diff options
author | Eric Anholt <eric@anholt.net> | 2008-07-30 12:06:12 -0700 |
---|---|---|
committer | Dave Airlie <airlied@linux.ie> | 2008-10-18 07:10:12 +1000 |
commit | 673a394b1e3b69be886ff24abfd6df97c52e8d08 (patch) | |
tree | 61ca8299333ab50ffc46cf328b20eb25133392ff /drivers/gpu/drm/i915/i915_gem_tiling.c | |
parent | d1d8c925b71dd6753bf438f9e14a9e5c5183bcc6 (diff) | |
download | linux-673a394b1e3b69be886ff24abfd6df97c52e8d08.tar.bz2 |
drm: Add GEM ("graphics execution manager") to i915 driver.
GEM allows the creation of persistent buffer objects accessible by the
graphics device through new ioctls for managing execution of commands on the
device. The userland API is almost entirely driver-specific to ensure that
any driver building on this model can easily map the interface to individual
driver requirements.
GEM is used by the 2d driver for managing its internal state allocations and
will be used for pixmap storage to reduce memory consumption and enable
zero-copy GLX_EXT_texture_from_pixmap, and in the 3d driver is used to enable
GL_EXT_framebuffer_object and GL_ARB_pixel_buffer_object.
Signed-off-by: Eric Anholt <eric@anholt.net>
Signed-off-by: Dave Airlie <airlied@redhat.com>
Diffstat (limited to 'drivers/gpu/drm/i915/i915_gem_tiling.c')
-rw-r--r-- | drivers/gpu/drm/i915/i915_gem_tiling.c | 256 |
1 files changed, 256 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/i915_gem_tiling.c b/drivers/gpu/drm/i915/i915_gem_tiling.c new file mode 100644 index 000000000000..0c1b3a0834e1 --- /dev/null +++ b/drivers/gpu/drm/i915/i915_gem_tiling.c @@ -0,0 +1,256 @@ +/* + * Copyright © 2008 Intel Corporation + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS + * IN THE SOFTWARE. + * + * Authors: + * Eric Anholt <eric@anholt.net> + * + */ + +#include "drmP.h" +#include "drm.h" +#include "i915_drm.h" +#include "i915_drv.h" + +/** @file i915_gem_tiling.c + * + * Support for managing tiling state of buffer objects. + * + * The idea behind tiling is to increase cache hit rates by rearranging + * pixel data so that a group of pixel accesses are in the same cacheline. + * Performance improvement from doing this on the back/depth buffer are on + * the order of 30%. + * + * Intel architectures make this somewhat more complicated, though, by + * adjustments made to addressing of data when the memory is in interleaved + * mode (matched pairs of DIMMS) to improve memory bandwidth. + * For interleaved memory, the CPU sends every sequential 64 bytes + * to an alternate memory channel so it can get the bandwidth from both. + * + * The GPU also rearranges its accesses for increased bandwidth to interleaved + * memory, and it matches what the CPU does for non-tiled. However, when tiled + * it does it a little differently, since one walks addresses not just in the + * X direction but also Y. So, along with alternating channels when bit + * 6 of the address flips, it also alternates when other bits flip -- Bits 9 + * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines) + * are common to both the 915 and 965-class hardware. + * + * The CPU also sometimes XORs in higher bits as well, to improve + * bandwidth doing strided access like we do so frequently in graphics. This + * is called "Channel XOR Randomization" in the MCH documentation. The result + * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address + * decode. + * + * All of this bit 6 XORing has an effect on our memory management, + * as we need to make sure that the 3d driver can correctly address object + * contents. + * + * If we don't have interleaved memory, all tiling is safe and no swizzling is + * required. + * + * When bit 17 is XORed in, we simply refuse to tile at all. Bit + * 17 is not just a page offset, so as we page an objet out and back in, + * individual pages in it will have different bit 17 addresses, resulting in + * each 64 bytes being swapped with its neighbor! + * + * Otherwise, if interleaved, we have to tell the 3d driver what the address + * swizzling it needs to do is, since it's writing with the CPU to the pages + * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the + * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling + * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order + * to match what the GPU expects. + */ + +/** + * Detects bit 6 swizzling of address lookup between IGD access and CPU + * access through main memory. + */ +void +i915_gem_detect_bit_6_swizzle(struct drm_device *dev) +{ + drm_i915_private_t *dev_priv = dev->dev_private; + uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN; + uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN; + + if (!IS_I9XX(dev)) { + /* As far as we know, the 865 doesn't have these bit 6 + * swizzling issues. + */ + swizzle_x = I915_BIT_6_SWIZZLE_NONE; + swizzle_y = I915_BIT_6_SWIZZLE_NONE; + } else if (!IS_I965G(dev) || IS_I965GM(dev)) { + uint32_t dcc; + + /* On 915-945 and GM965, channel interleave by the CPU is + * determined by DCC. The CPU will alternate based on bit 6 + * in interleaved mode, and the GPU will then also alternate + * on bit 6, 9, and 10 for X, but the CPU may also optionally + * alternate based on bit 17 (XOR not disabled and XOR + * bit == 17). + */ + dcc = I915_READ(DCC); + switch (dcc & DCC_ADDRESSING_MODE_MASK) { + case DCC_ADDRESSING_MODE_SINGLE_CHANNEL: + case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC: + swizzle_x = I915_BIT_6_SWIZZLE_NONE; + swizzle_y = I915_BIT_6_SWIZZLE_NONE; + break; + case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED: + if (IS_I915G(dev) || IS_I915GM(dev) || + dcc & DCC_CHANNEL_XOR_DISABLE) { + swizzle_x = I915_BIT_6_SWIZZLE_9_10; + swizzle_y = I915_BIT_6_SWIZZLE_9; + } else if (IS_I965GM(dev)) { + /* GM965 only does bit 11-based channel + * randomization + */ + swizzle_x = I915_BIT_6_SWIZZLE_9_10_11; + swizzle_y = I915_BIT_6_SWIZZLE_9_11; + } else { + /* Bit 17 or perhaps other swizzling */ + swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN; + swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN; + } + break; + } + if (dcc == 0xffffffff) { + DRM_ERROR("Couldn't read from MCHBAR. " + "Disabling tiling.\n"); + swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN; + swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN; + } + } else { + /* The 965, G33, and newer, have a very flexible memory + * configuration. It will enable dual-channel mode + * (interleaving) on as much memory as it can, and the GPU + * will additionally sometimes enable different bit 6 + * swizzling for tiled objects from the CPU. + * + * Here's what I found on the G965: + * slot fill memory size swizzling + * 0A 0B 1A 1B 1-ch 2-ch + * 512 0 0 0 512 0 O + * 512 0 512 0 16 1008 X + * 512 0 0 512 16 1008 X + * 0 512 0 512 16 1008 X + * 1024 1024 1024 0 2048 1024 O + * + * We could probably detect this based on either the DRB + * matching, which was the case for the swizzling required in + * the table above, or from the 1-ch value being less than + * the minimum size of a rank. + */ + if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) { + swizzle_x = I915_BIT_6_SWIZZLE_NONE; + swizzle_y = I915_BIT_6_SWIZZLE_NONE; + } else { + swizzle_x = I915_BIT_6_SWIZZLE_9_10; + swizzle_y = I915_BIT_6_SWIZZLE_9; + } + } + + dev_priv->mm.bit_6_swizzle_x = swizzle_x; + dev_priv->mm.bit_6_swizzle_y = swizzle_y; +} + +/** + * Sets the tiling mode of an object, returning the required swizzling of + * bit 6 of addresses in the object. + */ +int +i915_gem_set_tiling(struct drm_device *dev, void *data, + struct drm_file *file_priv) +{ + struct drm_i915_gem_set_tiling *args = data; + drm_i915_private_t *dev_priv = dev->dev_private; + struct drm_gem_object *obj; + struct drm_i915_gem_object *obj_priv; + + obj = drm_gem_object_lookup(dev, file_priv, args->handle); + if (obj == NULL) + return -EINVAL; + obj_priv = obj->driver_private; + + mutex_lock(&dev->struct_mutex); + + if (args->tiling_mode == I915_TILING_NONE) { + obj_priv->tiling_mode = I915_TILING_NONE; + args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE; + } else { + if (args->tiling_mode == I915_TILING_X) + args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x; + else + args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y; + /* If we can't handle the swizzling, make it untiled. */ + if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) { + args->tiling_mode = I915_TILING_NONE; + args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE; + } + } + obj_priv->tiling_mode = args->tiling_mode; + + mutex_unlock(&dev->struct_mutex); + + drm_gem_object_unreference(obj); + + return 0; +} + +/** + * Returns the current tiling mode and required bit 6 swizzling for the object. + */ +int +i915_gem_get_tiling(struct drm_device *dev, void *data, + struct drm_file *file_priv) +{ + struct drm_i915_gem_get_tiling *args = data; + drm_i915_private_t *dev_priv = dev->dev_private; + struct drm_gem_object *obj; + struct drm_i915_gem_object *obj_priv; + + obj = drm_gem_object_lookup(dev, file_priv, args->handle); + if (obj == NULL) + return -EINVAL; + obj_priv = obj->driver_private; + + mutex_lock(&dev->struct_mutex); + + args->tiling_mode = obj_priv->tiling_mode; + switch (obj_priv->tiling_mode) { + case I915_TILING_X: + args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x; + break; + case I915_TILING_Y: + args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y; + break; + case I915_TILING_NONE: + args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE; + break; + default: + DRM_ERROR("unknown tiling mode\n"); + } + + mutex_unlock(&dev->struct_mutex); + + drm_gem_object_unreference(obj); + + return 0; +} |