summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/i915/gt/intel_engine_pm.c
diff options
context:
space:
mode:
authorChris Wilson <chris@chris-wilson.co.uk>2019-04-24 21:07:17 +0100
committerChris Wilson <chris@chris-wilson.co.uk>2019-04-24 22:26:49 +0100
commit79ffac8599c4d8aa84d313920d3d86d7361c252b (patch)
tree3352bc82c4d7bb7cd9caaf42fda9ee97e0e88bde /drivers/gpu/drm/i915/gt/intel_engine_pm.c
parent2ccdf6a1c3f7ff51d721ee7a5bed96e03da77205 (diff)
downloadlinux-79ffac8599c4d8aa84d313920d3d86d7361c252b.tar.bz2
drm/i915: Invert the GEM wakeref hierarchy
In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
Diffstat (limited to 'drivers/gpu/drm/i915/gt/intel_engine_pm.c')
-rw-r--r--drivers/gpu/drm/i915/gt/intel_engine_pm.c147
1 files changed, 147 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/gt/intel_engine_pm.c b/drivers/gpu/drm/i915/gt/intel_engine_pm.c
new file mode 100644
index 000000000000..3976aea3c1d1
--- /dev/null
+++ b/drivers/gpu/drm/i915/gt/intel_engine_pm.c
@@ -0,0 +1,147 @@
+/*
+ * SPDX-License-Identifier: MIT
+ *
+ * Copyright © 2019 Intel Corporation
+ */
+
+#include "i915_drv.h"
+
+#include "intel_engine.h"
+#include "intel_engine_pm.h"
+#include "intel_gt_pm.h"
+
+static int intel_engine_unpark(struct intel_wakeref *wf)
+{
+ struct intel_engine_cs *engine =
+ container_of(wf, typeof(*engine), wakeref);
+ void *map;
+
+ GEM_TRACE("%s\n", engine->name);
+
+ intel_gt_pm_get(engine->i915);
+
+ /* Pin the default state for fast resets from atomic context. */
+ map = NULL;
+ if (engine->default_state)
+ map = i915_gem_object_pin_map(engine->default_state,
+ I915_MAP_WB);
+ if (!IS_ERR_OR_NULL(map))
+ engine->pinned_default_state = map;
+
+ if (engine->unpark)
+ engine->unpark(engine);
+
+ intel_engine_init_hangcheck(engine);
+ return 0;
+}
+
+void intel_engine_pm_get(struct intel_engine_cs *engine)
+{
+ intel_wakeref_get(engine->i915, &engine->wakeref, intel_engine_unpark);
+}
+
+static bool switch_to_kernel_context(struct intel_engine_cs *engine)
+{
+ struct i915_request *rq;
+
+ /* Already inside the kernel context, safe to power down. */
+ if (engine->wakeref_serial == engine->serial)
+ return true;
+
+ /* GPU is pointing to the void, as good as in the kernel context. */
+ if (i915_reset_failed(engine->i915))
+ return true;
+
+ /*
+ * Note, we do this without taking the timeline->mutex. We cannot
+ * as we may be called while retiring the kernel context and so
+ * already underneath the timeline->mutex. Instead we rely on the
+ * exclusive property of the intel_engine_park that prevents anyone
+ * else from creating a request on this engine. This also requires
+ * that the ring is empty and we avoid any waits while constructing
+ * the context, as they assume protection by the timeline->mutex.
+ * This should hold true as we can only park the engine after
+ * retiring the last request, thus all rings should be empty and
+ * all timelines idle.
+ */
+ rq = __i915_request_create(engine->kernel_context, GFP_NOWAIT);
+ if (IS_ERR(rq))
+ /* Context switch failed, hope for the best! Maybe reset? */
+ return true;
+
+ /* Check again on the next retirement. */
+ engine->wakeref_serial = engine->serial + 1;
+ __i915_request_commit(rq);
+
+ return false;
+}
+
+static int intel_engine_park(struct intel_wakeref *wf)
+{
+ struct intel_engine_cs *engine =
+ container_of(wf, typeof(*engine), wakeref);
+
+ /*
+ * If one and only one request is completed between pm events,
+ * we know that we are inside the kernel context and it is
+ * safe to power down. (We are paranoid in case that runtime
+ * suspend causes corruption to the active context image, and
+ * want to avoid that impacting userspace.)
+ */
+ if (!switch_to_kernel_context(engine))
+ return -EBUSY;
+
+ GEM_TRACE("%s\n", engine->name);
+
+ intel_engine_disarm_breadcrumbs(engine);
+
+ /* Must be reset upon idling, or we may miss the busy wakeup. */
+ GEM_BUG_ON(engine->execlists.queue_priority_hint != INT_MIN);
+
+ if (engine->park)
+ engine->park(engine);
+
+ if (engine->pinned_default_state) {
+ i915_gem_object_unpin_map(engine->default_state);
+ engine->pinned_default_state = NULL;
+ }
+
+ engine->execlists.no_priolist = false;
+
+ intel_gt_pm_put(engine->i915);
+ return 0;
+}
+
+void intel_engine_pm_put(struct intel_engine_cs *engine)
+{
+ intel_wakeref_put(engine->i915, &engine->wakeref, intel_engine_park);
+}
+
+void intel_engine_init__pm(struct intel_engine_cs *engine)
+{
+ intel_wakeref_init(&engine->wakeref);
+}
+
+int intel_engines_resume(struct drm_i915_private *i915)
+{
+ struct intel_engine_cs *engine;
+ enum intel_engine_id id;
+ int err = 0;
+
+ intel_gt_pm_get(i915);
+ for_each_engine(engine, i915, id) {
+ intel_engine_pm_get(engine);
+ engine->serial++; /* kernel context lost */
+ err = engine->resume(engine);
+ intel_engine_pm_put(engine);
+ if (err) {
+ dev_err(i915->drm.dev,
+ "Failed to restart %s (%d)\n",
+ engine->name, err);
+ break;
+ }
+ }
+ intel_gt_pm_put(i915);
+
+ return err;
+}