summaryrefslogtreecommitdiffstats
path: root/drivers/md/bitmap.h
diff options
context:
space:
mode:
authorChristoph Hellwig <hch@lst.de>2009-03-31 14:27:03 +1100
committerNeilBrown <neilb@suse.de>2009-03-31 14:27:03 +1100
commitef740c372dfd80e706dbf955d4e4aedda6c0c148 (patch)
tree8d9ef9db346ee1ba319a125c9de83cdde049510d /drivers/md/bitmap.h
parent2a40a8aed083d988df6822bb9b1b08fb7ce21e1d (diff)
downloadlinux-ef740c372dfd80e706dbf955d4e4aedda6c0c148.tar.bz2
md: move headers out of include/linux/raid/
Move the headers with the local structures for the disciplines and bitmap.h into drivers/md/ so that they are more easily grepable for hacking and not far away. md.h is left where it is for now as there are some uses from the outside. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: NeilBrown <neilb@suse.de>
Diffstat (limited to 'drivers/md/bitmap.h')
-rw-r--r--drivers/md/bitmap.h288
1 files changed, 288 insertions, 0 deletions
diff --git a/drivers/md/bitmap.h b/drivers/md/bitmap.h
new file mode 100644
index 000000000000..e98900671ca9
--- /dev/null
+++ b/drivers/md/bitmap.h
@@ -0,0 +1,288 @@
+/*
+ * bitmap.h: Copyright (C) Peter T. Breuer (ptb@ot.uc3m.es) 2003
+ *
+ * additions: Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
+ */
+#ifndef BITMAP_H
+#define BITMAP_H 1
+
+#define BITMAP_MAJOR_LO 3
+/* version 4 insists the bitmap is in little-endian order
+ * with version 3, it is host-endian which is non-portable
+ */
+#define BITMAP_MAJOR_HI 4
+#define BITMAP_MAJOR_HOSTENDIAN 3
+
+#define BITMAP_MINOR 39
+
+/*
+ * in-memory bitmap:
+ *
+ * Use 16 bit block counters to track pending writes to each "chunk".
+ * The 2 high order bits are special-purpose, the first is a flag indicating
+ * whether a resync is needed. The second is a flag indicating whether a
+ * resync is active.
+ * This means that the counter is actually 14 bits:
+ *
+ * +--------+--------+------------------------------------------------+
+ * | resync | resync | counter |
+ * | needed | active | |
+ * | (0-1) | (0-1) | (0-16383) |
+ * +--------+--------+------------------------------------------------+
+ *
+ * The "resync needed" bit is set when:
+ * a '1' bit is read from storage at startup.
+ * a write request fails on some drives
+ * a resync is aborted on a chunk with 'resync active' set
+ * It is cleared (and resync-active set) when a resync starts across all drives
+ * of the chunk.
+ *
+ *
+ * The "resync active" bit is set when:
+ * a resync is started on all drives, and resync_needed is set.
+ * resync_needed will be cleared (as long as resync_active wasn't already set).
+ * It is cleared when a resync completes.
+ *
+ * The counter counts pending write requests, plus the on-disk bit.
+ * When the counter is '1' and the resync bits are clear, the on-disk
+ * bit can be cleared aswell, thus setting the counter to 0.
+ * When we set a bit, or in the counter (to start a write), if the fields is
+ * 0, we first set the disk bit and set the counter to 1.
+ *
+ * If the counter is 0, the on-disk bit is clear and the stipe is clean
+ * Anything that dirties the stipe pushes the counter to 2 (at least)
+ * and sets the on-disk bit (lazily).
+ * If a periodic sweep find the counter at 2, it is decremented to 1.
+ * If the sweep find the counter at 1, the on-disk bit is cleared and the
+ * counter goes to zero.
+ *
+ * Also, we'll hijack the "map" pointer itself and use it as two 16 bit block
+ * counters as a fallback when "page" memory cannot be allocated:
+ *
+ * Normal case (page memory allocated):
+ *
+ * page pointer (32-bit)
+ *
+ * [ ] ------+
+ * |
+ * +-------> [ ][ ]..[ ] (4096 byte page == 2048 counters)
+ * c1 c2 c2048
+ *
+ * Hijacked case (page memory allocation failed):
+ *
+ * hijacked page pointer (32-bit)
+ *
+ * [ ][ ] (no page memory allocated)
+ * counter #1 (16-bit) counter #2 (16-bit)
+ *
+ */
+
+#ifdef __KERNEL__
+
+#define PAGE_BITS (PAGE_SIZE << 3)
+#define PAGE_BIT_SHIFT (PAGE_SHIFT + 3)
+
+typedef __u16 bitmap_counter_t;
+#define COUNTER_BITS 16
+#define COUNTER_BIT_SHIFT 4
+#define COUNTER_BYTE_RATIO (COUNTER_BITS / 8)
+#define COUNTER_BYTE_SHIFT (COUNTER_BIT_SHIFT - 3)
+
+#define NEEDED_MASK ((bitmap_counter_t) (1 << (COUNTER_BITS - 1)))
+#define RESYNC_MASK ((bitmap_counter_t) (1 << (COUNTER_BITS - 2)))
+#define COUNTER_MAX ((bitmap_counter_t) RESYNC_MASK - 1)
+#define NEEDED(x) (((bitmap_counter_t) x) & NEEDED_MASK)
+#define RESYNC(x) (((bitmap_counter_t) x) & RESYNC_MASK)
+#define COUNTER(x) (((bitmap_counter_t) x) & COUNTER_MAX)
+
+/* how many counters per page? */
+#define PAGE_COUNTER_RATIO (PAGE_BITS / COUNTER_BITS)
+/* same, except a shift value for more efficient bitops */
+#define PAGE_COUNTER_SHIFT (PAGE_BIT_SHIFT - COUNTER_BIT_SHIFT)
+/* same, except a mask value for more efficient bitops */
+#define PAGE_COUNTER_MASK (PAGE_COUNTER_RATIO - 1)
+
+#define BITMAP_BLOCK_SIZE 512
+#define BITMAP_BLOCK_SHIFT 9
+
+/* how many blocks per chunk? (this is variable) */
+#define CHUNK_BLOCK_RATIO(bitmap) ((bitmap)->chunksize >> BITMAP_BLOCK_SHIFT)
+#define CHUNK_BLOCK_SHIFT(bitmap) ((bitmap)->chunkshift - BITMAP_BLOCK_SHIFT)
+#define CHUNK_BLOCK_MASK(bitmap) (CHUNK_BLOCK_RATIO(bitmap) - 1)
+
+/* when hijacked, the counters and bits represent even larger "chunks" */
+/* there will be 1024 chunks represented by each counter in the page pointers */
+#define PAGEPTR_BLOCK_RATIO(bitmap) \
+ (CHUNK_BLOCK_RATIO(bitmap) << PAGE_COUNTER_SHIFT >> 1)
+#define PAGEPTR_BLOCK_SHIFT(bitmap) \
+ (CHUNK_BLOCK_SHIFT(bitmap) + PAGE_COUNTER_SHIFT - 1)
+#define PAGEPTR_BLOCK_MASK(bitmap) (PAGEPTR_BLOCK_RATIO(bitmap) - 1)
+
+/*
+ * on-disk bitmap:
+ *
+ * Use one bit per "chunk" (block set). We do the disk I/O on the bitmap
+ * file a page at a time. There's a superblock at the start of the file.
+ */
+
+/* map chunks (bits) to file pages - offset by the size of the superblock */
+#define CHUNK_BIT_OFFSET(chunk) ((chunk) + (sizeof(bitmap_super_t) << 3))
+
+#endif
+
+/*
+ * bitmap structures:
+ */
+
+#define BITMAP_MAGIC 0x6d746962
+
+/* use these for bitmap->flags and bitmap->sb->state bit-fields */
+enum bitmap_state {
+ BITMAP_STALE = 0x002, /* the bitmap file is out of date or had -EIO */
+ BITMAP_WRITE_ERROR = 0x004, /* A write error has occurred */
+ BITMAP_HOSTENDIAN = 0x8000,
+};
+
+/* the superblock at the front of the bitmap file -- little endian */
+typedef struct bitmap_super_s {
+ __le32 magic; /* 0 BITMAP_MAGIC */
+ __le32 version; /* 4 the bitmap major for now, could change... */
+ __u8 uuid[16]; /* 8 128 bit uuid - must match md device uuid */
+ __le64 events; /* 24 event counter for the bitmap (1)*/
+ __le64 events_cleared;/*32 event counter when last bit cleared (2) */
+ __le64 sync_size; /* 40 the size of the md device's sync range(3) */
+ __le32 state; /* 48 bitmap state information */
+ __le32 chunksize; /* 52 the bitmap chunk size in bytes */
+ __le32 daemon_sleep; /* 56 seconds between disk flushes */
+ __le32 write_behind; /* 60 number of outstanding write-behind writes */
+
+ __u8 pad[256 - 64]; /* set to zero */
+} bitmap_super_t;
+
+/* notes:
+ * (1) This event counter is updated before the eventcounter in the md superblock
+ * When a bitmap is loaded, it is only accepted if this event counter is equal
+ * to, or one greater than, the event counter in the superblock.
+ * (2) This event counter is updated when the other one is *if*and*only*if* the
+ * array is not degraded. As bits are not cleared when the array is degraded,
+ * this represents the last time that any bits were cleared.
+ * If a device is being added that has an event count with this value or
+ * higher, it is accepted as conforming to the bitmap.
+ * (3)This is the number of sectors represented by the bitmap, and is the range that
+ * resync happens across. For raid1 and raid5/6 it is the size of individual
+ * devices. For raid10 it is the size of the array.
+ */
+
+#ifdef __KERNEL__
+
+/* the in-memory bitmap is represented by bitmap_pages */
+struct bitmap_page {
+ /*
+ * map points to the actual memory page
+ */
+ char *map;
+ /*
+ * in emergencies (when map cannot be alloced), hijack the map
+ * pointer and use it as two counters itself
+ */
+ unsigned int hijacked:1;
+ /*
+ * count of dirty bits on the page
+ */
+ unsigned int count:31;
+};
+
+/* keep track of bitmap file pages that have pending writes on them */
+struct page_list {
+ struct list_head list;
+ struct page *page;
+};
+
+/* the main bitmap structure - one per mddev */
+struct bitmap {
+ struct bitmap_page *bp;
+ unsigned long pages; /* total number of pages in the bitmap */
+ unsigned long missing_pages; /* number of pages not yet allocated */
+
+ mddev_t *mddev; /* the md device that the bitmap is for */
+
+ int counter_bits; /* how many bits per block counter */
+
+ /* bitmap chunksize -- how much data does each bit represent? */
+ unsigned long chunksize;
+ unsigned long chunkshift; /* chunksize = 2^chunkshift (for bitops) */
+ unsigned long chunks; /* total number of data chunks for the array */
+
+ /* We hold a count on the chunk currently being synced, and drop
+ * it when the last block is started. If the resync is aborted
+ * midway, we need to be able to drop that count, so we remember
+ * the counted chunk..
+ */
+ unsigned long syncchunk;
+
+ __u64 events_cleared;
+ int need_sync;
+
+ /* bitmap spinlock */
+ spinlock_t lock;
+
+ long offset; /* offset from superblock if file is NULL */
+ struct file *file; /* backing disk file */
+ struct page *sb_page; /* cached copy of the bitmap file superblock */
+ struct page **filemap; /* list of cache pages for the file */
+ unsigned long *filemap_attr; /* attributes associated w/ filemap pages */
+ unsigned long file_pages; /* number of pages in the file */
+ int last_page_size; /* bytes in the last page */
+
+ unsigned long flags;
+
+ int allclean;
+
+ unsigned long max_write_behind; /* write-behind mode */
+ atomic_t behind_writes;
+
+ /*
+ * the bitmap daemon - periodically wakes up and sweeps the bitmap
+ * file, cleaning up bits and flushing out pages to disk as necessary
+ */
+ unsigned long daemon_lastrun; /* jiffies of last run */
+ unsigned long daemon_sleep; /* how many seconds between updates? */
+ unsigned long last_end_sync; /* when we lasted called end_sync to
+ * update bitmap with resync progress */
+
+ atomic_t pending_writes; /* pending writes to the bitmap file */
+ wait_queue_head_t write_wait;
+ wait_queue_head_t overflow_wait;
+
+};
+
+/* the bitmap API */
+
+/* these are used only by md/bitmap */
+int bitmap_create(mddev_t *mddev);
+void bitmap_flush(mddev_t *mddev);
+void bitmap_destroy(mddev_t *mddev);
+
+void bitmap_print_sb(struct bitmap *bitmap);
+void bitmap_update_sb(struct bitmap *bitmap);
+
+int bitmap_setallbits(struct bitmap *bitmap);
+void bitmap_write_all(struct bitmap *bitmap);
+
+void bitmap_dirty_bits(struct bitmap *bitmap, unsigned long s, unsigned long e);
+
+/* these are exported */
+int bitmap_startwrite(struct bitmap *bitmap, sector_t offset,
+ unsigned long sectors, int behind);
+void bitmap_endwrite(struct bitmap *bitmap, sector_t offset,
+ unsigned long sectors, int success, int behind);
+int bitmap_start_sync(struct bitmap *bitmap, sector_t offset, int *blocks, int degraded);
+void bitmap_end_sync(struct bitmap *bitmap, sector_t offset, int *blocks, int aborted);
+void bitmap_close_sync(struct bitmap *bitmap);
+void bitmap_cond_end_sync(struct bitmap *bitmap, sector_t sector);
+
+void bitmap_unplug(struct bitmap *bitmap);
+void bitmap_daemon_work(struct bitmap *bitmap);
+#endif
+
+#endif