summaryrefslogtreecommitdiffstats
path: root/drivers/crypto/mxs-dcp.c
diff options
context:
space:
mode:
authorMarek Vasut <marex@denx.de>2013-12-10 20:26:21 +0100
committerHerbert Xu <herbert@gondor.apana.org.au>2014-01-05 20:49:54 +0800
commit15b59e7c3733f90ff1f7dd66ad77ae1c90bcdff5 (patch)
treef2d6df9e0f69b10fc3d86080320f689e05211650 /drivers/crypto/mxs-dcp.c
parentc493c04403769d833864ad5be2ff64dee7567ca7 (diff)
downloadlinux-15b59e7c3733f90ff1f7dd66ad77ae1c90bcdff5.tar.bz2
crypto: mxs - Add Freescale MXS DCP driver
Add support for the MXS DCP block. The driver currently supports SHA-1/SHA-256 hashing and AES-128 CBC/ECB modes. The non-standard CRC32 is not yet supported. Signed-off-by: Marek Vasut <marex@denx.de> Cc: David S. Miller <davem@davemloft.net> Cc: Fabio Estevam <fabio.estevam@freescale.com> Cc: Shawn Guo <shawn.guo@linaro.org> Cc: devicetree@vger.kernel.org Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Diffstat (limited to 'drivers/crypto/mxs-dcp.c')
-rw-r--r--drivers/crypto/mxs-dcp.c1100
1 files changed, 1100 insertions, 0 deletions
diff --git a/drivers/crypto/mxs-dcp.c b/drivers/crypto/mxs-dcp.c
new file mode 100644
index 000000000000..d41917c555d5
--- /dev/null
+++ b/drivers/crypto/mxs-dcp.c
@@ -0,0 +1,1100 @@
+/*
+ * Freescale i.MX23/i.MX28 Data Co-Processor driver
+ *
+ * Copyright (C) 2013 Marek Vasut <marex@denx.de>
+ *
+ * The code contained herein is licensed under the GNU General Public
+ * License. You may obtain a copy of the GNU General Public License
+ * Version 2 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/gpl-license.html
+ * http://www.gnu.org/copyleft/gpl.html
+ */
+
+#include <linux/crypto.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/kthread.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/stmp_device.h>
+
+#include <crypto/aes.h>
+#include <crypto/sha.h>
+#include <crypto/internal/hash.h>
+
+#define DCP_MAX_CHANS 4
+#define DCP_BUF_SZ PAGE_SIZE
+
+/* DCP DMA descriptor. */
+struct dcp_dma_desc {
+ uint32_t next_cmd_addr;
+ uint32_t control0;
+ uint32_t control1;
+ uint32_t source;
+ uint32_t destination;
+ uint32_t size;
+ uint32_t payload;
+ uint32_t status;
+};
+
+/* Coherent aligned block for bounce buffering. */
+struct dcp_coherent_block {
+ uint8_t aes_in_buf[DCP_BUF_SZ];
+ uint8_t aes_out_buf[DCP_BUF_SZ];
+ uint8_t sha_in_buf[DCP_BUF_SZ];
+
+ uint8_t aes_key[2 * AES_KEYSIZE_128];
+ uint8_t sha_digest[SHA256_DIGEST_SIZE];
+
+ struct dcp_dma_desc desc[DCP_MAX_CHANS];
+};
+
+struct dcp {
+ struct device *dev;
+ void __iomem *base;
+
+ uint32_t caps;
+
+ struct dcp_coherent_block *coh;
+
+ struct completion completion[DCP_MAX_CHANS];
+ struct mutex mutex[DCP_MAX_CHANS];
+ struct task_struct *thread[DCP_MAX_CHANS];
+ struct crypto_queue queue[DCP_MAX_CHANS];
+};
+
+enum dcp_chan {
+ DCP_CHAN_HASH_SHA = 0,
+ DCP_CHAN_CRYPTO = 2,
+};
+
+struct dcp_async_ctx {
+ /* Common context */
+ enum dcp_chan chan;
+ uint32_t fill;
+
+ /* SHA Hash-specific context */
+ struct mutex mutex;
+ uint32_t alg;
+ unsigned int hot:1;
+
+ /* Crypto-specific context */
+ unsigned int enc:1;
+ unsigned int ecb:1;
+ struct crypto_ablkcipher *fallback;
+ unsigned int key_len;
+ uint8_t key[AES_KEYSIZE_128];
+};
+
+struct dcp_sha_req_ctx {
+ unsigned int init:1;
+ unsigned int fini:1;
+};
+
+/*
+ * There can even be only one instance of the MXS DCP due to the
+ * design of Linux Crypto API.
+ */
+static struct dcp *global_sdcp;
+DEFINE_MUTEX(global_mutex);
+
+/* DCP register layout. */
+#define MXS_DCP_CTRL 0x00
+#define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
+#define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
+
+#define MXS_DCP_STAT 0x10
+#define MXS_DCP_STAT_CLR 0x18
+#define MXS_DCP_STAT_IRQ_MASK 0xf
+
+#define MXS_DCP_CHANNELCTRL 0x20
+#define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
+
+#define MXS_DCP_CAPABILITY1 0x40
+#define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
+#define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
+#define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
+
+#define MXS_DCP_CONTEXT 0x50
+
+#define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
+
+#define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
+
+#define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
+#define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
+
+/* DMA descriptor bits. */
+#define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
+#define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
+#define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
+#define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
+#define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
+#define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
+#define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
+#define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
+#define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
+
+#define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
+#define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
+#define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
+#define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
+#define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
+
+static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
+{
+ struct dcp *sdcp = global_sdcp;
+ const int chan = actx->chan;
+ uint32_t stat;
+ int ret;
+ struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
+
+ dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
+ DMA_TO_DEVICE);
+
+ reinit_completion(&sdcp->completion[chan]);
+
+ /* Clear status register. */
+ writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
+
+ /* Load the DMA descriptor. */
+ writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
+
+ /* Increment the semaphore to start the DMA transfer. */
+ writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
+
+ ret = wait_for_completion_timeout(&sdcp->completion[chan],
+ msecs_to_jiffies(1000));
+ if (!ret) {
+ dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
+ chan, readl(sdcp->base + MXS_DCP_STAT));
+ return -ETIMEDOUT;
+ }
+
+ stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
+ if (stat & 0xff) {
+ dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
+ chan, stat);
+ return -EINVAL;
+ }
+
+ dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
+
+ return 0;
+}
+
+/*
+ * Encryption (AES128)
+ */
+static int mxs_dcp_run_aes(struct dcp_async_ctx *actx, int init)
+{
+ struct dcp *sdcp = global_sdcp;
+ struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
+ int ret;
+
+ dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
+ 2 * AES_KEYSIZE_128,
+ DMA_TO_DEVICE);
+ dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
+ DCP_BUF_SZ, DMA_TO_DEVICE);
+ dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
+ DCP_BUF_SZ, DMA_FROM_DEVICE);
+
+ /* Fill in the DMA descriptor. */
+ desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
+ MXS_DCP_CONTROL0_INTERRUPT |
+ MXS_DCP_CONTROL0_ENABLE_CIPHER;
+
+ /* Payload contains the key. */
+ desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
+
+ if (actx->enc)
+ desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
+ if (init)
+ desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
+
+ desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
+
+ if (actx->ecb)
+ desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
+ else
+ desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
+
+ desc->next_cmd_addr = 0;
+ desc->source = src_phys;
+ desc->destination = dst_phys;
+ desc->size = actx->fill;
+ desc->payload = key_phys;
+ desc->status = 0;
+
+ ret = mxs_dcp_start_dma(actx);
+
+ dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
+ DMA_TO_DEVICE);
+ dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
+ dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
+
+ return ret;
+}
+
+static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
+{
+ struct dcp *sdcp = global_sdcp;
+
+ struct ablkcipher_request *req = ablkcipher_request_cast(arq);
+ struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
+
+ struct scatterlist *dst = req->dst;
+ struct scatterlist *src = req->src;
+ const int nents = sg_nents(req->src);
+
+ const int out_off = DCP_BUF_SZ;
+ uint8_t *in_buf = sdcp->coh->aes_in_buf;
+ uint8_t *out_buf = sdcp->coh->aes_out_buf;
+
+ uint8_t *out_tmp, *src_buf, *dst_buf = NULL;
+ uint32_t dst_off = 0;
+
+ uint8_t *key = sdcp->coh->aes_key;
+
+ int ret = 0;
+ int split = 0;
+ unsigned int i, len, clen, rem = 0;
+ int init = 0;
+
+ actx->fill = 0;
+
+ /* Copy the key from the temporary location. */
+ memcpy(key, actx->key, actx->key_len);
+
+ if (!actx->ecb) {
+ /* Copy the CBC IV just past the key. */
+ memcpy(key + AES_KEYSIZE_128, req->info, AES_KEYSIZE_128);
+ /* CBC needs the INIT set. */
+ init = 1;
+ } else {
+ memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
+ }
+
+ for_each_sg(req->src, src, nents, i) {
+ src_buf = sg_virt(src);
+ len = sg_dma_len(src);
+
+ do {
+ if (actx->fill + len > out_off)
+ clen = out_off - actx->fill;
+ else
+ clen = len;
+
+ memcpy(in_buf + actx->fill, src_buf, clen);
+ len -= clen;
+ src_buf += clen;
+ actx->fill += clen;
+
+ /*
+ * If we filled the buffer or this is the last SG,
+ * submit the buffer.
+ */
+ if (actx->fill == out_off || sg_is_last(src)) {
+ ret = mxs_dcp_run_aes(actx, init);
+ if (ret)
+ return ret;
+ init = 0;
+
+ out_tmp = out_buf;
+ while (dst && actx->fill) {
+ if (!split) {
+ dst_buf = sg_virt(dst);
+ dst_off = 0;
+ }
+ rem = min(sg_dma_len(dst) - dst_off,
+ actx->fill);
+
+ memcpy(dst_buf + dst_off, out_tmp, rem);
+ out_tmp += rem;
+ dst_off += rem;
+ actx->fill -= rem;
+
+ if (dst_off == sg_dma_len(dst)) {
+ dst = sg_next(dst);
+ split = 0;
+ } else {
+ split = 1;
+ }
+ }
+ }
+ } while (len);
+ }
+
+ return ret;
+}
+
+static int dcp_chan_thread_aes(void *data)
+{
+ struct dcp *sdcp = global_sdcp;
+ const int chan = DCP_CHAN_CRYPTO;
+
+ struct crypto_async_request *backlog;
+ struct crypto_async_request *arq;
+
+ int ret;
+
+ do {
+ __set_current_state(TASK_INTERRUPTIBLE);
+
+ mutex_lock(&sdcp->mutex[chan]);
+ backlog = crypto_get_backlog(&sdcp->queue[chan]);
+ arq = crypto_dequeue_request(&sdcp->queue[chan]);
+ mutex_unlock(&sdcp->mutex[chan]);
+
+ if (backlog)
+ backlog->complete(backlog, -EINPROGRESS);
+
+ if (arq) {
+ ret = mxs_dcp_aes_block_crypt(arq);
+ arq->complete(arq, ret);
+ continue;
+ }
+
+ schedule();
+ } while (!kthread_should_stop());
+
+ return 0;
+}
+
+static int mxs_dcp_block_fallback(struct ablkcipher_request *req, int enc)
+{
+ struct crypto_tfm *tfm =
+ crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
+ struct dcp_async_ctx *ctx = crypto_ablkcipher_ctx(
+ crypto_ablkcipher_reqtfm(req));
+ int ret;
+
+ ablkcipher_request_set_tfm(req, ctx->fallback);
+
+ if (enc)
+ ret = crypto_ablkcipher_encrypt(req);
+ else
+ ret = crypto_ablkcipher_decrypt(req);
+
+ ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(tfm));
+
+ return ret;
+}
+
+static int mxs_dcp_aes_enqueue(struct ablkcipher_request *req, int enc, int ecb)
+{
+ struct dcp *sdcp = global_sdcp;
+ struct crypto_async_request *arq = &req->base;
+ struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
+ int ret;
+
+ if (unlikely(actx->key_len != AES_KEYSIZE_128))
+ return mxs_dcp_block_fallback(req, enc);
+
+ actx->enc = enc;
+ actx->ecb = ecb;
+ actx->chan = DCP_CHAN_CRYPTO;
+
+ mutex_lock(&sdcp->mutex[actx->chan]);
+ ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
+ mutex_unlock(&sdcp->mutex[actx->chan]);
+
+ wake_up_process(sdcp->thread[actx->chan]);
+
+ return -EINPROGRESS;
+}
+
+static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request *req)
+{
+ return mxs_dcp_aes_enqueue(req, 0, 1);
+}
+
+static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request *req)
+{
+ return mxs_dcp_aes_enqueue(req, 1, 1);
+}
+
+static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request *req)
+{
+ return mxs_dcp_aes_enqueue(req, 0, 0);
+}
+
+static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request *req)
+{
+ return mxs_dcp_aes_enqueue(req, 1, 0);
+}
+
+static int mxs_dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
+ unsigned int len)
+{
+ struct dcp_async_ctx *actx = crypto_ablkcipher_ctx(tfm);
+ unsigned int ret;
+
+ /*
+ * AES 128 is supposed by the hardware, store key into temporary
+ * buffer and exit. We must use the temporary buffer here, since
+ * there can still be an operation in progress.
+ */
+ actx->key_len = len;
+ if (len == AES_KEYSIZE_128) {
+ memcpy(actx->key, key, len);
+ return 0;
+ }
+
+ /* Check if the key size is supported by kernel at all. */
+ if (len != AES_KEYSIZE_192 && len != AES_KEYSIZE_256) {
+ tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
+ return -EINVAL;
+ }
+
+ /*
+ * If the requested AES key size is not supported by the hardware,
+ * but is supported by in-kernel software implementation, we use
+ * software fallback.
+ */
+ actx->fallback->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
+ actx->fallback->base.crt_flags |=
+ tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK;
+
+ ret = crypto_ablkcipher_setkey(actx->fallback, key, len);
+ if (!ret)
+ return 0;
+
+ tfm->base.crt_flags &= ~CRYPTO_TFM_RES_MASK;
+ tfm->base.crt_flags |=
+ actx->fallback->base.crt_flags & CRYPTO_TFM_RES_MASK;
+
+ return ret;
+}
+
+static int mxs_dcp_aes_fallback_init(struct crypto_tfm *tfm)
+{
+ const char *name = tfm->__crt_alg->cra_name;
+ const uint32_t flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK;
+ struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
+ struct crypto_ablkcipher *blk;
+
+ blk = crypto_alloc_ablkcipher(name, 0, flags);
+ if (IS_ERR(blk))
+ return PTR_ERR(blk);
+
+ actx->fallback = blk;
+ tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_async_ctx);
+ return 0;
+}
+
+static void mxs_dcp_aes_fallback_exit(struct crypto_tfm *tfm)
+{
+ struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
+
+ crypto_free_ablkcipher(actx->fallback);
+ actx->fallback = NULL;
+}
+
+/*
+ * Hashing (SHA1/SHA256)
+ */
+static int mxs_dcp_run_sha(struct ahash_request *req)
+{
+ struct dcp *sdcp = global_sdcp;
+ int ret;
+
+ struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+ struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
+ struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
+
+ struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
+ dma_addr_t digest_phys = dma_map_single(sdcp->dev,
+ sdcp->coh->sha_digest,
+ SHA256_DIGEST_SIZE,
+ DMA_FROM_DEVICE);
+
+ dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
+ DCP_BUF_SZ, DMA_TO_DEVICE);
+
+ /* Fill in the DMA descriptor. */
+ desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
+ MXS_DCP_CONTROL0_INTERRUPT |
+ MXS_DCP_CONTROL0_ENABLE_HASH;
+ if (rctx->init)
+ desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
+
+ desc->control1 = actx->alg;
+ desc->next_cmd_addr = 0;
+ desc->source = buf_phys;
+ desc->destination = 0;
+ desc->size = actx->fill;
+ desc->payload = 0;
+ desc->status = 0;
+
+ /* Set HASH_TERM bit for last transfer block. */
+ if (rctx->fini) {
+ desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
+ desc->payload = digest_phys;
+ }
+
+ ret = mxs_dcp_start_dma(actx);
+
+ dma_unmap_single(sdcp->dev, digest_phys, SHA256_DIGEST_SIZE,
+ DMA_FROM_DEVICE);
+ dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
+
+ return ret;
+}
+
+static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
+{
+ struct dcp *sdcp = global_sdcp;
+
+ struct ahash_request *req = ahash_request_cast(arq);
+ struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+ struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
+ struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
+ struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
+ const int nents = sg_nents(req->src);
+
+ uint8_t *digest = sdcp->coh->sha_digest;
+ uint8_t *in_buf = sdcp->coh->sha_in_buf;
+
+ uint8_t *src_buf;
+
+ struct scatterlist *src;
+
+ unsigned int i, len, clen;
+ int ret;
+
+ int fin = rctx->fini;
+ if (fin)
+ rctx->fini = 0;
+
+ for_each_sg(req->src, src, nents, i) {
+ src_buf = sg_virt(src);
+ len = sg_dma_len(src);
+
+ do {
+ if (actx->fill + len > DCP_BUF_SZ)
+ clen = DCP_BUF_SZ - actx->fill;
+ else
+ clen = len;
+
+ memcpy(in_buf + actx->fill, src_buf, clen);
+ len -= clen;
+ src_buf += clen;
+ actx->fill += clen;
+
+ /*
+ * If we filled the buffer and still have some
+ * more data, submit the buffer.
+ */
+ if (len && actx->fill == DCP_BUF_SZ) {
+ ret = mxs_dcp_run_sha(req);
+ if (ret)
+ return ret;
+ actx->fill = 0;
+ rctx->init = 0;
+ }
+ } while (len);
+ }
+
+ if (fin) {
+ rctx->fini = 1;
+
+ /* Submit whatever is left. */
+ ret = mxs_dcp_run_sha(req);
+ if (ret || !req->result)
+ return ret;
+ actx->fill = 0;
+
+ /* For some reason, the result is flipped. */
+ for (i = 0; i < halg->digestsize; i++)
+ req->result[i] = digest[halg->digestsize - i - 1];
+ }
+
+ return 0;
+}
+
+static int dcp_chan_thread_sha(void *data)
+{
+ struct dcp *sdcp = global_sdcp;
+ const int chan = DCP_CHAN_HASH_SHA;
+
+ struct crypto_async_request *backlog;
+ struct crypto_async_request *arq;
+
+ struct dcp_sha_req_ctx *rctx;
+
+ struct ahash_request *req;
+ int ret, fini;
+
+ do {
+ __set_current_state(TASK_INTERRUPTIBLE);
+
+ mutex_lock(&sdcp->mutex[chan]);
+ backlog = crypto_get_backlog(&sdcp->queue[chan]);
+ arq = crypto_dequeue_request(&sdcp->queue[chan]);
+ mutex_unlock(&sdcp->mutex[chan]);
+
+ if (backlog)
+ backlog->complete(backlog, -EINPROGRESS);
+
+ if (arq) {
+ req = ahash_request_cast(arq);
+ rctx = ahash_request_ctx(req);
+
+ ret = dcp_sha_req_to_buf(arq);
+ fini = rctx->fini;
+ arq->complete(arq, ret);
+ if (!fini)
+ continue;
+ }
+
+ schedule();
+ } while (!kthread_should_stop());
+
+ return 0;
+}
+
+static int dcp_sha_init(struct ahash_request *req)
+{
+ struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+ struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
+
+ struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
+
+ /*
+ * Start hashing session. The code below only inits the
+ * hashing session context, nothing more.
+ */
+ memset(actx, 0, sizeof(*actx));
+
+ if (strcmp(halg->base.cra_name, "sha1") == 0)
+ actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
+ else
+ actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
+
+ actx->fill = 0;
+ actx->hot = 0;
+ actx->chan = DCP_CHAN_HASH_SHA;
+
+ mutex_init(&actx->mutex);
+
+ return 0;
+}
+
+static int dcp_sha_update_fx(struct ahash_request *req, int fini)
+{
+ struct dcp *sdcp = global_sdcp;
+
+ struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
+ struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+ struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
+
+ int ret;
+
+ /*
+ * Ignore requests that have no data in them and are not
+ * the trailing requests in the stream of requests.
+ */
+ if (!req->nbytes && !fini)
+ return 0;
+
+ mutex_lock(&actx->mutex);
+
+ rctx->fini = fini;
+
+ if (!actx->hot) {
+ actx->hot = 1;
+ rctx->init = 1;
+ }
+
+ mutex_lock(&sdcp->mutex[actx->chan]);
+ ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
+ mutex_unlock(&sdcp->mutex[actx->chan]);
+
+ wake_up_process(sdcp->thread[actx->chan]);
+ mutex_unlock(&actx->mutex);
+
+ return -EINPROGRESS;
+}
+
+static int dcp_sha_update(struct ahash_request *req)
+{
+ return dcp_sha_update_fx(req, 0);
+}
+
+static int dcp_sha_final(struct ahash_request *req)
+{
+ ahash_request_set_crypt(req, NULL, req->result, 0);
+ req->nbytes = 0;
+ return dcp_sha_update_fx(req, 1);
+}
+
+static int dcp_sha_finup(struct ahash_request *req)
+{
+ return dcp_sha_update_fx(req, 1);
+}
+
+static int dcp_sha_digest(struct ahash_request *req)
+{
+ int ret;
+
+ ret = dcp_sha_init(req);
+ if (ret)
+ return ret;
+
+ return dcp_sha_finup(req);
+}
+
+static int dcp_sha_cra_init(struct crypto_tfm *tfm)
+{
+ crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
+ sizeof(struct dcp_sha_req_ctx));
+ return 0;
+}
+
+static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
+{
+}
+
+/* AES 128 ECB and AES 128 CBC */
+static struct crypto_alg dcp_aes_algs[] = {
+ {
+ .cra_name = "ecb(aes)",
+ .cra_driver_name = "ecb-aes-dcp",
+ .cra_priority = 400,
+ .cra_alignmask = 15,
+ .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
+ CRYPTO_ALG_ASYNC |
+ CRYPTO_ALG_NEED_FALLBACK,
+ .cra_init = mxs_dcp_aes_fallback_init,
+ .cra_exit = mxs_dcp_aes_fallback_exit,
+ .cra_blocksize = AES_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct dcp_async_ctx),
+ .cra_type = &crypto_ablkcipher_type,
+ .cra_module = THIS_MODULE,
+ .cra_u = {
+ .ablkcipher = {
+ .min_keysize = AES_MIN_KEY_SIZE,
+ .max_keysize = AES_MAX_KEY_SIZE,
+ .setkey = mxs_dcp_aes_setkey,
+ .encrypt = mxs_dcp_aes_ecb_encrypt,
+ .decrypt = mxs_dcp_aes_ecb_decrypt
+ },
+ },
+ }, {
+ .cra_name = "cbc(aes)",
+ .cra_driver_name = "cbc-aes-dcp",
+ .cra_priority = 400,
+ .cra_alignmask = 15,
+ .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
+ CRYPTO_ALG_ASYNC |
+ CRYPTO_ALG_NEED_FALLBACK,
+ .cra_init = mxs_dcp_aes_fallback_init,
+ .cra_exit = mxs_dcp_aes_fallback_exit,
+ .cra_blocksize = AES_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct dcp_async_ctx),
+ .cra_type = &crypto_ablkcipher_type,
+ .cra_module = THIS_MODULE,
+ .cra_u = {
+ .ablkcipher = {
+ .min_keysize = AES_MIN_KEY_SIZE,
+ .max_keysize = AES_MAX_KEY_SIZE,
+ .setkey = mxs_dcp_aes_setkey,
+ .encrypt = mxs_dcp_aes_cbc_encrypt,
+ .decrypt = mxs_dcp_aes_cbc_decrypt,
+ .ivsize = AES_BLOCK_SIZE,
+ },
+ },
+ },
+};
+
+/* SHA1 */
+static struct ahash_alg dcp_sha1_alg = {
+ .init = dcp_sha_init,
+ .update = dcp_sha_update,
+ .final = dcp_sha_final,
+ .finup = dcp_sha_finup,
+ .digest = dcp_sha_digest,
+ .halg = {
+ .digestsize = SHA1_DIGEST_SIZE,
+ .base = {
+ .cra_name = "sha1",
+ .cra_driver_name = "sha1-dcp",
+ .cra_priority = 400,
+ .cra_alignmask = 63,
+ .cra_flags = CRYPTO_ALG_ASYNC,
+ .cra_blocksize = SHA1_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct dcp_async_ctx),
+ .cra_module = THIS_MODULE,
+ .cra_init = dcp_sha_cra_init,
+ .cra_exit = dcp_sha_cra_exit,
+ },
+ },
+};
+
+/* SHA256 */
+static struct ahash_alg dcp_sha256_alg = {
+ .init = dcp_sha_init,
+ .update = dcp_sha_update,
+ .final = dcp_sha_final,
+ .finup = dcp_sha_finup,
+ .digest = dcp_sha_digest,
+ .halg = {
+ .digestsize = SHA256_DIGEST_SIZE,
+ .base = {
+ .cra_name = "sha256",
+ .cra_driver_name = "sha256-dcp",
+ .cra_priority = 400,
+ .cra_alignmask = 63,
+ .cra_flags = CRYPTO_ALG_ASYNC,
+ .cra_blocksize = SHA256_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct dcp_async_ctx),
+ .cra_module = THIS_MODULE,
+ .cra_init = dcp_sha_cra_init,
+ .cra_exit = dcp_sha_cra_exit,
+ },
+ },
+};
+
+static irqreturn_t mxs_dcp_irq(int irq, void *context)
+{
+ struct dcp *sdcp = context;
+ uint32_t stat;
+ int i;
+
+ stat = readl(sdcp->base + MXS_DCP_STAT);
+ stat &= MXS_DCP_STAT_IRQ_MASK;
+ if (!stat)
+ return IRQ_NONE;
+
+ /* Clear the interrupts. */
+ writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
+
+ /* Complete the DMA requests that finished. */
+ for (i = 0; i < DCP_MAX_CHANS; i++)
+ if (stat & (1 << i))
+ complete(&sdcp->completion[i]);
+
+ return IRQ_HANDLED;
+}
+
+static int mxs_dcp_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct dcp *sdcp = NULL;
+ int i, ret;
+
+ struct resource *iores;
+ int dcp_vmi_irq, dcp_irq;
+
+ mutex_lock(&global_mutex);
+ if (global_sdcp) {
+ dev_err(dev, "Only one DCP instance allowed!\n");
+ ret = -ENODEV;
+ goto err_mutex;
+ }
+
+ iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ dcp_vmi_irq = platform_get_irq(pdev, 0);
+ dcp_irq = platform_get_irq(pdev, 1);
+ if (dcp_vmi_irq < 0 || dcp_irq < 0) {
+ ret = -EINVAL;
+ goto err_mutex;
+ }
+
+ sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
+ if (!sdcp) {
+ ret = -ENOMEM;
+ goto err_mutex;
+ }
+
+ sdcp->dev = dev;
+ sdcp->base = devm_ioremap_resource(dev, iores);
+ if (IS_ERR(sdcp->base)) {
+ ret = PTR_ERR(sdcp->base);
+ goto err_mutex;
+ }
+
+ ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
+ "dcp-vmi-irq", sdcp);
+ if (ret) {
+ dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
+ goto err_mutex;
+ }
+
+ ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
+ "dcp-irq", sdcp);
+ if (ret) {
+ dev_err(dev, "Failed to claim DCP IRQ!\n");
+ goto err_mutex;
+ }
+
+ /* Allocate coherent helper block. */
+ sdcp->coh = kzalloc(sizeof(struct dcp_coherent_block), GFP_KERNEL);
+ if (!sdcp->coh) {
+ dev_err(dev, "Error allocating coherent block\n");
+ ret = -ENOMEM;
+ goto err_mutex;
+ }
+
+ /* Restart the DCP block. */
+ stmp_reset_block(sdcp->base);
+
+ /* Initialize control register. */
+ writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
+ MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
+ sdcp->base + MXS_DCP_CTRL);
+
+ /* Enable all DCP DMA channels. */
+ writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
+ sdcp->base + MXS_DCP_CHANNELCTRL);
+
+ /*
+ * We do not enable context switching. Give the context buffer a
+ * pointer to an illegal address so if context switching is
+ * inadvertantly enabled, the DCP will return an error instead of
+ * trashing good memory. The DCP DMA cannot access ROM, so any ROM
+ * address will do.
+ */
+ writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
+ for (i = 0; i < DCP_MAX_CHANS; i++)
+ writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
+ writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
+
+ global_sdcp = sdcp;
+
+ platform_set_drvdata(pdev, sdcp);
+
+ for (i = 0; i < DCP_MAX_CHANS; i++) {
+ mutex_init(&sdcp->mutex[i]);
+ init_completion(&sdcp->completion[i]);
+ crypto_init_queue(&sdcp->queue[i], 50);
+ }
+
+ /* Create the SHA and AES handler threads. */
+ sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
+ NULL, "mxs_dcp_chan/sha");
+ if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
+ dev_err(dev, "Error starting SHA thread!\n");
+ ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
+ goto err_free_coherent;
+ }
+
+ sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
+ NULL, "mxs_dcp_chan/aes");
+ if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
+ dev_err(dev, "Error starting SHA thread!\n");
+ ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
+ goto err_destroy_sha_thread;
+ }
+
+ /* Register the various crypto algorithms. */
+ sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
+
+ if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
+ ret = crypto_register_algs(dcp_aes_algs,
+ ARRAY_SIZE(dcp_aes_algs));
+ if (ret) {
+ /* Failed to register algorithm. */
+ dev_err(dev, "Failed to register AES crypto!\n");
+ goto err_destroy_aes_thread;
+ }
+ }
+
+ if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
+ ret = crypto_register_ahash(&dcp_sha1_alg);
+ if (ret) {
+ dev_err(dev, "Failed to register %s hash!\n",
+ dcp_sha1_alg.halg.base.cra_name);
+ goto err_unregister_aes;
+ }
+ }
+
+ if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
+ ret = crypto_register_ahash(&dcp_sha256_alg);
+ if (ret) {
+ dev_err(dev, "Failed to register %s hash!\n",
+ dcp_sha256_alg.halg.base.cra_name);
+ goto err_unregister_sha1;
+ }
+ }
+
+ return 0;
+
+err_unregister_sha1:
+ if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
+ crypto_unregister_ahash(&dcp_sha1_alg);
+
+err_unregister_aes:
+ if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
+ crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
+
+err_destroy_aes_thread:
+ kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
+
+err_destroy_sha_thread:
+ kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
+
+err_free_coherent:
+ kfree(sdcp->coh);
+err_mutex:
+ mutex_unlock(&global_mutex);
+ return ret;
+}
+
+static int mxs_dcp_remove(struct platform_device *pdev)
+{
+ struct dcp *sdcp = platform_get_drvdata(pdev);
+
+ kfree(sdcp->coh);
+
+ if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
+ crypto_unregister_ahash(&dcp_sha256_alg);
+
+ if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
+ crypto_unregister_ahash(&dcp_sha1_alg);
+
+ if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
+ crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
+
+ kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
+ kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
+
+ platform_set_drvdata(pdev, NULL);
+
+ mutex_lock(&global_mutex);
+ global_sdcp = NULL;
+ mutex_unlock(&global_mutex);
+
+ return 0;
+}
+
+static const struct of_device_id mxs_dcp_dt_ids[] = {
+ { .compatible = "fsl,imx23-dcp", .data = NULL, },
+ { .compatible = "fsl,imx28-dcp", .data = NULL, },
+ { /* sentinel */ }
+};
+
+MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
+
+static struct platform_driver mxs_dcp_driver = {
+ .probe = mxs_dcp_probe,
+ .remove = mxs_dcp_remove,
+ .driver = {
+ .name = "mxs-dcp",
+ .owner = THIS_MODULE,
+ .of_match_table = mxs_dcp_dt_ids,
+ },
+};
+
+module_platform_driver(mxs_dcp_driver);
+
+MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
+MODULE_DESCRIPTION("Freescale MXS DCP Driver");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:mxs-dcp");