diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2015-06-22 17:59:09 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2015-06-22 17:59:09 -0700 |
commit | d70b3ef54ceaf1c7c92209f5a662a670d04cbed9 (patch) | |
tree | 0f38109c1cabe9e2df028041c1e30f36c803ec5b /drivers/media | |
parent | 650ec5a6bd5df4ab0c9ef38d05b94cd82fb99ad8 (diff) | |
parent | 7ef3d7d58d9dc73ee3d4f8f56d0024c8cca8163f (diff) | |
download | linux-d70b3ef54ceaf1c7c92209f5a662a670d04cbed9.tar.bz2 |
Merge branch 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 core updates from Ingo Molnar:
"There were so many changes in the x86/asm, x86/apic and x86/mm topics
in this cycle that the topical separation of -tip broke down somewhat -
so the result is a more traditional architecture pull request,
collected into the 'x86/core' topic.
The topics were still maintained separately as far as possible, so
bisectability and conceptual separation should still be pretty good -
but there were a handful of merge points to avoid excessive
dependencies (and conflicts) that would have been poorly tested in the
end.
The next cycle will hopefully be much more quiet (or at least will
have fewer dependencies).
The main changes in this cycle were:
* x86/apic changes, with related IRQ core changes: (Jiang Liu, Thomas
Gleixner)
- This is the second and most intrusive part of changes to the x86
interrupt handling - full conversion to hierarchical interrupt
domains:
[IOAPIC domain] -----
|
[MSI domain] --------[Remapping domain] ----- [ Vector domain ]
| (optional) |
[HPET MSI domain] ----- |
|
[DMAR domain] -----------------------------
|
[Legacy domain] -----------------------------
This now reflects the actual hardware and allowed us to distangle
the domain specific code from the underlying parent domain, which
can be optional in the case of interrupt remapping. It's a clear
separation of functionality and removes quite some duct tape
constructs which plugged the remap code between ioapic/msi/hpet
and the vector management.
- Intel IOMMU IRQ remapping enhancements, to allow direct interrupt
injection into guests (Feng Wu)
* x86/asm changes:
- Tons of cleanups and small speedups, micro-optimizations. This
is in preparation to move a good chunk of the low level entry
code from assembly to C code (Denys Vlasenko, Andy Lutomirski,
Brian Gerst)
- Moved all system entry related code to a new home under
arch/x86/entry/ (Ingo Molnar)
- Removal of the fragile and ugly CFI dwarf debuginfo annotations.
Conversion to C will reintroduce many of them - but meanwhile
they are only getting in the way, and the upstream kernel does
not rely on them (Ingo Molnar)
- NOP handling refinements. (Borislav Petkov)
* x86/mm changes:
- Big PAT and MTRR rework: making the code more robust and
preparing to phase out exposing direct MTRR interfaces to drivers -
in favor of using PAT driven interfaces (Toshi Kani, Luis R
Rodriguez, Borislav Petkov)
- New ioremap_wt()/set_memory_wt() interfaces to support
Write-Through cached memory mappings. This is especially
important for good performance on NVDIMM hardware (Toshi Kani)
* x86/ras changes:
- Add support for deferred errors on AMD (Aravind Gopalakrishnan)
This is an important RAS feature which adds hardware support for
poisoned data. That means roughly that the hardware marks data
which it has detected as corrupted but wasn't able to correct, as
poisoned data and raises an APIC interrupt to signal that in the
form of a deferred error. It is the OS's responsibility then to
take proper recovery action and thus prolonge system lifetime as
far as possible.
- Add support for Intel "Local MCE"s: upcoming CPUs will support
CPU-local MCE interrupts, as opposed to the traditional system-
wide broadcasted MCE interrupts (Ashok Raj)
- Misc cleanups (Borislav Petkov)
* x86/platform changes:
- Intel Atom SoC updates
... and lots of other cleanups, fixlets and other changes - see the
shortlog and the Git log for details"
* 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (222 commits)
x86/hpet: Use proper hpet device number for MSI allocation
x86/hpet: Check for irq==0 when allocating hpet MSI interrupts
x86/mm/pat, drivers/infiniband/ipath: Use arch_phys_wc_add() and require PAT disabled
x86/mm/pat, drivers/media/ivtv: Use arch_phys_wc_add() and require PAT disabled
x86/platform/intel/baytrail: Add comments about why we disabled HPET on Baytrail
genirq: Prevent crash in irq_move_irq()
genirq: Enhance irq_data_to_desc() to support hierarchy irqdomain
iommu, x86: Properly handle posted interrupts for IOMMU hotplug
iommu, x86: Provide irq_remapping_cap() interface
iommu, x86: Setup Posted-Interrupts capability for Intel iommu
iommu, x86: Add cap_pi_support() to detect VT-d PI capability
iommu, x86: Avoid migrating VT-d posted interrupts
iommu, x86: Save the mode (posted or remapped) of an IRTE
iommu, x86: Implement irq_set_vcpu_affinity for intel_ir_chip
iommu: dmar: Provide helper to copy shared irte fields
iommu: dmar: Extend struct irte for VT-d Posted-Interrupts
iommu: Add new member capability to struct irq_remap_ops
x86/asm/entry/64: Disentangle error_entry/exit gsbase/ebx/usermode code
x86/asm/entry/32: Shorten __audit_syscall_entry() args preparation
x86/asm/entry/32: Explain reloading of registers after __audit_syscall_entry()
...
Diffstat (limited to 'drivers/media')
-rw-r--r-- | drivers/media/pci/ivtv/Kconfig | 3 | ||||
-rw-r--r-- | drivers/media/pci/ivtv/ivtvfb.c | 58 |
2 files changed, 26 insertions, 35 deletions
diff --git a/drivers/media/pci/ivtv/Kconfig b/drivers/media/pci/ivtv/Kconfig index dd6ee57e3a4c..6e5867c57305 100644 --- a/drivers/media/pci/ivtv/Kconfig +++ b/drivers/media/pci/ivtv/Kconfig @@ -57,5 +57,8 @@ config VIDEO_FB_IVTV This is used in the Hauppauge PVR-350 card. There is a driver homepage at <http://www.ivtvdriver.org>. + In order to use this module, you will need to boot with PAT disabled + on x86 systems, using the nopat kernel parameter. + To compile this driver as a module, choose M here: the module will be called ivtvfb. diff --git a/drivers/media/pci/ivtv/ivtvfb.c b/drivers/media/pci/ivtv/ivtvfb.c index 9ff1230192e8..4cb365d4ffdc 100644 --- a/drivers/media/pci/ivtv/ivtvfb.c +++ b/drivers/media/pci/ivtv/ivtvfb.c @@ -44,8 +44,8 @@ #include <linux/ivtvfb.h> #include <linux/slab.h> -#ifdef CONFIG_MTRR -#include <asm/mtrr.h> +#ifdef CONFIG_X86_64 +#include <asm/pat.h> #endif #include "ivtv-driver.h" @@ -155,12 +155,11 @@ struct osd_info { /* Buffer size */ u32 video_buffer_size; -#ifdef CONFIG_MTRR /* video_base rounded down as required by hardware MTRRs */ unsigned long fb_start_aligned_physaddr; /* video_base rounded up as required by hardware MTRRs */ unsigned long fb_end_aligned_physaddr; -#endif + int wc_cookie; /* Store the buffer offset */ int set_osd_coords_x; @@ -1099,6 +1098,8 @@ static int ivtvfb_init_vidmode(struct ivtv *itv) static int ivtvfb_init_io(struct ivtv *itv) { struct osd_info *oi = itv->osd_info; + /* Find the largest power of two that maps the whole buffer */ + int size_shift = 31; mutex_lock(&itv->serialize_lock); if (ivtv_init_on_first_open(itv)) { @@ -1132,29 +1133,16 @@ static int ivtvfb_init_io(struct ivtv *itv) oi->video_pbase, oi->video_vbase, oi->video_buffer_size / 1024); -#ifdef CONFIG_MTRR - { - /* Find the largest power of two that maps the whole buffer */ - int size_shift = 31; - - while (!(oi->video_buffer_size & (1 << size_shift))) { - size_shift--; - } - size_shift++; - oi->fb_start_aligned_physaddr = oi->video_pbase & ~((1 << size_shift) - 1); - oi->fb_end_aligned_physaddr = oi->video_pbase + oi->video_buffer_size; - oi->fb_end_aligned_physaddr += (1 << size_shift) - 1; - oi->fb_end_aligned_physaddr &= ~((1 << size_shift) - 1); - if (mtrr_add(oi->fb_start_aligned_physaddr, - oi->fb_end_aligned_physaddr - oi->fb_start_aligned_physaddr, - MTRR_TYPE_WRCOMB, 1) < 0) { - IVTVFB_INFO("disabled mttr\n"); - oi->fb_start_aligned_physaddr = 0; - oi->fb_end_aligned_physaddr = 0; - } - } -#endif - + while (!(oi->video_buffer_size & (1 << size_shift))) + size_shift--; + size_shift++; + oi->fb_start_aligned_physaddr = oi->video_pbase & ~((1 << size_shift) - 1); + oi->fb_end_aligned_physaddr = oi->video_pbase + oi->video_buffer_size; + oi->fb_end_aligned_physaddr += (1 << size_shift) - 1; + oi->fb_end_aligned_physaddr &= ~((1 << size_shift) - 1); + oi->wc_cookie = arch_phys_wc_add(oi->fb_start_aligned_physaddr, + oi->fb_end_aligned_physaddr - + oi->fb_start_aligned_physaddr); /* Blank the entire osd. */ memset_io(oi->video_vbase, 0, oi->video_buffer_size); @@ -1172,14 +1160,7 @@ static void ivtvfb_release_buffers (struct ivtv *itv) /* Release pseudo palette */ kfree(oi->ivtvfb_info.pseudo_palette); - -#ifdef CONFIG_MTRR - if (oi->fb_end_aligned_physaddr) { - mtrr_del(-1, oi->fb_start_aligned_physaddr, - oi->fb_end_aligned_physaddr - oi->fb_start_aligned_physaddr); - } -#endif - + arch_phys_wc_del(oi->wc_cookie); kfree(oi); itv->osd_info = NULL; } @@ -1284,6 +1265,13 @@ static int __init ivtvfb_init(void) int registered = 0; int err; +#ifdef CONFIG_X86_64 + if (WARN(pat_enabled(), + "ivtvfb needs PAT disabled, boot with nopat kernel parameter\n")) { + return -ENODEV; + } +#endif + if (ivtvfb_card_id < -1 || ivtvfb_card_id >= IVTV_MAX_CARDS) { printk(KERN_ERR "ivtvfb: ivtvfb_card_id parameter is out of range (valid range: -1 - %d)\n", IVTV_MAX_CARDS - 1); |