Enabling MC-RLDRAM. After enabling the device, we timeout
+ * for around 100ms, which is approximately the time required
+ * for the device to be ready for operation.
+ */
+ val64 = readq(&bar0->mc_rldram_mrs);
+ val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
+ SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
+ val64 = readq(&bar0->mc_rldram_mrs);
+
+ msleep(100); /* Delay by around 100 ms. */
+
+ /* Enabling ECC Protection. */
+ val64 = readq(&bar0->adapter_control);
+ val64 &= ~ADAPTER_ECC_EN;
+ writeq(val64, &bar0->adapter_control);
+
+ /*
+ * Clearing any possible Link state change interrupts that
+ * could have popped up just before Enabling the card.
+ */
+ val64 = readq(&bar0->mac_rmac_err_reg);
+ if (val64)
+ writeq(val64, &bar0->mac_rmac_err_reg);
+
+ /*
+ * Verify if the device is ready to be enabled, if so enable
+ * it.
+ */
+ val64 = readq(&bar0->adapter_status);
+ if (!verify_xena_quiescence(val64, nic->device_enabled_once)) {
+ DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
+ DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
+ (unsigned long long) val64);
+ return FAILURE;
+ }
+
+ /* Enable select interrupts */
+ interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | TX_MAC_INTR |
+ RX_MAC_INTR;
+ en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS);
+
+ /*
+ * With some switches, link might be already up at this point.
+ * Because of this weird behavior, when we enable laser,
+ * we may not get link. We need to handle this. We cannot
+ * figure out which switch is misbehaving. So we are forced to
+ * make a global change.
+ */
+
+ /* Enabling Laser. */
+ val64 = readq(&bar0->adapter_control);
+ val64 |= ADAPTER_EOI_TX_ON;
+ writeq(val64, &bar0->adapter_control);
+
+ /* SXE-002: Initialize link and activity LED */
+ subid = nic->pdev->subsystem_device;
+ if ((subid & 0xFF) >= 0x07) {
+ val64 = readq(&bar0->gpio_control);
+ val64 |= 0x0000800000000000ULL;
+ writeq(val64, &bar0->gpio_control);
+ val64 = 0x0411040400000000ULL;
+ writeq(val64, (void __iomem *) bar0 + 0x2700);
+ }
+
+ /*
+ * Don't see link state interrupts on certain switches, so
+ * directly scheduling a link state task from here.
+ */
+ schedule_work(&nic->set_link_task);
+
+ /*
+ * Here we are performing soft reset on XGXS to
+ * force link down. Since link is already up, we will get
+ * link state change interrupt after this reset
+ */
+ SPECIAL_REG_WRITE(0x80010515001E0000ULL, &bar0->dtx_control, UF);
+ val64 = readq(&bar0->dtx_control);
+ udelay(50);
+ SPECIAL_REG_WRITE(0x80010515001E00E0ULL, &bar0->dtx_control, UF);
+ val64 = readq(&bar0->dtx_control);
+ udelay(50);
+ SPECIAL_REG_WRITE(0x80070515001F00E4ULL, &bar0->dtx_control, UF);
+ val64 = readq(&bar0->dtx_control);
+ udelay(50);
+
+ return SUCCESS;
+}
+
+/**
+ * free_tx_buffers - Free all queued Tx buffers
+ * @nic : device private variable.
+ * Description:
+ * Free all queued Tx buffers.
+ * Return Value: void
+*/
+
+static void free_tx_buffers(struct s2io_nic *nic)
+{
+ struct net_device *dev = nic->dev;
+ struct sk_buff *skb;
+ TxD_t *txdp;
+ int i, j;
+ mac_info_t *mac_control;
+ struct config_param *config;
+ int cnt = 0;
+
+ mac_control = &nic->mac_control;
+ config = &nic->config;
+
+ for (i = 0; i < config->tx_fifo_num; i++) {
+ for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
+ txdp = (TxD_t *) nic->list_info[i][j].
+ list_virt_addr;
+ skb =
+ (struct sk_buff *) ((unsigned long) txdp->
+ Host_Control);
+ if (skb == NULL) {
+ memset(txdp, 0, sizeof(TxD_t));
+ continue;
+ }
+ dev_kfree_skb(skb);
+ memset(txdp, 0, sizeof(TxD_t));
+ cnt++;
+ }
+ DBG_PRINT(INTR_DBG,
+ "%s:forcibly freeing %d skbs on FIFO%d\n",
+ dev->name, cnt, i);
+ mac_control->tx_curr_get_info[i].offset = 0;
+ mac_control->tx_curr_put_info[i].offset = 0;
+ }
+}
+
+/**
+ * stop_nic - To stop the nic
+ * @nic ; device private variable.
+ * Description:
+ * This function does exactly the opposite of what the start_nic()
+ * function does. This function is called to stop the device.
+ * Return Value:
+ * void.
+ */
+
+static void stop_nic(struct s2io_nic *nic)
+{
+ XENA_dev_config_t __iomem *bar0 = nic->bar0;
+ register u64 val64 = 0;
+ u16 interruptible, i;
+ mac_info_t *mac_control;
+ struct config_param *config;
+
+ mac_control = &nic->mac_control;
+ config = &nic->config;
+
+ /* Disable all interrupts */
+ interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | TX_MAC_INTR |
+ RX_MAC_INTR;
+ en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
+
+ /* Disable PRCs */
+ for (i = 0; i < config->rx_ring_num; i++) {
+ val64 = readq(&bar0->prc_ctrl_n[i]);
+ val64 &= ~((u64) PRC_CTRL_RC_ENABLED);
+ writeq(val64, &bar0->prc_ctrl_n[i]);
+ }
+}
+
+/**
+ * fill_rx_buffers - Allocates the Rx side skbs
+ * @nic: device private variable
+ * @ring_no: ring number
+ * Description:
+ * The function allocates Rx side skbs and puts the physical
+ * address of these buffers into the RxD buffer pointers, so that the NIC
+ * can DMA the received frame into these locations.
+ * The NIC supports 3 receive modes, viz
+ * 1. single buffer,
+ * 2. three buffer and
+ * 3. Five buffer modes.
+ * Each mode defines how many fragments the received frame will be split
+ * up into by the NIC. The frame is split into L3 header, L4 Header,
+ * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
+ * is split into 3 fragments. As of now only single buffer mode is
+ * supported.
+ * Return Value:
+ * SUCCESS on success or an appropriate -ve value on failure.
+ */
+
+static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
+{
+ struct net_device *dev = nic->dev;
+ struct sk_buff *skb;
+ RxD_t *rxdp;
+ int off, off1, size, block_no, block_no1;
+ int offset, offset1;
+ u32 alloc_tab = 0;
+ u32 alloc_cnt = nic->pkt_cnt[ring_no] -
+ atomic_read(&nic->rx_bufs_left[ring_no]);
+ mac_info_t *mac_control;
+ struct config_param *config;
+#ifdef CONFIG_2BUFF_MODE
+ RxD_t *rxdpnext;
+ int nextblk;
+ unsigned long tmp;
+ buffAdd_t *ba;
+ dma_addr_t rxdpphys;
+#endif
+#ifndef CONFIG_S2IO_NAPI
+ unsigned long flags;
+#endif
+
+ mac_control = &nic->mac_control;
+ config = &nic->config;
+
+ size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
+ HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
+
+ while (alloc_tab < alloc_cnt) {
+ block_no = mac_control->rx_curr_put_info[ring_no].
+ block_index;
+ block_no1 = mac_control->rx_curr_get_info[ring_no].
+ block_index;
+ off = mac_control->rx_curr_put_info[ring_no].offset;
+ off1 = mac_control->rx_curr_get_info[ring_no].offset;
+#ifndef CONFIG_2BUFF_MODE
+ offset = block_no * (MAX_RXDS_PER_BLOCK + 1) + off;
+ offset1 = block_no1 * (MAX_RXDS_PER_BLOCK + 1) + off1;
+#else
+ offset = block_no * (MAX_RXDS_PER_BLOCK) + off;
+ offset1 = block_no1 * (MAX_RXDS_PER_BLOCK) + off1;
+#endif
+
+ rxdp = nic->rx_blocks[ring_no][block_no].
+ block_virt_addr + off;
+ if ((offset == offset1) && (rxdp->Host_Control)) {
+ DBG_PRINT(INTR_DBG, "%s: Get and Put", dev->name);
+ DBG_PRINT(INTR_DBG, " info equated\n");
+ goto end;
+ }
+#ifndef CONFIG_2BUFF_MODE
+ if (rxdp->Control_1 == END_OF_BLOCK) {
+ mac_control->rx_curr_put_info[ring_no].
+ block_index++;
+ mac_control->rx_curr_put_info[ring_no].
+ block_index %= nic->block_count[ring_no];
+ block_no = mac_control->rx_curr_put_info
+ [ring_no].block_index;
+ off++;
+ off %= (MAX_RXDS_PER_BLOCK + 1);
+ mac_control->rx_curr_put_info[ring_no].offset =
+ off;
+ rxdp = (RxD_t *) ((unsigned long) rxdp->Control_2);
+ DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
+ dev->name, rxdp);
+ }
+#ifndef CONFIG_S2IO_NAPI
+ spin_lock_irqsave(&nic->put_lock, flags);
+ nic->put_pos[ring_no] =
+ (block_no * (MAX_RXDS_PER_BLOCK + 1)) + off;
+ spin_unlock_irqrestore(&nic->put_lock, flags);
+#endif
+#else
+ if (rxdp->Host_Control == END_OF_BLOCK) {
+ mac_control->rx_curr_put_info[ring_no].
+ block_index++;
+ mac_control->rx_curr_put_info[ring_no].
+ block_index %= nic->block_count[ring_no];
+ block_no = mac_control->rx_curr_put_info
+ [ring_no].block_index;
+ off = 0;
+ DBG_PRINT(INTR_DBG, "%s: block%d at: 0x%llx\n",
+ dev->name, block_no,
+ (unsigned long long) rxdp->Control_1);
+ mac_control->rx_curr_put_info[ring_no].offset =
+ off;
+ rxdp = nic->rx_blocks[ring_no][block_no].
+ block_virt_addr;
+ }
+#ifndef CONFIG_S2IO_NAPI
+ spin_lock_irqsave(&nic->put_lock, flags);
+ nic->put_pos[ring_no] = (block_no *
+ (MAX_RXDS_PER_BLOCK + 1)) + off;
+ spin_unlock_irqrestore(&nic->put_lock, flags);
+#endif
+#endif
+
+#ifndef CONFIG_2BUFF_MODE
+ if (rxdp->Control_1 & RXD_OWN_XENA)
+#else
+ if (rxdp->Control_2 & BIT(0))
+#endif
+ {
+ mac_control->rx_curr_put_info[ring_no].
+ offset = off;
+ goto end;
+ }
+#ifdef CONFIG_2BUFF_MODE
+ /*
+ * RxDs Spanning cache lines will be replenished only
+ * if the succeeding RxD is also owned by Host. It
+ * will always be the ((8*i)+3) and ((8*i)+6)
+ * descriptors for the 48 byte descriptor. The offending
+ * decsriptor is of-course the 3rd descriptor.
+ */
+ rxdpphys = nic->rx_blocks[ring_no][block_no].
+ block_dma_addr + (off * sizeof(RxD_t));
+ if (((u64) (rxdpphys)) % 128 > 80) {
+ rxdpnext = nic->rx_blocks[ring_no][block_no].
+ block_virt_addr + (off + 1);
+ if (rxdpnext->Host_Control == END_OF_BLOCK) {
+ nextblk = (block_no + 1) %
+ (nic->block_count[ring_no]);
+ rxdpnext = nic->rx_blocks[ring_no]
+ [nextblk].block_virt_addr;
+ }
+ if (rxdpnext->Control_2 & BIT(0))
+ goto end;
+ }
+#endif
+
+#ifndef CONFIG_2BUFF_MODE
+ skb = dev_alloc_skb(size + NET_IP_ALIGN);
+#else
+ skb = dev_alloc_skb(dev->mtu + ALIGN_SIZE + BUF0_LEN + 4);
+#endif
+ if (!skb) {
+ DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
+ DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
+ return -ENOMEM;
+ }
+#ifndef CONFIG_2BUFF_MODE
+ skb_reserve(skb, NET_IP_ALIGN);
+ memset(rxdp, 0, sizeof(RxD_t));
+ rxdp->Buffer0_ptr = pci_map_single
+ (nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE);
+ rxdp->Control_2 &= (~MASK_BUFFER0_SIZE);
+ rxdp->Control_2 |= SET_BUFFER0_SIZE(size);
+ rxdp->Host_Control = (unsigned long) (skb);
+ rxdp->Control_1 |= RXD_OWN_XENA;
+ off++;
+ off %= (MAX_RXDS_PER_BLOCK + 1);
+ mac_control->rx_curr_put_info[ring_no].offset = off;
+#else
+ ba = &nic->ba[ring_no][block_no][off];
+ skb_reserve(skb, BUF0_LEN);
+ tmp = (unsigned long) skb->data;
+ tmp += ALIGN_SIZE;
+ tmp &= ~ALIGN_SIZE;
+ skb->data = (void *) tmp;
+ skb->tail = (void *) tmp;
+
+ memset(rxdp, 0, sizeof(RxD_t));
+ rxdp->Buffer2_ptr = pci_map_single
+ (nic->pdev, skb->data, dev->mtu + BUF0_LEN + 4,
+ PCI_DMA_FROMDEVICE);
+ rxdp->Buffer0_ptr =
+ pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
+ PCI_DMA_FROMDEVICE);
+ rxdp->Buffer1_ptr =
+ pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
+ PCI_DMA_FROMDEVICE);
+
+ rxdp->Control_2 = SET_BUFFER2_SIZE(dev->mtu + 4);
+ rxdp->Control_2 |= SET_BUFFER0_SIZE(BUF0_LEN);
+ rxdp->Control_2 |= SET_BUFFER1_SIZE(1); /* dummy. */
+ rxdp->Control_2 |= BIT(0); /* Set Buffer_Empty bit. */
+ rxdp->Host_Control = (u64) ((unsigned long) (skb));
+ rxdp->Control_1 |= RXD_OWN_XENA;
+ off++;
+ mac_control->rx_curr_put_info[ring_no].offset = off;
+#endif
+ atomic_inc(&nic->rx_bufs_left[ring_no]);
+ alloc_tab++;
+ }
+
+ end:
+ return SUCCESS;
+}
+
+/**
+ * free_rx_buffers - Frees all Rx buffers
+ * @sp: device private variable.
+ * Description:
+ * This function will free all Rx buffers allocated by host.
+ * Return Value:
+ * NONE.
+ */
+
+static void free_rx_buffers(struct s2io_nic *sp)
+{
+ struct net_device *dev = sp->dev;
+ int i, j, blk = 0, off, buf_cnt = 0;
+ RxD_t *rxdp;
+ struct sk_buff *skb;
+ mac_info_t *mac_control;
+ struct config_param *config;
+#ifdef CONFIG_2BUFF_MODE
+ buffAdd_t *ba;
+#endif
+
+ mac_control = &sp->mac_control;
+ config = &sp->config;
+
+ for (i = 0; i < config->rx_ring_num; i++) {
+ for (j = 0, blk = 0; j < config->rx_cfg[i].num_rxd; j++) {
+ off = j % (MAX_RXDS_PER_BLOCK + 1);
+ rxdp = sp->rx_blocks[i][blk].block_virt_addr + off;
+
+#ifndef CONFIG_2BUFF_MODE
+ if (rxdp->Control_1 == END_OF_BLOCK) {
+ rxdp =
+ (RxD_t *) ((unsigned long) rxdp->
+ Control_2);
+ j++;
+ blk++;
+ }
+#else
+ if (rxdp->Host_Control == END_OF_BLOCK) {
+ blk++;
+ continue;
+ }
+#endif
+
+ if (!(rxdp->Control_1 & RXD_OWN_XENA)) {
+ memset(rxdp, 0, sizeof(RxD_t));
+ continue;
+ }
+
+ skb =
+ (struct sk_buff *) ((unsigned long) rxdp->
+ Host_Control);
+ if (skb) {
+#ifndef CONFIG_2BUFF_MODE
+ pci_unmap_single(sp->pdev, (dma_addr_t)
+ rxdp->Buffer0_ptr,
+ dev->mtu +
+ HEADER_ETHERNET_II_802_3_SIZE
+ + HEADER_802_2_SIZE +
+ HEADER_SNAP_SIZE,
+ PCI_DMA_FROMDEVICE);
+#else
+ ba = &sp->ba[i][blk][off];
+ pci_unmap_single(sp->pdev, (dma_addr_t)
+ rxdp->Buffer0_ptr,
+ BUF0_LEN,
+ PCI_DMA_FROMDEVICE);
+ pci_unmap_single(sp->pdev, (dma_addr_t)
+ rxdp->Buffer1_ptr,
+ BUF1_LEN,
+ PCI_DMA_FROMDEVICE);
+ pci_unmap_single(sp->pdev, (dma_addr_t)
+ rxdp->Buffer2_ptr,
+ dev->mtu + BUF0_LEN + 4,
+ PCI_DMA_FROMDEVICE);
+#endif
+ dev_kfree_skb(skb);
+ atomic_dec(&sp->rx_bufs_left[i]);
+ buf_cnt++;
+ }
+ memset(rxdp, 0, sizeof(RxD_t));
+ }
+ mac_control->rx_curr_put_info[i].block_index = 0;
+ mac_control->rx_curr_get_info[i].block_index = 0;
+ mac_control->rx_curr_put_info[i].offset = 0;
+ mac_control->rx_curr_get_info[i].offset = 0;
+ atomic_set(&sp->rx_bufs_left[i], 0);
+ DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
+ dev->name, buf_cnt, i);
+ }
+}
+
+/**
+ * s2io_poll - Rx interrupt handler for NAPI support
+ * @dev : pointer to the device structure.
+ * @budget : The number of packets that were budgeted to be processed
+ * during one pass through the 'Poll" function.
+ * Description:
+ * Comes into picture only if NAPI support has been incorporated. It does
+ * the same thing that rx_intr_handler does, but not in a interrupt context
+ * also It will process only a given number of packets.
+ * Return value:
+ * 0 on success and 1 if there are No Rx packets to be processed.
+ */
+
+#ifdef CONFIG_S2IO_NAPI
+static int s2io_poll(struct net_device *dev, int *budget)
+{
+ nic_t *nic = dev->priv;
+ XENA_dev_config_t __iomem *bar0 = nic->bar0;
+ int pkts_to_process = *budget, pkt_cnt = 0;
+ register u64 val64 = 0;
+ rx_curr_get_info_t get_info, put_info;
+ int i, get_block, put_block, get_offset, put_offset, ring_bufs;
+#ifndef CONFIG_2BUFF_MODE
+ u16 val16, cksum;
+#endif
+ struct sk_buff *skb;
+ RxD_t *rxdp;
+ mac_info_t *mac_control;
+ struct config_param *config;
+#ifdef CONFIG_2BUFF_MODE
+ buffAdd_t *ba;
+#endif
+
+ mac_control = &nic->mac_control;
+ config = &nic->config;
+
+ if (pkts_to_process > dev->quota)
+ pkts_to_process = dev->quota;
+
+ val64 = readq(&bar0->rx_traffic_int);
+ writeq(val64, &bar0->rx_traffic_int);
+
+ for (i = 0; i < config->rx_ring_num; i++) {
+ get_info = mac_control->rx_curr_get_info[i];
+ get_block = get_info.block_index;
+ put_info = mac_control->rx_curr_put_info[i];
+ put_block = put_info.block_index;
+ ring_bufs = config->rx_cfg[i].num_rxd;
+ rxdp = nic->rx_blocks[i][get_block].block_virt_addr +
+ get_info.offset;
+#ifndef CONFIG_2BUFF_MODE
+ get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
+ get_info.offset;
+ put_offset = (put_block * (MAX_RXDS_PER_BLOCK + 1)) +
+ put_info.offset;
+ while ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
+ (((get_offset + 1) % ring_bufs) != put_offset)) {
+ if (--pkts_to_process < 0) {
+ goto no_rx;
+ }
+ if (rxdp->Control_1 == END_OF_BLOCK) {
+ rxdp =
+ (RxD_t *) ((unsigned long) rxdp->
+ Control_2);
+ get_info.offset++;
+ get_info.offset %=
+ (MAX_RXDS_PER_BLOCK + 1);
+ get_block++;
+ get_block %= nic->block_count[i];
+ mac_control->rx_curr_get_info[i].
+ offset = get_info.offset;
+ mac_control->rx_curr_get_info[i].
+ block_index = get_block;
+ continue;
+ }
+ get_offset =
+ (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
+ get_info.offset;
+ skb =
+ (struct sk_buff *) ((unsigned long) rxdp->
+ Host_Control);
+ if (skb == NULL) {
+ DBG_PRINT(ERR_DBG, "%s: The skb is ",
+ dev->name);
+ DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
+ goto no_rx;
+ }
+ val64 = RXD_GET_BUFFER0_SIZE(rxdp->Control_2);
+ val16 = (u16) (val64 >> 48);
+ cksum = RXD_GET_L4_CKSUM(rxdp->Control_1);
+ pci_unmap_single(nic->pdev, (dma_addr_t)
+ rxdp->Buffer0_ptr,
+ dev->mtu +
+ HEADER_ETHERNET_II_802_3_SIZE +
+ HEADER_802_2_SIZE +
+ HEADER_SNAP_SIZE,
+ PCI_DMA_FROMDEVICE);
+ rx_osm_handler(nic, val16, rxdp, i);
+ pkt_cnt++;
+ get_info.offset++;
+ get_info.offset %= (MAX_RXDS_PER_BLOCK + 1);
+ rxdp =
+ nic->rx_blocks[i][get_block].block_virt_addr +
+ get_info.offset;
+ mac_control->rx_curr_get_info[i].offset =
+ get_info.offset;
+ }
+#else
+ get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
+ get_info.offset;
+ put_offset = (put_block * (MAX_RXDS_PER_BLOCK + 1)) +
+ put_info.offset;
+ while (((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
+ !(rxdp->Control_2 & BIT(0))) &&
+ (((get_offset + 1) % ring_bufs) != put_offset)) {
+ if (--pkts_to_process < 0) {
+ goto no_rx;
+ }
+ skb = (struct sk_buff *) ((unsigned long)
+ rxdp->Host_Control);
+ if (skb == NULL) {
+ DBG_PRINT(ERR_DBG, "%s: The skb is ",
+ dev->name);
+ DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
+ goto no_rx;
+ }
+
+ pci_unmap_single(nic->pdev, (dma_addr_t)
+ rxdp->Buffer0_ptr,
+ BUF0_LEN, PCI_DMA_FROMDEVICE);
+ pci_unmap_single(nic->pdev, (dma_addr_t)
+ rxdp->Buffer1_ptr,
+ BUF1_LEN, PCI_DMA_FROMDEVICE);
+ pci_unmap_single(nic->pdev, (dma_addr_t)
+ rxdp->Buffer2_ptr,
+ dev->mtu + BUF0_LEN + 4,
+ PCI_DMA_FROMDEVICE);
+ ba = &nic->ba[i][get_block][get_info.offset];
+
+ rx_osm_handler(nic, rxdp, i, ba);
+
+ get_info.offset++;
+ mac_control->rx_curr_get_info[i].offset =
+ get_info.offset;
+ rxdp =
+ nic->rx_blocks[i][get_block].block_virt_addr +
+ get_info.offset;
+
+ if (get_info.offset &&
+ (!(get_info.offset % MAX_RXDS_PER_BLOCK))) {
+ get_info.offset = 0;
+ mac_control->rx_curr_get_info[i].
+ offset = get_info.offset;
+ get_block++;
+ get_block %= nic->block_count[i];
+ mac_control->rx_curr_get_info[i].
+ block_index = get_block;
+ rxdp =
+ nic->rx_blocks[i][get_block].
+ block_virt_addr;
+ }
+ get_offset =
+ (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
+ get_info.offset;
+ pkt_cnt++;
+ }
+#endif
+ }
+ if (!pkt_cnt)
+ pkt_cnt = 1;
+
+ dev->quota -= pkt_cnt;
+ *budget -= pkt_cnt;
+ netif_rx_complete(dev);
+
+ for (i = 0; i < config->rx_ring_num; i++) {
+ if (fill_rx_buffers(nic, i) == -ENOMEM) {
+ DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
+ DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
+ break;
+ }
+ }
+ /* Re enable the Rx interrupts. */
+ en_dis_able_nic_intrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS);
+ return 0;
+
+ no_rx:
+ dev->quota -= pkt_cnt;
+ *budget -= pkt_cnt;
+
+ for (i = 0; i < config->rx_ring_num; i++) {
+ if (fill_rx_buffers(nic, i) == -ENOMEM) {
+ DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
+ DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
+ break;
+ }
+ }
+ return 1;
+}
+#else
+/**
+ * rx_intr_handler - Rx interrupt handler
+ * @nic: device private variable.
+ * Description:
+ * If the interrupt is because of a received frame or if the
+ * receive ring contains fresh as yet un-processed frames,this function is
+ * called. It picks out the RxD at which place the last Rx processing had
+ * stopped and sends the skb to the OSM's Rx handler and then increments
+ * the offset.
+ * Return Value:
+ * NONE.
+ */
+
+static void rx_intr_handler(struct s2io_nic *nic)
+{
+ struct net_device *dev = (struct net_device *) nic->dev;
+ XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
+ rx_curr_get_info_t get_info, put_info;
+ RxD_t *rxdp;
+ struct sk_buff *skb;
+#ifndef CONFIG_2BUFF_MODE
+ u16 val16, cksum;
+#endif
+ register u64 val64 = 0;
+ int get_block, get_offset, put_block, put_offset, ring_bufs;
+ int i, pkt_cnt = 0;
+ mac_info_t *mac_control;
+ struct config_param *config;
+#ifdef CONFIG_2BUFF_MODE
+ buffAdd_t *ba;
+#endif
+
+ mac_control = &nic->mac_control;
+ config = &nic->config;
+
+ /*
+ * rx_traffic_int reg is an R1 register, hence we read and write back
+ * the samevalue in the register to clear it.
+ */
+ val64 = readq(&bar0->rx_traffic_int);
+ writeq(val64, &bar0->rx_traffic_int);
+
+ for (i = 0; i < config->rx_ring_num; i++) {
+ get_info = mac_control->rx_curr_get_info[i];
+ get_block = get_info.block_index;
+ put_info = mac_control->rx_curr_put_info[i];
+ put_block = put_info.block_index;
+ ring_bufs = config->rx_cfg[i].num_rxd;
+ rxdp = nic->rx_blocks[i][get_block].block_virt_addr +
+ get_info.offset;
+#ifndef CONFIG_2BUFF_MODE
+ get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
+ get_info.offset;
+ spin_lock(&nic->put_lock);
+ put_offset = nic->put_pos[i];
+ spin_unlock(&nic->put_lock);
+ while ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
+ (((get_offset + 1) % ring_bufs) != put_offset)) {
+ if (rxdp->Control_1 == END_OF_BLOCK) {
+ rxdp = (RxD_t *) ((unsigned long)
+ rxdp->Control_2);
+ get_info.offset++;
+ get_info.offset %=
+ (MAX_RXDS_PER_BLOCK + 1);
+ get_block++;
+ get_block %= nic->block_count[i];
+ mac_control->rx_curr_get_info[i].
+ offset = get_info.offset;
+ mac_control->rx_curr_get_info[i].
+ block_index = get_block;
+ continue;
+ }
+ get_offset =
+ (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
+ get_info.offset;
+ skb = (struct sk_buff *) ((unsigned long)
+ rxdp->Host_Control);
+ if (skb == NULL) {
+ DBG_PRINT(ERR_DBG, "%s: The skb is ",
+ dev->name);
+ DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
+ return;
+ }
+ val64 = RXD_GET_BUFFER0_SIZE(rxdp->Control_2);
+ val16 = (u16) (val64 >> 48);
+ cksum = RXD_GET_L4_CKSUM(rxdp->Control_1);
+ pci_unmap_single(nic->pdev, (dma_addr_t)
+ rxdp->Buffer0_ptr,
+ dev->mtu +
+ HEADER_ETHERNET_II_802_3_SIZE +
+ HEADER_802_2_SIZE +
+ HEADER_SNAP_SIZE,
+ PCI_DMA_FROMDEVICE);
+ rx_osm_handler(nic, val16, rxdp, i);
+ get_info.offset++;
+ get_info.offset %= (MAX_RXDS_PER_BLOCK + 1);
+ rxdp =
+ nic->rx_blocks[i][get_block].block_virt_addr +
+ get_info.offset;
+ mac_control->rx_curr_get_info[i].offset =
+ get_info.offset;
+ pkt_cnt++;
+ if ((indicate_max_pkts)
+ && (pkt_cnt > indicate_max_pkts))
+ break;
+ }
+#else
+ get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
+ get_info.offset;
+ spin_lock(&nic->put_lock);
+ put_offset = nic->put_pos[i];
+ spin_unlock(&nic->put_lock);
+ while (((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
+ !(rxdp->Control_2 & BIT(0))) &&
+ (((get_offset + 1) % ring_bufs) != put_offset)) {
+ skb = (struct sk_buff *) ((unsigned long)
+ rxdp->Host_Control);
+ if (skb == NULL) {
+ DBG_PRINT(ERR_DBG, "%s: The skb is ",
+ dev->name);
+ DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
+ return;
+ }
+
+ pci_unmap_single(nic->pdev, (dma_addr_t)
+ rxdp->Buffer0_ptr,
+ BUF0_LEN, PCI_DMA_FROMDEVICE);
+ pci_unmap_single(nic->pdev, (dma_addr_t)
+ rxdp->Buffer1_ptr,
+ BUF1_LEN, PCI_DMA_FROMDEVICE);
+ pci_unmap_single(nic->pdev, (dma_addr_t)
+ rxdp->Buffer2_ptr,
+ dev->mtu + BUF0_LEN + 4,
+ PCI_DMA_FROMDEVICE);
+ ba = &nic->ba[i][get_block][get_info.offset];
+
+ rx_osm_handler(nic, rxdp, i, ba);
+
+ get_info.offset++;
+ mac_control->rx_curr_get_info[i].offset =
+ get_info.offset;
+ rxdp =
+ nic->rx_blocks[i][get_block].block_virt_addr +
+ get_info.offset;
+
+ if (get_info.offset &&
+ (!(get_info.offset % MAX_RXDS_PER_BLOCK))) {
+ get_info.offset = 0;
+ mac_control->rx_curr_get_info[i].
+ offset = get_info.offset;
+ get_block++;
+ get_block %= nic->block_count[i];
+ mac_control->rx_curr_get_info[i].
+ block_index = get_block;
+ rxdp =
+ nic->rx_blocks[i][get_block].
+ block_virt_addr;
+ }
+ get_offset =
+ (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
+ get_info.offset;
+ pkt_cnt++;
+ if ((indicate_max_pkts)
+ && (pkt_cnt > indicate_max_pkts))
+ break;
+ }
+#endif
+ if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
+ break;
+ }
+}
+#endif
+/**
+ * tx_intr_handler - Transmit interrupt handler
+ * @nic : device private variable
+ * Description:
+ * If an interrupt was raised to indicate DMA complete of the
+ * Tx packet, this function is called. It identifies the last TxD
+ * whose buffer was freed and frees all skbs whose data have already
+ * DMA'ed into the NICs internal memory.
+ * Return Value:
+ * NONE
+ */
+
+static void tx_intr_handler(struct s2io_nic *nic)
+{
+ XENA_dev_config_t __iomem *bar0 = nic->bar0;
+ struct net_device *dev = (struct net_device *) nic->dev;
+ tx_curr_get_info_t get_info, put_info;
+ struct sk_buff *skb;
+ TxD_t *txdlp;
+ register u64 val64 = 0;
+ int i;
+ u16 j, frg_cnt;
+ mac_info_t *mac_control;
+ struct config_param *config;
+
+ mac_control = &nic->mac_control;
+ config = &nic->config;
+
+ /*
+ * tx_traffic_int reg is an R1 register, hence we read and write
+ * back the samevalue in the register to clear it.
+ */
+ val64 = readq(&bar0->tx_traffic_int);
+ writeq(val64, &bar0->tx_traffic_int);
+
+ for (i = 0; i < config->tx_fifo_num; i++) {
+ get_info = mac_control->tx_curr_get_info[i];
+ put_info = mac_control->tx_curr_put_info[i];
+ txdlp = (TxD_t *) nic->list_info[i][get_info.offset].
+ list_virt_addr;
+ while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
+ (get_info.offset != put_info.offset) &&
+ (txdlp->Host_Control)) {
+ /* Check for TxD errors */
+ if (txdlp->Control_1 & TXD_T_CODE) {
+ unsigned long long err;
+ err = txdlp->Control_1 & TXD_T_CODE;
+ DBG_PRINT(ERR_DBG, "***TxD error %llx\n",
+ err);
+ }
+
+ skb = (struct sk_buff *) ((unsigned long)
+ txdlp->Host_Control);
+ if (skb == NULL) {
+ DBG_PRINT(ERR_DBG, "%s: Null skb ",
+ dev->name);
+ DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
+ return;
+ }
+ nic->tx_pkt_count++;
+
+ frg_cnt = skb_shinfo(skb)->nr_frags;
+
+ /* For unfragmented skb */
+ pci_unmap_single(nic->pdev, (dma_addr_t)
+ txdlp->Buffer_Pointer,
+ skb->len - skb->data_len,
+ PCI_DMA_TODEVICE);
+ if (frg_cnt) {
+ TxD_t *temp = txdlp;
+ txdlp++;
+ for (j = 0; j < frg_cnt; j++, txdlp++) {
+ skb_frag_t *frag =
+ &skb_shinfo(skb)->frags[j];
+ pci_unmap_page(nic->pdev,
+ (dma_addr_t)
+ txdlp->
+ Buffer_Pointer,
+ frag->size,
+ PCI_DMA_TODEVICE);
+ }
+ txdlp = temp;
+ }
+ memset(txdlp, 0,
+ (sizeof(TxD_t) * config->max_txds));
+
+ /* Updating the statistics block */
+ nic->stats.tx_packets++;
+ nic->stats.tx_bytes += skb->len;
+ dev_kfree_skb_irq(skb);
+
+ get_info.offset++;
+ get_info.offset %= get_info.fifo_len + 1;
+ txdlp = (TxD_t *) nic->list_info[i]
+ [get_info.offset].list_virt_addr;
+ mac_control->tx_curr_get_info[i].offset =
+ get_info.offset;
+ }
+ }
+
+ spin_lock(&nic->tx_lock);
+ if (netif_queue_stopped(dev))
+ netif_wake_queue(dev);
+ spin_unlock(&nic->tx_lock);
+}
+
+/**
+ * alarm_intr_handler - Alarm Interrrupt handler
+ * @nic: device private variable
+ * Description: If the interrupt was neither because of Rx packet or Tx
+ * complete, this function is called. If the interrupt was to indicate
+ * a loss of link, the OSM link status handler is invoked for any other
+ * alarm interrupt the block that raised the interrupt is displayed
+ * and a H/W reset is issued.
+ * Return Value:
+ * NONE
+*/
+
+static void alarm_intr_handler(struct s2io_nic *nic)
+{
+ struct net_device *dev = (struct net_device *) nic->dev;
+ XENA_dev_config_t __iomem *bar0 = nic->bar0;
+ register u64 val64 = 0, err_reg = 0;
+
+ /* Handling link status change error Intr */
+ err_reg = readq(&bar0->mac_rmac_err_reg);
+ writeq(err_reg, &bar0->mac_rmac_err_reg);
+ if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
+ schedule_work(&nic->set_link_task);
+ }
+
+ /* In case of a serious error, the device will be Reset. */
+ val64 = readq(&bar0->serr_source);
+ if (val64 & SERR_SOURCE_ANY) {
+ DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
+ DBG_PRINT(ERR_DBG, "serious error!!\n");
+ netif_stop_queue(dev);
+ schedule_work(&nic->rst_timer_task);
+ }
+
+ /*
+ * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
+ * Error occurs, the adapter will be recycled by disabling the
+ * adapter enable bit and enabling it again after the device
+ * becomes Quiescent.
+ */
+ val64 = readq(&bar0->pcc_err_reg);
+ writeq(val64, &bar0->pcc_err_reg);
+ if (val64 & PCC_FB_ECC_DB_ERR) {
+ u64 ac = readq(&bar0->adapter_control);
+ ac &= ~(ADAPTER_CNTL_EN);
+ writeq(ac, &bar0->adapter_control);
+ ac = readq(&bar0->adapter_control);
+ schedule_work(&nic->set_link_task);
+ }
+
+ /* Other type of interrupts are not being handled now, TODO */
+}
+
+/**
+ * wait_for_cmd_complete - waits for a command to complete.
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * Description: Function that waits for a command to Write into RMAC
+ * ADDR DATA registers to be completed and returns either success or
+ * error depending on whether the command was complete or not.
+ * Return value:
+ * SUCCESS on success and FAILURE on failure.
+ */
+
+static int wait_for_cmd_complete(nic_t * sp)
+{
+ XENA_dev_config_t __iomem *bar0 = sp->bar0;
+ int ret = FAILURE, cnt = 0;
+ u64 val64;
+
+ while (TRUE) {
+ val64 = readq(&bar0->rmac_addr_cmd_mem);
+ if (!(val64 & RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
+ ret = SUCCESS;
+ break;
+ }
+ msleep(50);
+ if (cnt++ > 10)
+ break;
+ }
+
+ return ret;
+}
+
+/**
+ * s2io_reset - Resets the card.
+ * @sp : private member of the device structure.
+ * Description: Function to Reset the card. This function then also
+ * restores the previously saved PCI configuration space registers as
+ * the card reset also resets the configuration space.
+ * Return value:
+ * void.
+ */
+
+static void s2io_reset(nic_t * sp)
+{
+ XENA_dev_config_t __iomem *bar0 = sp->bar0;
+ u64 val64;
+ u16 subid;
+
+ val64 = SW_RESET_ALL;
+ writeq(val64, &bar0->sw_reset);
+
+ /*
+ * At this stage, if the PCI write is indeed completed, the
+ * card is reset and so is the PCI Config space of the device.
+ * So a read cannot be issued at this stage on any of the
+ * registers to ensure the write into "sw_reset" register
+ * has gone through.
+ * Question: Is there any system call that will explicitly force
+ * all the write commands still pending on the bus to be pushed
+ * through?
+ * As of now I'am just giving a 250ms delay and hoping that the
+ * PCI write to sw_reset register is done by this time.
+ */
+ msleep(250);
+
+ /* Restore the PCI state saved during initializarion. */
+ pci_restore_state(sp->pdev);
+ s2io_init_pci(sp);
+
+ msleep(250);
+
+ /* SXE-002: Configure link and activity LED to turn it off */
+ subid = sp->pdev->subsystem_device;
+ if ((subid & 0xFF) >= 0x07) {
+ val64 = readq(&bar0->gpio_control);
+ val64 |= 0x0000800000000000ULL;
+ writeq(val64, &bar0->gpio_control);
+ val64 = 0x0411040400000000ULL;
+ writeq(val64, (void __iomem *) bar0 + 0x2700);
+ }
+
+ sp->device_enabled_once = FALSE;
+}
+
+/**
+ * s2io_set_swapper - to set the swapper controle on the card
+ * @sp : private member of the device structure,
+ * pointer to the s2io_nic structure.
+ * Description: Function to set the swapper control on the card
+ * correctly depending on the 'endianness' of the system.
+ * Return value:
+ * SUCCESS on success and FAILURE on failure.
+ */
+
+static int s2io_set_swapper(nic_t * sp)
+{
+ struct net_device *dev = sp->dev;
+ XENA_dev_config_t __iomem *bar0 = sp->bar0;
+ u64 val64, valt, valr;
+
+ /*
+ * Set proper endian settings and verify the same by reading
+ * the PIF Feed-back register.
+ */
+
+ val64 = readq(&bar0->pif_rd_swapper_fb);
+ if (val64 != 0x0123456789ABCDEFULL) {
+ int i = 0;
+ u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
+ 0x8100008181000081ULL, /* FE=1, SE=0 */
+ 0x4200004242000042ULL, /* FE=0, SE=1 */
+ 0}; /* FE=0, SE=0 */
+
+ while(i<4) {
+ writeq(value[i], &bar0->swapper_ctrl);
+ val64 = readq(&bar0->pif_rd_swapper_fb);
+ if (val64 == 0x0123456789ABCDEFULL)
+ break;
+ i++;
+ }
+ if (i == 4) {
+ DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
+ dev->name);
+ DBG_PRINT(ERR_DBG, "feedback read %llx\n",
+ (unsigned long long) val64);
+ return FAILURE;
+ }
+ valr = value[i];
+ } else {
+ valr = readq(&bar0->swapper_ctrl);
+ }
+
+ valt = 0x0123456789ABCDEFULL;
+ writeq(valt, &bar0->xmsi_address);
+ val64 = readq(&bar0->xmsi_address);
+
+ if(val64 != valt) {
+ int i = 0;
+ u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
+ 0x0081810000818100ULL, /* FE=1, SE=0 */
+ 0x0042420000424200ULL, /* FE=0, SE=1 */
+ 0}; /* FE=0, SE=0 */
+
+ while(i<4) {
+ writeq((value[i] | valr), &bar0->swapper_ctrl);
+ writeq(valt, &bar0->xmsi_address);
+ val64 = readq(&bar0->xmsi_address);
+ if(val64 == valt)
+ break;
+ i++;
+ }
+ if(i == 4) {
+ DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
+ DBG_PRINT(ERR_DBG, "reads:0x%llx\n",val64);
+ return FAILURE;
+ }
+ }
+ val64 = readq(&bar0->swapper_ctrl);
+ val64 &= 0xFFFF000000000000ULL;
+
+#ifdef __BIG_ENDIAN
+ /*
+ * The device by default set to a big endian format, so a
+ * big endian driver need not set anything.
+ */
+ val64 |= (SWAPPER_CTRL_TXP_FE |
+ SWAPPER_CTRL_TXP_SE |
+ SWAPPER_CTRL_TXD_R_FE |
+ SWAPPER_CTRL_TXD_W_FE |
+ SWAPPER_CTRL_TXF_R_FE |
+ SWAPPER_CTRL_RXD_R_FE |
+ SWAPPER_CTRL_RXD_W_FE |
+ SWAPPER_CTRL_RXF_W_FE |
+ SWAPPER_CTRL_XMSI_FE |
+ SWAPPER_CTRL_XMSI_SE |
+ SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
+ writeq(val64, &bar0->swapper_ctrl);
+#else
+ /*
+ * Initially we enable all bits to make it accessible by the
+ * driver, then we selectively enable only those bits that
+ * we want to set.
+ */
+ val64 |= (SWAPPER_CTRL_TXP_FE |
+ SWAPPER_CTRL_TXP_SE |
+ SWAPPER_CTRL_TXD_R_FE |
+ SWAPPER_CTRL_TXD_R_SE |
+ SWAPPER_CTRL_TXD_W_FE |
+ SWAPPER_CTRL_TXD_W_SE |
+ SWAPPER_CTRL_TXF_R_FE |
+ SWAPPER_CTRL_RXD_R_FE |
+ SWAPPER_CTRL_RXD_R_SE |
+ SWAPPER_CTRL_RXD_W_FE |
+ SWAPPER_CTRL_RXD_W_SE |
+ SWAPPER_CTRL_RXF_W_FE |
+ SWAPPER_CTRL_XMSI_FE |
+ SWAPPER_CTRL_XMSI_SE |
+ SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
+ writeq(val64, &bar0->swapper_ctrl);
+#endif
+ val64 = readq(&bar0->swapper_ctrl);
+
+ /*
+ * Verifying if endian settings are accurate by reading a
+ * feedback register.
+ */
+ val64 = readq(&bar0->pif_rd_swapper_fb);
+ if (val64 != 0x0123456789ABCDEFULL) {
+ /* Endian settings are incorrect, calls for another dekko. */
+ DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
+ dev->name);
+ DBG_PRINT(ERR_DBG, "feedback read %llx\n",
+ (unsigned long long) val64);
+ return FAILURE;
+ }
+
+ return SUCCESS;
+}
+
+/* ********************************************************* *
+ * Functions defined below concern the OS part of the driver *
+ * ********************************************************* */
+
+/**
+ * s2io_open - open entry point of the driver
+ * @dev : pointer to the device structure.
+ * Description:
+ * This function is the open entry point of the driver. It mainly calls a
+ * function to allocate Rx buffers and inserts them into the buffer
+ * descriptors and then enables the Rx part of the NIC.
+ * Return value:
+ * 0 on success and an appropriate (-)ve integer as defined in errno.h
+ * file on failure.
+ */
+
+static int s2io_open(struct net_device *dev)
+{
+ nic_t *sp = dev->priv;
+ int err = 0;
+
+ /*
+ * Make sure you have link off by default every time
+ * Nic is initialized
+ */
+ netif_carrier_off(dev);
+ sp->last_link_state = LINK_DOWN;
+
+ /* Initialize H/W and enable interrupts */
+ if (s2io_card_up(sp)) {
+ DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
+ dev->name);
+ return -ENODEV;
+ }
+
+ /* After proper initialization of H/W, register ISR */
+ err = request_irq((int) sp->irq, s2io_isr, SA_SHIRQ,
+ sp->name, dev);
+ if (err) {
+ s2io_reset(sp);
+ DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
+ dev->name);
+ return err;
+ }
+
+ if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
+ DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
+ s2io_reset(sp);
+ return -ENODEV;
+ }
+
+ netif_start_queue(dev);
+ return 0;
+}
+
+/**
+ * s2io_close -close entry point of the driver
+ * @dev : device pointer.
+ * Description:
+ * This is the stop entry point of the driver. It needs to undo exactly
+ * whatever was done by the open entry point,thus it's usually referred to
+ * as the close function.Among other things this function mainly stops the
+ * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
+ * Return value:
+ * 0 on success and an appropriate (-)ve integer as defined in errno.h
+ * file on failure.
+ */
+
+static int s2io_close(struct net_device *dev)
+{
+ nic_t *sp = dev->priv;
+
+ flush_scheduled_work();
+ netif_stop_queue(dev);
+ /* Reset card, kill tasklet and free Tx and Rx buffers. */
+ s2io_card_down(sp);
+
+ free_irq(dev->irq, dev);
+ sp->device_close_flag = TRUE; /* Device is shut down. */
+ return 0;
+}
+
+/**
+ * s2io_xmit - Tx entry point of te driver
+ * @skb : the socket buffer containing the Tx data.
+ * @dev : device pointer.
+ * Description :
+ * This function is the Tx entry point of the driver. S2IO NIC supports
+ * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
+ * NOTE: when device cant queue the pkt,just the trans_start variable will
+ * not be upadted.
+ * Return value:
+ * 0 on success & 1 on failure.
+ */
+
+static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
+{
+ nic_t *sp = dev->priv;
+ u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
+ register u64 val64;
+ TxD_t *txdp;
+ TxFIFO_element_t __iomem *tx_fifo;
+ unsigned long flags;
+#ifdef NETIF_F_TSO
+ int mss;
+#endif
+ mac_info_t *mac_control;
+ struct config_param *config;
+ XENA_dev_config_t __iomem *bar0 = sp->bar0;
+
+ mac_control = &sp->mac_control;
+ config = &sp->config;
+
+ DBG_PRINT(TX_DBG, "%s: In S2IO Tx routine\n", dev->name);
+ spin_lock_irqsave(&sp->tx_lock, flags);
+
+ if (atomic_read(&sp->card_state) == CARD_DOWN) {
+ DBG_PRINT(ERR_DBG, "%s: Card going down for reset\n",
+ dev->name);
+ spin_unlock_irqrestore(&sp->tx_lock, flags);
+ return 1;
+ }
+
+ queue = 0;
+ put_off = (u16) mac_control->tx_curr_put_info[queue].offset;
+ get_off = (u16) mac_control->tx_curr_get_info[queue].offset;
+ txdp = (TxD_t *) sp->list_info[queue][put_off].list_virt_addr;
+
+ queue_len = mac_control->tx_curr_put_info[queue].fifo_len + 1;
+ /* Avoid "put" pointer going beyond "get" pointer */
+ if (txdp->Host_Control || (((put_off + 1) % queue_len) == get_off)) {
+ DBG_PRINT(ERR_DBG, "Error in xmit, No free TXDs.\n");
+ netif_stop_queue(dev);
+ dev_kfree_skb(skb);
+ spin_unlock_irqrestore(&sp->tx_lock, flags);
+ return 0;
+ }
+#ifdef NETIF_F_TSO
+ mss = skb_shinfo(skb)->tso_size;
+ if (mss) {
+ txdp->Control_1 |= TXD_TCP_LSO_EN;
+ txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
+ }
+#endif
+
+ frg_cnt = skb_shinfo(skb)->nr_frags;
+ frg_len = skb->len - skb->data_len;
+
+ txdp->Host_Control = (unsigned long) skb;
+ txdp->Buffer_Pointer = pci_map_single
+ (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
+ if (skb->ip_summed == CHECKSUM_HW) {
+ txdp->Control_2 |=
+ (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
+ TXD_TX_CKO_UDP_EN);
+ }
+
+ txdp->Control_2 |= config->tx_intr_type;
+
+ txdp->Control_1 |= (TXD_BUFFER0_SIZE(frg_len) |
+ TXD_GATHER_CODE_FIRST);
+ txdp->Control_1 |= TXD_LIST_OWN_XENA;
+
+ /* For fragmented SKB. */
+ for (i = 0; i < frg_cnt; i++) {
+ skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
+ txdp++;
+ txdp->Buffer_Pointer = (u64) pci_map_page
+ (sp->pdev, frag->page, frag->page_offset,
+ frag->size, PCI_DMA_TODEVICE);
+ txdp->Control_1 |= TXD_BUFFER0_SIZE(frag->size);
+ }
+ txdp->Control_1 |= TXD_GATHER_CODE_LAST;
+
+ tx_fifo = mac_control->tx_FIFO_start[queue];
+ val64 = sp->list_info[queue][put_off].list_phy_addr;
+ writeq(val64, &tx_fifo->TxDL_Pointer);
+
+ val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
+ TX_FIFO_LAST_LIST);
+#ifdef NETIF_F_TSO
+ if (mss)
+ val64 |= TX_FIFO_SPECIAL_FUNC;
+#endif
+ writeq(val64, &tx_fifo->List_Control);
+
+ /* Perform a PCI read to flush previous writes */
+ val64 = readq(&bar0->general_int_status);
+
+ put_off++;
+ put_off %= mac_control->tx_curr_put_info[queue].fifo_len + 1;
+ mac_control->tx_curr_put_info[queue].offset = put_off;
+
+ /* Avoid "put" pointer going beyond "get" pointer */
+ if (((put_off + 1) % queue_len) == get_off) {
+ DBG_PRINT(TX_DBG,
+ "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
+ put_off, get_off);
+ netif_stop_queue(dev);
+ }
+
+ dev->trans_start = jiffies;
+ spin_unlock_irqrestore(&sp->tx_lock, flags);
+
+ return 0;
+}
+
+/**
+ * s2io_isr - ISR handler of the device .
+ * @irq: the irq of the device.
+ * @dev_id: a void pointer to the dev structure of the NIC.
+ * @pt_regs: pointer to the registers pushed on the stack.
+ * Description: This function is the ISR handler of the device. It
+ * identifies the reason for the interrupt and calls the relevant
+ * service routines. As a contongency measure, this ISR allocates the
+ * recv buffers, if their numbers are below the panic value which is
+ * presently set to 25% of the original number of rcv buffers allocated.
+ * Return value:
+ * IRQ_HANDLED: will be returned if IRQ was handled by this routine
+ * IRQ_NONE: will be returned if interrupt is not from our device
+ */
+static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
+{
+ struct net_device *dev = (struct net_device *) dev_id;
+ nic_t *sp = dev->priv;
+ XENA_dev_config_t __iomem *bar0 = sp->bar0;
+#ifndef CONFIG_S2IO_NAPI
+ int i, ret;
+#endif
+ u64 reason = 0;
+ mac_info_t *mac_control;
+ struct config_param *config;
+
+ mac_control = &sp->mac_control;
+ config = &sp->config;
+
+ /*
+ * Identify the cause for interrupt and call the appropriate
+ * interrupt handler. Causes for the interrupt could be;
+ * 1. Rx of packet.
+ * 2. Tx complete.
+ * 3. Link down.
+ * 4. Error in any functional blocks of the NIC.
+ */
+ reason = readq(&bar0->general_int_status);
+
+ if (!reason) {
+ /* The interrupt was not raised by Xena. */
+ return IRQ_NONE;
+ }
+
+ /* If Intr is because of Tx Traffic */
+ if (reason & GEN_INTR_TXTRAFFIC) {
+ tx_intr_handler(sp);
+ }
+
+ /* If Intr is because of an error */
+ if (reason & (GEN_ERROR_INTR))
+ alarm_intr_handler(sp);
+
+#ifdef CONFIG_S2IO_NAPI
+ if (reason & GEN_INTR_RXTRAFFIC) {
+ if (netif_rx_schedule_prep(dev)) {
+ en_dis_able_nic_intrs(sp, RX_TRAFFIC_INTR,
+ DISABLE_INTRS);
+ __netif_rx_schedule(dev);
+ }
+ }
+#else
+ /* If Intr is because of Rx Traffic */
+ if (reason & GEN_INTR_RXTRAFFIC) {
+ rx_intr_handler(sp);
+ }
+#endif
+
+ /*
+ * If the Rx buffer count is below the panic threshold then
+ * reallocate the buffers from the interrupt handler itself,
+ * else schedule a tasklet to reallocate the buffers.
+ */
+#ifndef CONFIG_S2IO_NAPI
+ for (i = 0; i < config->rx_ring_num; i++) {
+ int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
+ int level = rx_buffer_level(sp, rxb_size, i);
+
+ if ((level == PANIC) && (!TASKLET_IN_USE)) {
+ DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name);
+ DBG_PRINT(INTR_DBG, "PANIC levels\n");
+ if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
+ DBG_PRINT(ERR_DBG, "%s:Out of memory",
+ dev->name);
+ DBG_PRINT(ERR_DBG, " in ISR!!\n");
+ clear_bit(0, (&sp->tasklet_status));
+ return IRQ_HANDLED;
+ }
+ clear_bit(0, (&sp->tasklet_status));
+ } else if (level == LOW) {
+ tasklet_schedule(&sp->task);
+ }
+ }
+#endif
+
+ return IRQ_HANDLED;
+}
+
+/**
+ * s2io_get_stats - Updates the device statistics structure.
+ * @dev : pointer to the device structure.
+ * Description:
+ * This function updates the device statistics structure in the s2io_nic
+ * structure and returns a pointer to the same.
+ * Return value:
+ * pointer to the updated net_device_stats structure.
+ */
+
+static struct net_device_stats *s2io_get_stats(struct net_device *dev)
+{
+ nic_t *sp = dev->priv;
+ mac_info_t *mac_control;
+ struct config_param *config;
+
+ mac_control = &sp->mac_control;
+ config = &sp->config;
+
+ sp->stats.tx_errors = mac_control->stats_info->tmac_any_err_frms;
+ sp->stats.rx_errors = mac_control->stats_info->rmac_drop_frms;
+ sp->stats.multicast = mac_control->stats_info->rmac_vld_mcst_frms;
+ sp->stats.rx_length_errors =
+ mac_control->stats_info->rmac_long_frms;
+
+ return (&sp->stats);
+}
+
+/**
+ * s2io_set_multicast - entry point for multicast address enable/disable.
+ * @dev : pointer to the device structure
+ * Description:
+ * This function is a driver entry point which gets called by the kernel
+ * whenever multicast addresses must be enabled/disabled. This also gets
+ * called to set/reset promiscuous mode. Depending on the deivce flag, we
+ * determine, if multicast address must be enabled or if promiscuous mode
+ * is to be disabled etc.
+ * Return value:
+ * void.
+ */
+
+static void s2io_set_multicast(struct net_device *dev)
+{
+ int i, j, prev_cnt;
+ struct dev_mc_list *mclist;
+ nic_t *sp = dev->priv;
+ XENA_dev_config_t __iomem *bar0 = sp->bar0;
+ u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
+ 0xfeffffffffffULL;
+ u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
+ void __iomem *add;
+
+ if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
+ /* Enable all Multicast addresses */
+ writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
+ &bar0->rmac_addr_data0_mem);
+ writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
+ &bar0->rmac_addr_data1_mem);
+ val64 = RMAC_ADDR_CMD_MEM_WE |
+ RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
+ RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
+ writeq(val64, &bar0->rmac_addr_cmd_mem);
+ /* Wait till command completes */
+ wait_for_cmd_complete(sp);
+
+ sp->m_cast_flg = 1;
+ sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
+ } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
+ /* Disable all Multicast addresses */
+ writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
+ &bar0->rmac_addr_data0_mem);
+ val64 = RMAC_ADDR_CMD_MEM_WE |
+ RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
+ RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
+ writeq(val64, &bar0->rmac_addr_cmd_mem);
+ /* Wait till command completes */
+ wait_for_cmd_complete(sp);
+
+ sp->m_cast_flg = 0;
+ sp->all_multi_pos = 0;
+ }
+
+ if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
+ /* Put the NIC into promiscuous mode */
+ add = &bar0->mac_cfg;
+ val64 = readq(&bar0->mac_cfg);
+ val64 |= MAC_CFG_RMAC_PROM_ENABLE;
+
+ writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+ writel((u32) val64, add);
+ writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+ writel((u32) (val64 >> 32), (add + 4));
+
+ val64 = readq(&bar0->mac_cfg);
+ sp->promisc_flg = 1;
+ DBG_PRINT(ERR_DBG, "%s: entered promiscuous mode\n",
+ dev->name);
+ } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
+ /* Remove the NIC from promiscuous mode */
+ add = &bar0->mac_cfg;
+ val64 = readq(&bar0->mac_cfg);
+ val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
+
+ writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+ writel((u32) val64, add);
+ writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+ writel((u32) (val64 >> 32), (add + 4));
+
+ val64 = readq(&bar0->mac_cfg);
+ sp->promisc_flg = 0;
+ DBG_PRINT(ERR_DBG, "%s: left promiscuous mode\n",
+ dev->name);
+ }
+
+ /* Update individual M_CAST address list */
+ if ((!sp->m_cast_flg) && dev->mc_count) {
+ if (dev->mc_count >
+ (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
+ DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
+ dev->name);
+ DBG_PRINT(ERR_DBG, "can be added, please enable ");
+ DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
+ return;
+ }
+
+ prev_cnt = sp->mc_addr_count;
+ sp->mc_addr_count = dev->mc_count;
+
+ /* Clear out the previous list of Mc in the H/W. */
+ for (i = 0; i < prev_cnt; i++) {
+ writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
+ &bar0->rmac_addr_data0_mem);
+ writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
+ &bar0->rmac_addr_data1_mem);
+ val64 = RMAC_ADDR_CMD_MEM_WE |
+ RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
+ RMAC_ADDR_CMD_MEM_OFFSET
+ (MAC_MC_ADDR_START_OFFSET + i);
+ writeq(val64, &bar0->rmac_addr_cmd_mem);
+
+ /* Wait for command completes */
+ if (wait_for_cmd_complete(sp)) {
+ DBG_PRINT(ERR_DBG, "%s: Adding ",
+ dev->name);
+ DBG_PRINT(ERR_DBG, "Multicasts failed\n");
+ return;
+ }
+ }
+
+ /* Create the new Rx filter list and update the same in H/W. */
+ for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
+ i++, mclist = mclist->next) {
+ memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
+ ETH_ALEN);
+ for (j = 0; j < ETH_ALEN; j++) {
+ mac_addr |= mclist->dmi_addr[j];
+ mac_addr <<= 8;
+ }
+ mac_addr >>= 8;
+ writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
+ &bar0->rmac_addr_data0_mem);
+ writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
+ &bar0->rmac_addr_data1_mem);
+
+ val64 = RMAC_ADDR_CMD_MEM_WE |
+ RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
+ RMAC_ADDR_CMD_MEM_OFFSET
+ (i + MAC_MC_ADDR_START_OFFSET);
+ writeq(val64, &bar0->rmac_addr_cmd_mem);
+
+ /* Wait for command completes */
+ if (wait_for_cmd_complete(sp)) {
+ DBG_PRINT(ERR_DBG, "%s: Adding ",
+ dev->name);
+ DBG_PRINT(ERR_DBG, "Multicasts failed\n");
+ return;
+ }
+ }
+ }
+}
+
+/**
+ * s2io_set_mac_addr - Programs the Xframe mac address
+ * @dev : pointer to the device structure.
+ * @addr: a uchar pointer to the new mac address which is to be set.
+ * Description : This procedure will program the Xframe to receive
+ * frames with new Mac Address
+ * Return value: SUCCESS on success and an appropriate (-)ve integer
+ * as defined in errno.h file on failure.
+ */
+
+int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
+{
+ nic_t *sp = dev->priv;
+ XENA_dev_config_t __iomem *bar0 = sp->bar0;
+ register u64 val64, mac_addr = 0;
+ int i;
+
+ /*
+ * Set the new MAC address as the new unicast filter and reflect this
+ * change on the device address registered with the OS. It will be
+ * at offset 0.
+ */
+ for (i = 0; i < ETH_ALEN; i++) {
+ mac_addr <<= 8;
+ mac_addr |= addr[i];
+ }
+
+ writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
+ &bar0->rmac_addr_data0_mem);
+
+ val64 =
+ RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
+ RMAC_ADDR_CMD_MEM_OFFSET(0);
+ writeq(val64, &bar0->rmac_addr_cmd_mem);
+ /* Wait till command completes */
+ if (wait_for_cmd_complete(sp)) {
+ DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
+ return FAILURE;
+ }
+
+ return SUCCESS;
+}
+
+/**
+ * s2io_ethtool_sset - Sets different link parameters.
+ * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
+ * @info: pointer to the structure with parameters given by ethtool to set
+ * link information.
+ * Description:
+ * The function sets different link parameters provided by the user onto
+ * the NIC.
+ * Return value:
+ * 0 on success.
+*/
+
+static int s2io_ethtool_sset(struct net_device *dev,
+ struct ethtool_cmd *info)
+{
+ nic_t *sp = dev->priv;
+ if ((info->autoneg == AUTONEG_ENABLE) ||
+ (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
+ return -EINVAL;
+ else {
+ s2io_close(sp->dev);
+ s2io_open(sp->dev);
+ }
+
+ return 0;
+}
+
+/**
+ * s2io_ethtol_gset - Return link specific information.
+ * @sp : private member of the device structure, pointer to the
+ * s2io_nic structure.
+ * @info : pointer to the structure with parameters given by ethtool
+ * to return link information.
+ * Description:
+ * Returns link specific information like speed, duplex etc.. to ethtool.
+ * Return value :
+ * return 0 on success.
+ */
+
+static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
+{
+ nic_t *sp = dev->priv;
+ info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
+ info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
+ info->port = PORT_FIBRE;
+ /* info->transceiver?? TODO */
+
+ if (netif_carrier_ok(sp->dev)) {
+ info->speed = 10000;
+ info->duplex = DUPLEX_FULL;
+ } else {
+ info->speed = -1;
+ info->duplex = -1;
+ }
+
+ info->autoneg = AUTONEG_DISABLE;
+ return 0;
+}
+
+/**
+ * s2io_ethtool_gdrvinfo - Returns driver specific information.
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @info : pointer to the structure with parameters given by ethtool to
+ * return driver information.
+ * Description:
+ * Returns driver specefic information like name, version etc.. to ethtool.
+ * Return value:
+ * void
+ */
+
+static void s2io_ethtool_gdrvinfo(struct net_device *dev,
+ struct ethtool_drvinfo *info)
+{
+ nic_t *sp = dev->priv;
+
+ strncpy(info->driver, s2io_driver_name, sizeof(s2io_driver_name));
+ strncpy(info->version, s2io_driver_version,
+ sizeof(s2io_driver_version));
+ strncpy(info->fw_version, "", 32);
+ strncpy(info->bus_info, pci_name(sp->pdev), 32);
+ info->regdump_len = XENA_REG_SPACE;
+ info->eedump_len = XENA_EEPROM_SPACE;
+ info->testinfo_len = S2IO_TEST_LEN;
+ info->n_stats = S2IO_STAT_LEN;
+}
+
+/**
+ * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
+ * @sp: private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @regs : pointer to the structure with parameters given by ethtool for
+ * dumping the registers.
+ * @reg_space: The input argumnet into which all the registers are dumped.
+ * Description:
+ * Dumps the entire register space of xFrame NIC into the user given
+ * buffer area.
+ * Return value :
+ * void .
+*/
+
+static void s2io_ethtool_gregs(struct net_device *dev,
+ struct ethtool_regs *regs, void *space)
+{
+ int i;
+ u64 reg;
+ u8 *reg_space = (u8 *) space;
+ nic_t *sp = dev->priv;
+
+ regs->len = XENA_REG_SPACE;
+ regs->version = sp->pdev->subsystem_device;
+
+ for (i = 0; i < regs->len; i += 8) {
+ reg = readq(sp->bar0 + i);
+ memcpy((reg_space + i), &reg, 8);
+ }
+}
+
+/**
+ * s2io_phy_id - timer function that alternates adapter LED.
+ * @data : address of the private member of the device structure, which
+ * is a pointer to the s2io_nic structure, provided as an u32.
+ * Description: This is actually the timer function that alternates the
+ * adapter LED bit of the adapter control bit to set/reset every time on
+ * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
+ * once every second.
+*/
+static void s2io_phy_id(unsigned long data)
+{
+ nic_t *sp = (nic_t *) data;
+ XENA_dev_config_t __iomem *bar0 = sp->bar0;
+ u64 val64 = 0;
+ u16 subid;
+
+ subid = sp->pdev->subsystem_device;
+ if ((subid & 0xFF) >= 0x07) {
+ val64 = readq(&bar0->gpio_control);
+ val64 ^= GPIO_CTRL_GPIO_0;
+ writeq(val64, &bar0->gpio_control);
+ } else {
+ val64 = readq(&bar0->adapter_control);
+ val64 ^= ADAPTER_LED_ON;
+ writeq(val64, &bar0->adapter_control);
+ }
+
+ mod_timer(&sp->id_timer, jiffies + HZ / 2);
+}
+
+/**
+ * s2io_ethtool_idnic - To physically identify the nic on the system.
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @id : pointer to the structure with identification parameters given by
+ * ethtool.
+ * Description: Used to physically identify the NIC on the system.
+ * The Link LED will blink for a time specified by the user for
+ * identification.
+ * NOTE: The Link has to be Up to be able to blink the LED. Hence
+ * identification is possible only if it's link is up.
+ * Return value:
+ * int , returns 0 on success
+ */
+
+static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
+{
+ u64 val64 = 0, last_gpio_ctrl_val;
+ nic_t *sp = dev->priv;
+ XENA_dev_config_t __iomem *bar0 = sp->bar0;
+ u16 subid;
+
+ subid = sp->pdev->subsystem_device;
+ last_gpio_ctrl_val = readq(&bar0->gpio_control);
+ if ((subid & 0xFF) < 0x07) {
+ val64 = readq(&bar0->adapter_control);
+ if (!(val64 & ADAPTER_CNTL_EN)) {
+ printk(KERN_ERR
+ "Adapter Link down, cannot blink LED\n");
+ return -EFAULT;
+ }
+ }
+ if (sp->id_timer.function == NULL) {
+ init_timer(&sp->id_timer);
+ sp->id_timer.function = s2io_phy_id;
+ sp->id_timer.data = (unsigned long) sp;
+ }
+ mod_timer(&sp->id_timer, jiffies);
+ if (data)
+ msleep(data * 1000);
+ else
+ msleep(0xFFFFFFFF);
+ del_timer_sync(&sp->id_timer);
+
+ if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) {
+ writeq(last_gpio_ctrl_val, &bar0->gpio_control);
+ last_gpio_ctrl_val = readq(&bar0->gpio_control);
+ }
+
+ return 0;
+}
+
+/**
+ * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
+ * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
+ * @ep : pointer to the structure with pause parameters given by ethtool.
+ * Description:
+ * Returns the Pause frame generation and reception capability of the NIC.
+ * Return value:
+ * void
+ */
+static void s2io_ethtool_getpause_data(struct net_device *dev,
+ struct ethtool_pauseparam *ep)
+{
+ u64 val64;
+ nic_t *sp = dev->priv;
+ XENA_dev_config_t __iomem *bar0 = sp->bar0;
+
+ val64 = readq(&bar0->rmac_pause_cfg);
+ if (val64 & RMAC_PAUSE_GEN_ENABLE)
+ ep->tx_pause = TRUE;
+ if (val64 & RMAC_PAUSE_RX_ENABLE)
+ ep->rx_pause = TRUE;
+ ep->autoneg = FALSE;
+}
+
+/**
+ * s2io_ethtool_setpause_data - set/reset pause frame generation.
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @ep : pointer to the structure with pause parameters given by ethtool.
+ * Description:
+ * It can be used to set or reset Pause frame generation or reception
+ * support of the NIC.
+ * Return value:
+ * int, returns 0 on Success
+ */
+
+static int s2io_ethtool_setpause_data(struct net_device *dev,
+ struct ethtool_pauseparam *ep)
+{
+ u64 val64;
+ nic_t *sp = dev->priv;
+ XENA_dev_config_t __iomem *bar0 = sp->bar0;
+
+ val64 = readq(&bar0->rmac_pause_cfg);
+ if (ep->tx_pause)
+ val64 |= RMAC_PAUSE_GEN_ENABLE;
+ else
+ val64 &= ~RMAC_PAUSE_GEN_ENABLE;
+ if (ep->rx_pause)
+ val64 |= RMAC_PAUSE_RX_ENABLE;
+ else
+ val64 &= ~RMAC_PAUSE_RX_ENABLE;
+ writeq(val64, &bar0->rmac_pause_cfg);
+ return 0;
+}
+
+/**
+ * read_eeprom - reads 4 bytes of data from user given offset.
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @off : offset at which the data must be written
+ * @data : Its an output parameter where the data read at the given
+ * offset is stored.
+ * Description:
+ * Will read 4 bytes of data from the user given offset and return the
+ * read data.
+ * NOTE: Will allow to read only part of the EEPROM visible through the
+ * I2C bus.
+ * Return value:
+ * -1 on failure and 0 on success.
+ */
+
+#define S2IO_DEV_ID 5
+static int read_eeprom(nic_t * sp, int off, u32 * data)
+{
+ int ret = -1;
+ u32 exit_cnt = 0;
+ u64 val64;
+ XENA_dev_config_t __iomem *bar0 = sp->bar0;
+
+ val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
+ I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
+ I2C_CONTROL_CNTL_START;
+ SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
+
+ while (exit_cnt < 5) {
+ val64 = readq(&bar0->i2c_control);
+ if (I2C_CONTROL_CNTL_END(val64)) {
+ *data = I2C_CONTROL_GET_DATA(val64);
+ ret = 0;
+ break;
+ }
+ msleep(50);
+ exit_cnt++;
+ }
+
+ return ret;
+}
+
+/**
+ * write_eeprom - actually writes the relevant part of the data value.
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @off : offset at which the data must be written
+ * @data : The data that is to be written
+ * @cnt : Number of bytes of the data that are actually to be written into
+ * the Eeprom. (max of 3)
+ * Description:
+ * Actually writes the relevant part of the data value into the Eeprom
+ * through the I2C bus.
+ * Return value:
+ * 0 on success, -1 on failure.
+ */
+
+static int write_eeprom(nic_t * sp, int off, u32 data, int cnt)
+{
+ int exit_cnt = 0, ret = -1;
+ u64 val64;
+ XENA_dev_config_t __iomem *bar0 = sp->bar0;
+
+ val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
+ I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA(data) |
+ I2C_CONTROL_CNTL_START;
+ SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
+
+ while (exit_cnt < 5) {
+ val64 = readq(&bar0->i2c_control);
+ if (I2C_CONTROL_CNTL_END(val64)) {
+ if (!(val64 & I2C_CONTROL_NACK))
+ ret = 0;
+ break;
+ }
+ msleep(50);
+ exit_cnt++;
+ }
+
+ return ret;
+}
+
+/**
+ * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
+ * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
+ * @eeprom : pointer to the user level structure provided by ethtool,
+ * containing all relevant information.
+ * @data_buf : user defined value to be written into Eeprom.
+ * Description: Reads the values stored in the Eeprom at given offset
+ * for a given length. Stores these values int the input argument data
+ * buffer 'data_buf' and returns these to the caller (ethtool.)
+ * Return value:
+ * int 0 on success
+ */
+
+static int s2io_ethtool_geeprom(struct net_device *dev,
+ struct ethtool_eeprom *eeprom, u8 * data_buf)
+{
+ u32 data, i, valid;
+ nic_t *sp = dev->priv;
+
+ eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
+
+ if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
+ eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
+
+ for (i = 0; i < eeprom->len; i += 4) {
+ if (read_eeprom(sp, (eeprom->offset + i), &data)) {
+ DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
+ return -EFAULT;
+ }
+ valid = INV(data);
+ memcpy((data_buf + i), &valid, 4);
+ }
+ return 0;
+}
+
+/**
+ * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @eeprom : pointer to the user level structure provided by ethtool,
+ * containing all relevant information.
+ * @data_buf ; user defined value to be written into Eeprom.
+ * Description:
+ * Tries to write the user provided value in the Eeprom, at the offset
+ * given by the user.
+ * Return value:
+ * 0 on success, -EFAULT on failure.
+ */
+
+static int s2io_ethtool_seeprom(struct net_device *dev,
+ struct ethtool_eeprom *eeprom,
+ u8 * data_buf)
+{
+ int len = eeprom->len, cnt = 0;
+ u32 valid = 0, data;
+ nic_t *sp = dev->priv;
+
+ if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
+ DBG_PRINT(ERR_DBG,
+ "ETHTOOL_WRITE_EEPROM Err: Magic value ");
+ DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
+ eeprom->magic);
+ return -EFAULT;
+ }
+
+ while (len) {
+ data = (u32) data_buf[cnt] & 0x000000FF;
+ if (data) {
+ valid = (u32) (data << 24);
+ } else
+ valid = data;
+
+ if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
+ DBG_PRINT(ERR_DBG,
+ "ETHTOOL_WRITE_EEPROM Err: Cannot ");
+ DBG_PRINT(ERR_DBG,
+ "write into the specified offset\n");
+ return -EFAULT;
+ }
+ cnt++;
+ len--;
+ }
+
+ return 0;
+}
+
+/**
+ * s2io_register_test - reads and writes into all clock domains.
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @data : variable that returns the result of each of the test conducted b
+ * by the driver.
+ * Description:
+ * Read and write into all clock domains. The NIC has 3 clock domains,
+ * see that registers in all the three regions are accessible.
+ * Return value:
+ * 0 on success.
+ */
+
+static int s2io_register_test(nic_t * sp, uint64_t * data)
+{
+ XENA_dev_config_t __iomem *bar0 = sp->bar0;
+ u64 val64 = 0;
+ int fail = 0;
+
+ val64 = readq(&bar0->pcc_enable);
+ if (val64 != 0xff00000000000000ULL) {
+ fail = 1;
+ DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
+ }
+
+ val64 = readq(&bar0->rmac_pause_cfg);
+ if (val64 != 0xc000ffff00000000ULL) {
+ fail = 1;
+ DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
+ }
+
+ val64 = readq(&bar0->rx_queue_cfg);
+ if (val64 != 0x0808080808080808ULL) {
+ fail = 1;
+ DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
+ }
+
+ val64 = readq(&bar0->xgxs_efifo_cfg);
+ if (val64 != 0x000000001923141EULL) {
+ fail = 1;
+ DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
+ }
+
+ val64 = 0x5A5A5A5A5A5A5A5AULL;
+ writeq(val64, &bar0->xmsi_data);
+ val64 = readq(&bar0->xmsi_data);
+ if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
+ fail = 1;
+ DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
+ }
+
+ val64 = 0xA5A5A5A5A5A5A5A5ULL;
+ writeq(val64, &bar0->xmsi_data);
+ val64 = readq(&bar0->xmsi_data);
+ if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
+ fail = 1;
+ DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
+ }
+
+ *data = fail;
+ return 0;
+}
+
+/**
+ * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @data:variable that returns the result of each of the test conducted by
+ * the driver.
+ * Description:
+ * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
+ * register.
+ * Return value:
+ * 0 on success.
+ */
+
+static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
+{
+ int fail = 0;
+ u32 ret_data;
+
+ /* Test Write Error at offset 0 */
+ if (!write_eeprom(sp, 0, 0, 3))
+ fail = 1;
+
+ /* Test Write at offset 4f0 */
+ if (write_eeprom(sp, 0x4F0, 0x01234567, 3))
+ fail = 1;
+ if (read_eeprom(sp, 0x4F0, &ret_data))
+ fail = 1;
+
+ if (ret_data != 0x01234567)
+ fail = 1;
+
+ /* Reset the EEPROM data go FFFF */
+ write_eeprom(sp, 0x4F0, 0xFFFFFFFF, 3);
+
+ /* Test Write Request Error at offset 0x7c */
+ if (!write_eeprom(sp, 0x07C, 0, 3))
+ fail = 1;
+
+ /* Test Write Request at offset 0x7fc */
+ if (write_eeprom(sp, 0x7FC, 0x01234567, 3))
+ fail = 1;
+ if (read_eeprom(sp, 0x7FC, &ret_data))
+ fail = 1;
+
+ if (ret_data != 0x01234567)
+ fail = 1;
+
+ /* Reset the EEPROM data go FFFF */
+ write_eeprom(sp, 0x7FC, 0xFFFFFFFF, 3);
+
+ /* Test Write Error at offset 0x80 */
+ if (!write_eeprom(sp, 0x080, 0, 3))
+ fail = 1;
+
+ /* Test Write Error at offset 0xfc */
+ if (!write_eeprom(sp, 0x0FC, 0, 3))
+ fail = 1;
+
+ /* Test Write Error at offset 0x100 */
+ if (!write_eeprom(sp, 0x100, 0, 3))
+ fail = 1;
+
+ /* Test Write Error at offset 4ec */
+ if (!write_eeprom(sp, 0x4EC, 0, 3))
+ fail = 1;
+
+ *data = fail;
+ return 0;
+}
+
+/**
+ * s2io_bist_test - invokes the MemBist test of the card .
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @data:variable that returns the result of each of the test conducted by
+ * the driver.
+ * Description:
+ * This invokes the MemBist test of the card. We give around
+ * 2 secs time for the Test to complete. If it's still not complete
+ * within this peiod, we consider that the test failed.
+ * Return value:
+ * 0 on success and -1 on failure.
+ */
+
+static int s2io_bist_test(nic_t * sp, uint64_t * data)
+{
+ u8 bist = 0;
+ int cnt = 0, ret = -1;
+
+ pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
+ bist |= PCI_BIST_START;
+ pci_write_config_word(sp->pdev, PCI_BIST, bist);
+
+ while (cnt < 20) {
+ pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
+ if (!(bist & PCI_BIST_START)) {
+ *data = (bist & PCI_BIST_CODE_MASK);
+ ret = 0;
+ break;
+ }
+ msleep(100);
+ cnt++;
+ }
+
+ return ret;
+}
+
+/**
+ * s2io-link_test - verifies the link state of the nic
+ * @sp ; private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @data: variable that returns the result of each of the test conducted by
+ * the driver.
+ * Description:
+ * The function verifies the link state of the NIC and updates the input
+ * argument 'data' appropriately.
+ * Return value:
+ * 0 on success.
+ */
+
+static int s2io_link_test(nic_t * sp, uint64_t * data)
+{
+ XENA_dev_config_t __iomem *bar0 = sp->bar0;
+ u64 val64;
+
+ val64 = readq(&bar0->adapter_status);
+ if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT)
+ *data = 1;
+
+ return 0;
+}
+
+/**
+ * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
+ * @sp - private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @data - variable that returns the result of each of the test
+ * conducted by the driver.
+ * Description:
+ * This is one of the offline test that tests the read and write
+ * access to the RldRam chip on the NIC.
+ * Return value:
+ * 0 on success.
+ */
+
+static int s2io_rldram_test(nic_t * sp, uint64_t * data)
+{
+ XENA_dev_config_t __iomem *bar0 = sp->bar0;
+ u64 val64;
+ int cnt, iteration = 0, test_pass = 0;
+
+ val64 = readq(&bar0->adapter_control);
+ val64 &= ~ADAPTER_ECC_EN;
+ writeq(val64, &bar0->adapter_control);
+
+ val64 = readq(&bar0->mc_rldram_test_ctrl);
+ val64 |= MC_RLDRAM_TEST_MODE;
+ writeq(val64, &bar0->mc_rldram_test_ctrl);
+
+ val64 = readq(&bar0->mc_rldram_mrs);
+ val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
+ SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
+
+ val64 |= MC_RLDRAM_MRS_ENABLE;
+ SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
+
+ while (iteration < 2) {
+ val64 = 0x55555555aaaa0000ULL;
+ if (iteration == 1) {
+ val64 ^= 0xFFFFFFFFFFFF0000ULL;
+ }
+ writeq(val64, &bar0->mc_rldram_test_d0);
+
+ val64 = 0xaaaa5a5555550000ULL;
+ if (iteration == 1) {
+ val64 ^= 0xFFFFFFFFFFFF0000ULL;
+ }
+ writeq(val64, &bar0->mc_rldram_test_d1);
+
+ val64 = 0x55aaaaaaaa5a0000ULL;
+ if (iteration == 1) {
+ val64 ^= 0xFFFFFFFFFFFF0000ULL;
+ }
+ writeq(val64, &bar0->mc_rldram_test_d2);
+
+ val64 = (u64) (0x0000003fffff0000ULL);
+ writeq(val64, &bar0->mc_rldram_test_add);
+
+
+ val64 = MC_RLDRAM_TEST_MODE;
+ writeq(val64, &bar0->mc_rldram_test_ctrl);
+
+ val64 |=
+ MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
+ MC_RLDRAM_TEST_GO;
+ writeq(val64, &bar0->mc_rldram_test_ctrl);
+
+ for (cnt = 0; cnt < 5; cnt++) {
+ val64 = readq(&bar0->mc_rldram_test_ctrl);
+ if (val64 & MC_RLDRAM_TEST_DONE)
+ break;
+ msleep(200);
+ }
+
+ if (cnt == 5)
+ break;
+
+ val64 = MC_RLDRAM_TEST_MODE;
+ writeq(val64, &bar0->mc_rldram_test_ctrl);
+
+ val64 |= MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
+ writeq(val64, &bar0->mc_rldram_test_ctrl);
+
+ for (cnt = 0; cnt < 5; cnt++) {
+ val64 = readq(&bar0->mc_rldram_test_ctrl);
+ if (val64 & MC_RLDRAM_TEST_DONE)
+ break;
+ msleep(500);
+ }
+
+ if (cnt == 5)
+ break;
+
+ val64 = readq(&bar0->mc_rldram_test_ctrl);
+ if (val64 & MC_RLDRAM_TEST_PASS)
+ test_pass = 1;
+
+ iteration++;
+ }
+
+ if (!test_pass)
+ *data = 1;
+ else
+ *data = 0;
+
+ return 0;
+}
+
+/**
+ * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @ethtest : pointer to a ethtool command specific structure that will be
+ * returned to the user.
+ * @data : variable that returns the result of each of the test
+ * conducted by the driver.
+ * Description:
+ * This function conducts 6 tests ( 4 offline and 2 online) to determine
+ * the health of the card.
+ * Return value:
+ * void
+ */
+
+static void s2io_ethtool_test(struct net_device *dev,
+ struct ethtool_test *ethtest,
+ uint64_t * data)
+{
+ nic_t *sp = dev->priv;
+ int orig_state = netif_running(sp->dev);
+
+ if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
+ /* Offline Tests. */
+ if (orig_state) {
+ s2io_close(sp->dev);
+ s2io_set_swapper(sp);
+ } else
+ s2io_set_swapper(sp);
+
+ if (s2io_register_test(sp, &data[0]))
+ ethtest->flags |= ETH_TEST_FL_FAILED;
+
+ s2io_reset(sp);
+ s2io_set_swapper(sp);
+
+ if (s2io_rldram_test(sp, &data[3]))
+ ethtest->flags |= ETH_TEST_FL_FAILED;
+
+ s2io_reset(sp);
+ s2io_set_swapper(sp);
+
+ if (s2io_eeprom_test(sp, &data[1]))
+ ethtest->flags |= ETH_TEST_FL_FAILED;
+
+ if (s2io_bist_test(sp, &data[4]))
+ ethtest->flags |= ETH_TEST_FL_FAILED;
+
+ if (orig_state)
+ s2io_open(sp->dev);
+
+ data[2] = 0;
+ } else {
+ /* Online Tests. */
+ if (!orig_state) {
+ DBG_PRINT(ERR_DBG,
+ "%s: is not up, cannot run test\n",
+ dev->name);
+ data[0] = -1;
+ data[1] = -1;
+ data[2] = -1;
+ data[3] = -1;
+ data[4] = -1;
+ }
+
+ if (s2io_link_test(sp, &data[2]))
+ ethtest->flags |= ETH_TEST_FL_FAILED;
+
+ data[0] = 0;
+ data[1] = 0;
+ data[3] = 0;
+ data[4] = 0;
+ }
+}
+
+static void s2io_get_ethtool_stats(struct net_device *dev,
+ struct ethtool_stats *estats,
+ u64 * tmp_stats)
+{
+ int i = 0;
+ nic_t *sp = dev->priv;
+ StatInfo_t *stat_info = sp->mac_control.stats_info;
+
+ tmp_stats[i++] = le32_to_cpu(stat_info->tmac_frms);
+ tmp_stats[i++] = le32_to_cpu(stat_info->tmac_data_octets);
+ tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
+ tmp_stats[i++] = le32_to_cpu(stat_info->tmac_mcst_frms);
+ tmp_stats[i++] = le32_to_cpu(stat_info->tmac_bcst_frms);
+ tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
+ tmp_stats[i++] = le32_to_cpu(stat_info->tmac_any_err_frms);
+ tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
+ tmp_stats[i++] = le32_to_cpu(stat_info->tmac_vld_ip);
+ tmp_stats[i++] = le32_to_cpu(stat_info->tmac_drop_ip);
+ tmp_stats[i++] = le32_to_cpu(stat_info->tmac_icmp);
+ tmp_stats[i++] = le32_to_cpu(stat_info->tmac_rst_tcp);
+ tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
+ tmp_stats[i++] = le32_to_cpu(stat_info->tmac_udp);
+ tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_frms);
+ tmp_stats[i++] = le32_to_cpu(stat_info->rmac_data_octets);
+ tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
+ tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
+ tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_mcst_frms);
+ tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_bcst_frms);
+ tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
+ tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
+ tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
+ tmp_stats[i++] = le32_to_cpu(stat_info->rmac_discarded_frms);
+ tmp_stats[i++] = le32_to_cpu(stat_info->rmac_usized_frms);
+ tmp_stats[i++] = le32_to_cpu(stat_info->rmac_osized_frms);
+ tmp_stats[i++] = le32_to_cpu(stat_info->rmac_frag_frms);
+ tmp_stats[i++] = le32_to_cpu(stat_info->rmac_jabber_frms);
+ tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ip);
+ tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
+ tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
+ tmp_stats[i++] = le32_to_cpu(stat_info->rmac_drop_ip);
+ tmp_stats[i++] = le32_to_cpu(stat_info->rmac_icmp);
+ tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
+ tmp_stats[i++] = le32_to_cpu(stat_info->rmac_udp);
+ tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_drp_udp);
+ tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pause_cnt);
+ tmp_stats[i++] = le32_to_cpu(stat_info->rmac_accepted_ip);
+ tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
+}
+
+static int s2io_ethtool_get_regs_len(struct net_device *dev)
+{
+ return (XENA_REG_SPACE);
+}
+
+
+static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
+{
+ nic_t *sp = dev->priv;
+
+ return (sp->rx_csum);
+}
+
+static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
+{
+ nic_t *sp = dev->priv;
+
+ if (data)
+ sp->rx_csum = 1;
+ else
+ sp->rx_csum = 0;
+
+ return 0;
+}
+
+static int s2io_get_eeprom_len(struct net_device *dev)
+{
+ return (XENA_EEPROM_SPACE);
+}
+
+static int s2io_ethtool_self_test_count(struct net_device *dev)
+{
+ return (S2IO_TEST_LEN);
+}
+
+static void s2io_ethtool_get_strings(struct net_device *dev,
+ u32 stringset, u8 * data)
+{
+ switch (stringset) {
+ case ETH_SS_TEST:
+ memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
+ break;
+ case ETH_SS_STATS:
+ memcpy(data, &ethtool_stats_keys,
+ sizeof(ethtool_stats_keys));
+ }
+}
+
+static int s2io_ethtool_get_stats_count(struct net_device *dev)
+{
+ return (S2IO_STAT_LEN);
+}
+
+static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
+{
+ if (data)
+ dev->features |= NETIF_F_IP_CSUM;
+ else
+ dev->features &= ~NETIF_F_IP_CSUM;
+
+ return 0;
+}
+
+
+static struct ethtool_ops netdev_ethtool_ops = {
+ .get_settings = s2io_ethtool_gset,
+ .set_settings = s2io_ethtool_sset,
+ .get_drvinfo = s2io_ethtool_gdrvinfo,
+ .get_regs_len = s2io_ethtool_get_regs_len,
+ .get_regs = s2io_ethtool_gregs,
+ .get_link = ethtool_op_get_link,
+ .get_eeprom_len = s2io_get_eeprom_len,
+ .get_eeprom = s2io_ethtool_geeprom,
+ .set_eeprom = s2io_ethtool_seeprom,
+ .get_pauseparam = s2io_ethtool_getpause_data,
+ .set_pauseparam = s2io_ethtool_setpause_data,
+ .get_rx_csum = s2io_ethtool_get_rx_csum,
+ .set_rx_csum = s2io_ethtool_set_rx_csum,
+ .get_tx_csum = ethtool_op_get_tx_csum,
+ .set_tx_csum = s2io_ethtool_op_set_tx_csum,
+ .get_sg = ethtool_op_get_sg,
+ .set_sg = ethtool_op_set_sg,
+#ifdef NETIF_F_TSO
+ .get_tso = ethtool_op_get_tso,
+ .set_tso = ethtool_op_set_tso,
+#endif
+ .self_test_count = s2io_ethtool_self_test_count,
+ .self_test = s2io_ethtool_test,
+ .get_strings = s2io_ethtool_get_strings,
+ .phys_id = s2io_ethtool_idnic,
+ .get_stats_count = s2io_ethtool_get_stats_count,
+ .get_ethtool_stats = s2io_get_ethtool_stats
+};
+
+/**
+ * s2io_ioctl - Entry point for the Ioctl
+ * @dev : Device pointer.
+ * @ifr : An IOCTL specefic structure, that can contain a pointer to
+ * a proprietary structure used to pass information to the driver.
+ * @cmd : This is used to distinguish between the different commands that
+ * can be passed to the IOCTL functions.
+ * Description:
+ * This function has support for ethtool, adding multiple MAC addresses on
+ * the NIC and some DBG commands for the util tool.
+ * Return value:
+ * Currently the IOCTL supports no operations, hence by default this
+ * function returns OP NOT SUPPORTED value.
+ */
+
+static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
+{
+ return -EOPNOTSUPP;
+}
+
+/**
+ * s2io_change_mtu - entry point to change MTU size for the device.
+ * @dev : device pointer.
+ * @new_mtu : the new MTU size for the device.
+ * Description: A driver entry point to change MTU size for the device.
+ * Before changing the MTU the device must be stopped.
+ * Return value:
+ * 0 on success and an appropriate (-)ve integer as defined in errno.h
+ * file on failure.
+ */
+
+static int s2io_change_mtu(struct net_device *dev, int new_mtu)
+{
+ nic_t *sp = dev->priv;
+ XENA_dev_config_t __iomem *bar0 = sp->bar0;
+ register u64 val64;
+
+ if (netif_running(dev)) {
+ DBG_PRINT(ERR_DBG, "%s: Must be stopped to ", dev->name);
+ DBG_PRINT(ERR_DBG, "change its MTU \n");
+ return -EBUSY;
+ }
+
+ if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
+ DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
+ dev->name);
+ return -EPERM;
+ }
+
+ /* Set the new MTU into the PYLD register of the NIC */
+ val64 = new_mtu;
+ writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
+
+ dev->mtu = new_mtu;
+
+ return 0;
+}
+
+/**
+ * s2io_tasklet - Bottom half of the ISR.
+ * @dev_adr : address of the device structure in dma_addr_t format.
+ * Description:
+ * This is the tasklet or the bottom half of the ISR. This is
+ * an extension of the ISR which is scheduled by the scheduler to be run
+ * when the load on the CPU is low. All low priority tasks of the ISR can
+ * be pushed into the tasklet. For now the tasklet is used only to
+ * replenish the Rx buffers in the Rx buffer descriptors.
+ * Return value:
+ * void.
+ */
+
+static void s2io_tasklet(unsigned long dev_addr)
+{
+ struct net_device *dev = (struct net_device *) dev_addr;
+ nic_t *sp = dev->priv;
+ int i, ret;
+ mac_info_t *mac_control;
+ struct config_param *config;
+
+ mac_control = &sp->mac_control;
+ config = &sp->config;
+
+ if (!TASKLET_IN_USE) {
+ for (i = 0; i < config->rx_ring_num; i++) {
+ ret = fill_rx_buffers(sp, i);
+ if (ret == -ENOMEM) {
+ DBG_PRINT(ERR_DBG, "%s: Out of ",
+ dev->name);
+ DBG_PRINT(ERR_DBG, "memory in tasklet\n");
+ break;
+ } else if (ret == -EFILL) {
+ DBG_PRINT(ERR_DBG,
+ "%s: Rx Ring %d is full\n",
+ dev->name, i);
+ break;
+ }
+ }
+ clear_bit(0, (&sp->tasklet_status));
+ }
+}
+
+/**
+ * s2io_set_link - Set the LInk status
+ * @data: long pointer to device private structue
+ * Description: Sets the link status for the adapter
+ */
+
+static void s2io_set_link(unsigned long data)
+{
+ nic_t *nic = (nic_t *) data;
+ struct net_device *dev = nic->dev;
+ XENA_dev_config_t __iomem *bar0 = nic->bar0;
+ register u64 val64;
+ u16 subid;
+
+ if (test_and_set_bit(0, &(nic->link_state))) {
+ /* The card is being reset, no point doing anything */
+ return;
+ }
+
+ subid = nic->pdev->subsystem_device;
+ /*
+ * Allow a small delay for the NICs self initiated
+ * cleanup to complete.
+ */
+ msleep(100);
+
+ val64 = readq(&bar0->adapter_status);
+ if (verify_xena_quiescence(val64, nic->device_enabled_once)) {
+ if (LINK_IS_UP(val64)) {
+ val64 = readq(&bar0->adapter_control);
+ val64 |= ADAPTER_CNTL_EN;
+ writeq(val64, &bar0->adapter_control);
+ if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) {
+ val64 = readq(&bar0->gpio_control);
+ val64 |= GPIO_CTRL_GPIO_0;
+ writeq(val64, &bar0->gpio_control);
+ val64 = readq(&bar0->gpio_control);
+ } else {
+ val64 |= ADAPTER_LED_ON;
+ writeq(val64, &bar0->adapter_control);
+ }
+ val64 = readq(&bar0->adapter_status);
+ if (!LINK_IS_UP(val64)) {
+ DBG_PRINT(ERR_DBG, "%s:", dev->name);
+ DBG_PRINT(ERR_DBG, " Link down");
+ DBG_PRINT(ERR_DBG, "after ");
+ DBG_PRINT(ERR_DBG, "enabling ");
+ DBG_PRINT(ERR_DBG, "device \n");
+ }
+ if (nic->device_enabled_once == FALSE) {
+ nic->device_enabled_once = TRUE;
+ }
+ s2io_link(nic, LINK_UP);
+ } else {
+ if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) {
+ val64 = readq(&bar0->gpio_control);
+ val64 &= ~GPIO_CTRL_GPIO_0;
+ writeq(val64, &bar0->gpio_control);
+ val64 = readq(&bar0->gpio_control);
+ }
+ s2io_link(nic, LINK_DOWN);
+ }
+ } else { /* NIC is not Quiescent. */
+ DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
+ DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
+ netif_stop_queue(dev);
+ }
+ clear_bit(0, &(nic->link_state));
+}
+
+static void s2io_card_down(nic_t * sp)
+{
+ int cnt = 0;
+ XENA_dev_config_t __iomem *bar0 = sp->bar0;
+ unsigned long flags;
+ register u64 val64 = 0;
+
+ /* If s2io_set_link task is executing, wait till it completes. */
+ while (test_and_set_bit(0, &(sp->link_state)))
+ msleep(50);
+ atomic_set(&sp->card_state, CARD_DOWN);
+
+ /* disable Tx and Rx traffic on the NIC */
+ stop_nic(sp);
+
+ /* Kill tasklet. */
+ tasklet_kill(&sp->task);
+
+ /* Check if the device is Quiescent and then Reset the NIC */
+ do {
+ val64 = readq(&bar0->adapter_status);
+ if (verify_xena_quiescence(val64, sp->device_enabled_once)) {
+ break;
+ }
+
+ msleep(50);
+ cnt++;
+ if (cnt == 10) {
+ DBG_PRINT(ERR_DBG,
+ "s2io_close:Device not Quiescent ");
+ DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
+ (unsigned long long) val64);
+ break;
+ }
+ } while (1);
+ spin_lock_irqsave(&sp->tx_lock, flags);
+ s2io_reset(sp);
+
+ /* Free all unused Tx and Rx buffers */
+ free_tx_buffers(sp);
+ free_rx_buffers(sp);
+
+ spin_unlock_irqrestore(&sp->tx_lock, flags);
+ clear_bit(0, &(sp->link_state));
+}
+
+static int s2io_card_up(nic_t * sp)
+{
+ int i, ret;
+ mac_info_t *mac_control;
+ struct config_param *config;
+ struct net_device *dev = (struct net_device *) sp->dev;
+
+ /* Initialize the H/W I/O registers */
+ if (init_nic(sp) != 0) {
+ DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
+ dev->name);
+ return -ENODEV;
+ }
+
+ /*
+ * Initializing the Rx buffers. For now we are considering only 1
+ * Rx ring and initializing buffers into 30 Rx blocks
+ */
+ mac_control = &sp->mac_control;
+ config = &sp->config;
+
+ for (i = 0; i < config->rx_ring_num; i++) {
+ if ((ret = fill_rx_buffers(sp, i))) {
+ DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
+ dev->name);
+ s2io_reset(sp);
+ free_rx_buffers(sp);
+ return -ENOMEM;
+ }
+ DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
+ atomic_read(&sp->rx_bufs_left[i]));
+ }
+
+ /* Setting its receive mode */
+ s2io_set_multicast(dev);
+
+ /* Enable tasklet for the device */
+ tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
+
+ /* Enable Rx Traffic and interrupts on the NIC */
+ if (start_nic(sp)) {
+ DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
+ tasklet_kill(&sp->task);
+ s2io_reset(sp);
+ free_irq(dev->irq, dev);
+ free_rx_buffers(sp);
+ return -ENODEV;
+ }
+
+ atomic_set(&sp->card_state, CARD_UP);
+ return 0;
+}
+
+/**
+ * s2io_restart_nic - Resets the NIC.
+ * @data : long pointer to the device private structure
+ * Description:
+ * This function is scheduled to be run by the s2io_tx_watchdog
+ * function after 0.5 secs to reset the NIC. The idea is to reduce
+ * the run time of the watch dog routine which is run holding a
+ * spin lock.
+ */
+
+static void s2io_restart_nic(unsigned long data)
+{
+ struct net_device *dev = (struct net_device *) data;
+ nic_t *sp = dev->priv;
+
+ s2io_card_down(sp);
+ if (s2io_card_up(sp)) {
+ DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
+ dev->name);
+ }
+ netif_wake_queue(dev);
+ DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
+ dev->name);
+}
+
+/**
+ * s2io_tx_watchdog - Watchdog for transmit side.
+ * @dev : Pointer to net device structure
+ * Description:
+ * This function is triggered if the Tx Queue is stopped
+ * for a pre-defined amount of time when the Interface is still up.
+ * If the Interface is jammed in such a situation, the hardware is
+ * reset (by s2io_close) and restarted again (by s2io_open) to
+ * overcome any problem that might have been caused in the hardware.
+ * Return value:
+ * void
+ */
+
+static void s2io_tx_watchdog(struct net_device *dev)
+{
+ nic_t *sp = dev->priv;
+
+ if (netif_carrier_ok(dev)) {
+ schedule_work(&sp->rst_timer_task);
+ }
+}
+
+/**
+ * rx_osm_handler - To perform some OS related operations on SKB.
+ * @sp: private member of the device structure,pointer to s2io_nic structure.
+ * @skb : the socket buffer pointer.
+ * @len : length of the packet
+ * @cksum : FCS checksum of the frame.
+ * @ring_no : the ring from which this RxD was extracted.
+ * Description:
+ * This function is called by the Tx interrupt serivce routine to perform
+ * some OS related operations on the SKB before passing it to the upper
+ * layers. It mainly checks if the checksum is OK, if so adds it to the
+ * SKBs cksum variable, increments the Rx packet count and passes the SKB
+ * to the upper layer. If the checksum is wrong, it increments the Rx
+ * packet error count, frees the SKB and returns error.
+ * Return value:
+ * SUCCESS on success and -1 on failure.
+ */
+#ifndef CONFIG_2BUFF_MODE
+static int rx_osm_handler(nic_t * sp, u16 len, RxD_t * rxdp, int ring_no)
+#else
+static int rx_osm_handler(nic_t * sp, RxD_t * rxdp, int ring_no,
+ buffAdd_t * ba)
+#endif
+{
+ struct net_device *dev = (struct net_device *) sp->dev;
+ struct sk_buff *skb =
+ (struct sk_buff *) ((unsigned long) rxdp->Host_Control);
+ u16 l3_csum, l4_csum;
+#ifdef CONFIG_2BUFF_MODE
+ int buf0_len, buf2_len;
+ unsigned char *buff;
+#endif
+
+ l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
+ if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && (sp->rx_csum)) {
+ l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
+ if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
+ /*
+ * NIC verifies if the Checksum of the received
+ * frame is Ok or not and accordingly returns
+ * a flag in the RxD.
+ */
+ skb->ip_summed = CHECKSUM_UNNECESSARY;
+ } else {
+ /*
+ * Packet with erroneous checksum, let the
+ * upper layers deal with it.
+ */
+ skb->ip_summed = CHECKSUM_NONE;
+ }
+ } else {
+ skb->ip_summed = CHECKSUM_NONE;
+ }
+
+ if (rxdp->Control_1 & RXD_T_CODE) {
+ unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
+ DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
+ dev->name, err);
+ }
+#ifdef CONFIG_2BUFF_MODE
+ buf0_len = RXD_GET_BUFFER0_SIZE(rxdp->Control_2);
+ buf2_len = RXD_GET_BUFFER2_SIZE(rxdp->Control_2);
+#endif
+
+ skb->dev = dev;
+#ifndef CONFIG_2BUFF_MODE
+ skb_put(skb, len);
+ skb->protocol = eth_type_trans(skb, dev);
+#else
+ buff = skb_push(skb, buf0_len);
+ memcpy(buff, ba->ba_0, buf0_len);
+ skb_put(skb, buf2_len);
+ skb->protocol = eth_type_trans(skb, dev);
+#endif
+
+#ifdef CONFIG_S2IO_NAPI
+ netif_receive_skb(skb);
+#else
+ netif_rx(skb);
+#endif
+
+ dev->last_rx = jiffies;
+ sp->rx_pkt_count++;
+ sp->stats.rx_packets++;
+#ifndef CONFIG_2BUFF_MODE
+ sp->stats.rx_bytes += len;
+#else
+ sp->stats.rx_bytes += buf0_len + buf2_len;
+#endif
+
+ atomic_dec(&sp->rx_bufs_left[ring_no]);
+ rxdp->Host_Control = 0;
+ return SUCCESS;
+}
+
+/**
+ * s2io_link - stops/starts the Tx queue.
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @link : inidicates whether link is UP/DOWN.
+ * Description:
+ * This function stops/starts the Tx queue depending on whether the link
+ * status of the NIC is is down or up. This is called by the Alarm
+ * interrupt handler whenever a link change interrupt comes up.
+ * Return value:
+ * void.
+ */
+
+static void s2io_link(nic_t * sp, int link)
+{
+ struct net_device *dev = (struct net_device *) sp->dev;
+
+ if (link != sp->last_link_state) {
+ if (link == LINK_DOWN) {
+ DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
+ netif_carrier_off(dev);
+ } else {
+ DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
+ netif_carrier_on(dev);
+ }
+ }
+ sp->last_link_state = link;
+}
+
+/**
+ * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * Description:
+ * This function initializes a few of the PCI and PCI-X configuration registers
+ * with recommended values.
+ * Return value:
+ * void
+ */
+
+static void s2io_init_pci(nic_t * sp)
+{
+ u16 pci_cmd = 0;
+
+ /* Enable Data Parity Error Recovery in PCI-X command register. */
+ pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
+ &(sp->pcix_cmd));
+ pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
+ (sp->pcix_cmd | 1));
+ pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
+ &(sp->pcix_cmd));
+
+ /* Set the PErr Response bit in PCI command register. */
+ pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
+ pci_write_config_word(sp->pdev, PCI_COMMAND,
+ (pci_cmd | PCI_COMMAND_PARITY));
+ pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
+
+ /* Set MMRB count to 1024 in PCI-X Command register. */
+ sp->pcix_cmd &= 0xFFF3;
+ pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, (sp->pcix_cmd | (0x1 << 2))); /* MMRBC 1K */
+ pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
+ &(sp->pcix_cmd));
+
+ /* Setting Maximum outstanding splits based on system type. */
+ sp->pcix_cmd &= 0xFF8F;
+
+ sp->pcix_cmd |= XENA_MAX_OUTSTANDING_SPLITS(0x1); /* 2 splits. */
+ pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
+ sp->pcix_cmd);
+ pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
+ &(sp->pcix_cmd));
+ /* Forcibly disabling relaxed ordering capability of the card. */
+ sp->pcix_cmd &= 0xfffd;
+ pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
+ sp->pcix_cmd);
+ pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
+ &(sp->pcix_cmd));
+}
+
+MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
+MODULE_LICENSE("GPL");
+module_param(tx_fifo_num, int, 0);
+module_param_array(tx_fifo_len, int, NULL, 0);
+module_param(rx_ring_num, int, 0);
+module_param_array(rx_ring_sz, int, NULL, 0);
+module_param(Stats_refresh_time, int, 0);
+module_param(rmac_pause_time, int, 0);
+module_param(mc_pause_threshold_q0q3, int, 0);
+module_param(mc_pause_threshold_q4q7, int, 0);
+module_param(shared_splits, int, 0);
+module_param(tmac_util_period, int, 0);
+module_param(rmac_util_period, int, 0);
+#ifndef CONFIG_S2IO_NAPI
+module_param(indicate_max_pkts, int, 0);
+#endif
+/**
+ * s2io_init_nic - Initialization of the adapter .
+ * @pdev : structure containing the PCI related information of the device.
+ * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
+ * Description:
+ * The function initializes an adapter identified by the pci_dec structure.
+ * All OS related initialization including memory and device structure and
+ * initlaization of the device private variable is done. Also the swapper
+ * control register is initialized to enable read and write into the I/O
+ * registers of the device.
+ * Return value:
+ * returns 0 on success and negative on failure.
+ */
+
+static int __devinit
+s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
+{
+ nic_t *sp;
+ struct net_device *dev;
+ char *dev_name = "S2IO 10GE NIC";
+ int i, j, ret;
+ int dma_flag = FALSE;
+ u32 mac_up, mac_down;
+ u64 val64 = 0, tmp64 = 0;
+ XENA_dev_config_t __iomem *bar0 = NULL;
+ u16 subid;
+ mac_info_t *mac_control;
+ struct config_param *config;
+
+
+ DBG_PRINT(ERR_DBG, "Loading S2IO driver with %s\n",
+ s2io_driver_version);
+
+ if ((ret = pci_enable_device(pdev))) {
+ DBG_PRINT(ERR_DBG,
+ "s2io_init_nic: pci_enable_device failed\n");
+ return ret;
+ }
+
+ if (!pci_set_dma_mask(pdev, 0xffffffffffffffffULL)) {
+ DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
+ dma_flag = TRUE;
+
+ if (pci_set_consistent_dma_mask
+ (pdev, 0xffffffffffffffffULL)) {
+ DBG_PRINT(ERR_DBG,
+ "Unable to obtain 64bit DMA for \
+ consistent allocations\n");
+ pci_disable_device(pdev);
+ return -ENOMEM;
+ }
+ } else if (!pci_set_dma_mask(pdev, 0xffffffffUL)) {
+ DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
+ } else {
+ pci_disable_device(pdev);
+ return -ENOMEM;
+ }
+
+ if (pci_request_regions(pdev, s2io_driver_name)) {
+ DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
+ pci_disable_device(pdev);
+ return -ENODEV;
+ }
+
+ dev = alloc_etherdev(sizeof(nic_t));
+ if (dev == NULL) {
+ DBG_PRINT(ERR_DBG, "Device allocation failed\n");
+ pci_disable_device(pdev);
+ pci_release_regions(pdev);
+ return -ENODEV;
+ }
+
+ pci_set_master(pdev);
+ pci_set_drvdata(pdev, dev);
+ SET_MODULE_OWNER(dev);
+ SET_NETDEV_DEV(dev, &pdev->dev);
+
+ /* Private member variable initialized to s2io NIC structure */
+ sp = dev->priv;
+ memset(sp, 0, sizeof(nic_t));
+ sp->dev = dev;
+ sp->pdev = pdev;
+ sp->vendor_id = pdev->vendor;
+ sp->device_id = pdev->device;
+ sp->high_dma_flag = dma_flag;
+ sp->irq = pdev->irq;
+ sp->device_enabled_once = FALSE;
+ strcpy(sp->name, dev_name);
+
+ /* Initialize some PCI/PCI-X fields of the NIC. */
+ s2io_init_pci(sp);
+
+ /*
+ * Setting the device configuration parameters.
+ * Most of these parameters can be specified by the user during
+ * module insertion as they are module loadable parameters. If
+ * these parameters are not not specified during load time, they
+ * are initialized with default values.
+ */
+ mac_control = &sp->mac_control;
+ config = &sp->config;
+
+ /* Tx side parameters. */
+ tx_fifo_len[0] = DEFAULT_FIFO_LEN; /* Default value. */
+ config->tx_fifo_num = tx_fifo_num;
+ for (i = 0; i < MAX_TX_FIFOS; i++) {
+ config->tx_cfg[i].fifo_len = tx_fifo_len[i];
+ config->tx_cfg[i].fifo_priority = i;
+ }
+
+ config->tx_intr_type = TXD_INT_TYPE_UTILZ;
+ for (i = 0; i < config->tx_fifo_num; i++) {
+ config->tx_cfg[i].f_no_snoop =
+ (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
+ if (config->tx_cfg[i].fifo_len < 65) {
+ config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
+ break;
+ }
+ }
+ config->max_txds = MAX_SKB_FRAGS;
+
+ /* Rx side parameters. */
+ rx_ring_sz[0] = SMALL_BLK_CNT; /* Default value. */
+ config->rx_ring_num = rx_ring_num;
+ for (i = 0; i < MAX_RX_RINGS; i++) {
+ config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
+ (MAX_RXDS_PER_BLOCK + 1);
+ config->rx_cfg[i].ring_priority = i;
+ }
+
+ for (i = 0; i < rx_ring_num; i++) {
+ config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
+ config->rx_cfg[i].f_no_snoop =
+ (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
+ }
+
+ /* Setting Mac Control parameters */
+ mac_control->rmac_pause_time = rmac_pause_time;
+ mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
+ mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
+
+
+ /* Initialize Ring buffer parameters. */
+ for (i = 0; i < config->rx_ring_num; i++)
+ atomic_set(&sp->rx_bufs_left[i], 0);
+
+ /* initialize the shared memory used by the NIC and the host */
+ if (init_shared_mem(sp)) {
+ DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
+ dev->name);
+ ret = -ENOMEM;
+ goto mem_alloc_failed;
+ }
+
+ sp->bar0 = ioremap(pci_resource_start(pdev, 0),
+ pci_resource_len(pdev, 0));
+ if (!sp->bar0) {
+ DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
+ dev->name);
+ ret = -ENOMEM;
+ goto bar0_remap_failed;
+ }
+
+ sp->bar1 = ioremap(pci_resource_start(pdev, 2),
+ pci_resource_len(pdev, 2));
+ if (!sp->bar1) {
+ DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
+ dev->name);
+ ret = -ENOMEM;
+ goto bar1_remap_failed;
+ }
+
+ dev->irq = pdev->irq;
+ dev->base_addr = (unsigned long) sp->bar0;
+
+ /* Initializing the BAR1 address as the start of the FIFO pointer. */
+ for (j = 0; j < MAX_TX_FIFOS; j++) {
+ mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
+ (sp->bar1 + (j * 0x00020000));
+ }
+
+ /* Driver entry points */
+ dev->open = &s2io_open;
+ dev->stop = &s2io_close;
+ dev->hard_start_xmit = &s2io_xmit;
+ dev->get_stats = &s2io_get_stats;
+ dev->set_multicast_list = &s2io_set_multicast;
+ dev->do_ioctl = &s2io_ioctl;
+ dev->change_mtu = &s2io_change_mtu;
+ SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
+ /*
+ * will use eth_mac_addr() for dev->set_mac_address
+ * mac address will be set every time dev->open() is called
+ */
+#ifdef CONFIG_S2IO_NAPI
+ dev->poll = s2io_poll;
+ dev->weight = 90;
+#endif
+
+ dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
+ if (sp->high_dma_flag == TRUE)
+ dev->features |= NETIF_F_HIGHDMA;
+#ifdef NETIF_F_TSO
+ dev->features |= NETIF_F_TSO;
+#endif
+
+ dev->tx_timeout = &s2io_tx_watchdog;
+ dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
+ INIT_WORK(&sp->rst_timer_task,
+ (void (*)(void *)) s2io_restart_nic, dev);
+ INIT_WORK(&sp->set_link_task,
+ (void (*)(void *)) s2io_set_link, sp);
+
+ pci_save_state(sp->pdev);
+
+ /* Setting swapper control on the NIC, for proper reset operation */
+ if (s2io_set_swapper(sp)) {
+ DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
+ dev->name);
+ ret = -EAGAIN;
+ goto set_swap_failed;
+ }
+
+ /* Fix for all "FFs" MAC address problems observed on Alpha platforms */
+ fix_mac_address(sp);
+ s2io_reset(sp);
+
+ /*
+ * Setting swapper control on the NIC, so the MAC address can be read.
+ */
+ if (s2io_set_swapper(sp)) {
+ DBG_PRINT(ERR_DBG,
+ "%s: S2IO: swapper settings are wrong\n",
+ dev->name);
+ ret = -EAGAIN;
+ goto set_swap_failed;
+ }
+
+ /*
+ * MAC address initialization.
+ * For now only one mac address will be read and used.
+ */
+ bar0 = sp->bar0;
+ val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
+ RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
+ writeq(val64, &bar0->rmac_addr_cmd_mem);
+ wait_for_cmd_complete(sp);
+
+ tmp64 = readq(&bar0->rmac_addr_data0_mem);
+ mac_down = (u32) tmp64;
+ mac_up = (u32) (tmp64 >> 32);
+
+ memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
+
+ sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
+ sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
+ sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
+ sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
+ sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
+ sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
+
+ DBG_PRINT(INIT_DBG,
+ "DEFAULT MAC ADDR:0x%02x-%02x-%02x-%02x-%02x-%02x\n",
+ sp->def_mac_addr[0].mac_addr[0],
+ sp->def_mac_addr[0].mac_addr[1],
+ sp->def_mac_addr[0].mac_addr[2],
+ sp->def_mac_addr[0].mac_addr[3],
+ sp->def_mac_addr[0].mac_addr[4],
+ sp->def_mac_addr[0].mac_addr[5]);
+
+ /* Set the factory defined MAC address initially */
+ dev->addr_len = ETH_ALEN;
+ memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
+
+ /*
+ * Initialize the tasklet status and link state flags
+ * and the card statte parameter
+ */
+ atomic_set(&(sp->card_state), 0);
+ sp->tasklet_status = 0;
+ sp->link_state = 0;
+
+
+ /* Initialize spinlocks */
+ spin_lock_init(&sp->tx_lock);
+#ifndef CONFIG_S2IO_NAPI
+ spin_lock_init(&sp->put_lock);
+#endif
+
+ /*
+ * SXE-002: Configure link and activity LED to init state
+ * on driver load.
+ */
+ subid = sp->pdev->subsystem_device;
+ if ((subid & 0xFF) >= 0x07) {
+ val64 = readq(&bar0->gpio_control);
+ val64 |= 0x0000800000000000ULL;
+ writeq(val64, &bar0->gpio_control);
+ val64 = 0x0411040400000000ULL;
+ writeq(val64, (void __iomem *) bar0 + 0x2700);
+ val64 = readq(&bar0->gpio_control);
+ }
+
+ sp->rx_csum = 1; /* Rx chksum verify enabled by default */
+
+ if (register_netdev(dev)) {
+ DBG_PRINT(ERR_DBG, "Device registration failed\n");
+ ret = -ENODEV;
+ goto register_failed;
+ }
+
+ /*
+ * Make Link state as off at this point, when the Link change
+ * interrupt comes the state will be automatically changed to
+ * the right state.
+ */
+ netif_carrier_off(dev);
+ sp->last_link_state = LINK_DOWN;
+
+ return 0;
+
+ register_failed:
+ set_swap_failed:
+ iounmap(sp->bar1);
+ bar1_remap_failed:
+ iounmap(sp->bar0);
+ bar0_remap_failed:
+ mem_alloc_failed:
+ free_shared_mem(sp);
+ pci_disable_device(pdev);
+ pci_release_regions(pdev);
+ pci_set_drvdata(pdev, NULL);
+ free_netdev(dev);
+
+ return ret;
+}
+
+/**
+ * s2io_rem_nic - Free the PCI device
+ * @pdev: structure containing the PCI related information of the device.
+ * Description: This function is called by the Pci subsystem to release a
+ * PCI device and free up all resource held up by the device. This could
+ * be in response to a Hot plug event or when the driver is to be removed
+ * from memory.
+ */
+
+static void __devexit s2io_rem_nic(struct pci_dev *pdev)
+{
+ struct net_device *dev =
+ (struct net_device *) pci_get_drvdata(pdev);
+ nic_t *sp;
+
+ if (dev == NULL) {
+ DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
+ return;
+ }
+
+ sp = dev->priv;
+ unregister_netdev(dev);
+
+ free_shared_mem(sp);
+ iounmap(sp->bar0);
+ iounmap(sp->bar1);
+ pci_disable_device(pdev);
+ pci_release_regions(pdev);
+ pci_set_drvdata(pdev, NULL);
+
+ free_netdev(dev);
+}
+
+/**
+ * s2io_starter - Entry point for the driver
+ * Description: This function is the entry point for the driver. It verifies
+ * the module loadable parameters and initializes PCI configuration space.
+ */
+
+int __init s2io_starter(void)
+{
+ return pci_module_init(&s2io_driver);
+}
+
+/**
+ * s2io_closer - Cleanup routine for the driver
+ * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
+ */
+
+static void s2io_closer(void)
+{
+ pci_unregister_driver(&s2io_driver);
+ DBG_PRINT(INIT_DBG, "cleanup done\n");
+}
+
+module_init(s2io_starter);
+module_exit(s2io_closer);