summaryrefslogtreecommitdiffstats
path: root/drivers/cpuidle/governors/menu.c
diff options
context:
space:
mode:
authorRafael J. Wysocki <rafael.j.wysocki@intel.com>2019-11-07 15:25:12 +0100
committerRafael J. Wysocki <rafael.j.wysocki@intel.com>2019-11-11 21:56:07 +0100
commitc1d51f684c72b5eb2aecbbd47be3a2977a2dc903 (patch)
tree4e929d24f9033246e46d08ebf2157d0d438941a1 /drivers/cpuidle/governors/menu.c
parent99e98d3fb1008ef7416e16a1fd355cb73a253502 (diff)
downloadlinux-c1d51f684c72b5eb2aecbbd47be3a2977a2dc903.tar.bz2
cpuidle: Use nanoseconds as the unit of time
Currently, the cpuidle subsystem uses microseconds as the unit of time which (among other things) causes the idle loop to incur some integer division overhead for no clear benefit. In order to allow cpuidle to measure time in nanoseconds, add two new fields, exit_latency_ns and target_residency_ns, to represent the exit latency and target residency of an idle state in nanoseconds, respectively, to struct cpuidle_state and initialize them with the help of the corresponding values in microseconds provided by drivers. Additionally, change cpuidle_governor_latency_req() to return the idle state exit latency constraint in nanoseconds. Also meeasure idle state residency (last_residency_ns in struct cpuidle_device and time_ns in struct cpuidle_driver) in nanoseconds and update the cpuidle core and governors accordingly. However, the menu governor still computes typical intervals in microseconds to avoid integer overflows. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Doug Smythies <dsmythies@telus.net> Tested-by: Doug Smythies <dsmythies@telus.net>
Diffstat (limited to 'drivers/cpuidle/governors/menu.c')
-rw-r--r--drivers/cpuidle/governors/menu.c123
1 files changed, 55 insertions, 68 deletions
diff --git a/drivers/cpuidle/governors/menu.c b/drivers/cpuidle/governors/menu.c
index 38b2b72102a8..b0a7ad566081 100644
--- a/drivers/cpuidle/governors/menu.c
+++ b/drivers/cpuidle/governors/menu.c
@@ -19,22 +19,12 @@
#include <linux/sched/stat.h>
#include <linux/math64.h>
-/*
- * Please note when changing the tuning values:
- * If (MAX_INTERESTING-1) * RESOLUTION > UINT_MAX, the result of
- * a scaling operation multiplication may overflow on 32 bit platforms.
- * In that case, #define RESOLUTION as ULL to get 64 bit result:
- * #define RESOLUTION 1024ULL
- *
- * The default values do not overflow.
- */
#define BUCKETS 12
#define INTERVAL_SHIFT 3
#define INTERVALS (1UL << INTERVAL_SHIFT)
#define RESOLUTION 1024
#define DECAY 8
-#define MAX_INTERESTING 50000
-
+#define MAX_INTERESTING (50000 * NSEC_PER_USEC)
/*
* Concepts and ideas behind the menu governor
@@ -120,14 +110,14 @@ struct menu_device {
int needs_update;
int tick_wakeup;
- unsigned int next_timer_us;
+ u64 next_timer_ns;
unsigned int bucket;
unsigned int correction_factor[BUCKETS];
unsigned int intervals[INTERVALS];
int interval_ptr;
};
-static inline int which_bucket(unsigned int duration, unsigned long nr_iowaiters)
+static inline int which_bucket(u64 duration_ns, unsigned long nr_iowaiters)
{
int bucket = 0;
@@ -140,15 +130,15 @@ static inline int which_bucket(unsigned int duration, unsigned long nr_iowaiters
if (nr_iowaiters)
bucket = BUCKETS/2;
- if (duration < 10)
+ if (duration_ns < 10ULL * NSEC_PER_USEC)
return bucket;
- if (duration < 100)
+ if (duration_ns < 100ULL * NSEC_PER_USEC)
return bucket + 1;
- if (duration < 1000)
+ if (duration_ns < 1000ULL * NSEC_PER_USEC)
return bucket + 2;
- if (duration < 10000)
+ if (duration_ns < 10000ULL * NSEC_PER_USEC)
return bucket + 3;
- if (duration < 100000)
+ if (duration_ns < 100000ULL * NSEC_PER_USEC)
return bucket + 4;
return bucket + 5;
}
@@ -276,13 +266,13 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
bool *stop_tick)
{
struct menu_device *data = this_cpu_ptr(&menu_devices);
- int latency_req = cpuidle_governor_latency_req(dev->cpu);
- int i;
- int idx;
- unsigned int interactivity_req;
+ s64 latency_req = cpuidle_governor_latency_req(dev->cpu);
unsigned int predicted_us;
+ u64 predicted_ns;
+ u64 interactivity_req;
unsigned long nr_iowaiters;
ktime_t delta_next;
+ int i, idx;
if (data->needs_update) {
menu_update(drv, dev);
@@ -290,14 +280,14 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
}
/* determine the expected residency time, round up */
- data->next_timer_us = ktime_to_us(tick_nohz_get_sleep_length(&delta_next));
+ data->next_timer_ns = tick_nohz_get_sleep_length(&delta_next);
nr_iowaiters = nr_iowait_cpu(dev->cpu);
- data->bucket = which_bucket(data->next_timer_us, nr_iowaiters);
+ data->bucket = which_bucket(data->next_timer_ns, nr_iowaiters);
if (unlikely(drv->state_count <= 1 || latency_req == 0) ||
- ((data->next_timer_us < drv->states[1].target_residency ||
- latency_req < drv->states[1].exit_latency) &&
+ ((data->next_timer_ns < drv->states[1].target_residency_ns ||
+ latency_req < drv->states[1].exit_latency_ns) &&
!dev->states_usage[0].disable)) {
/*
* In this case state[0] will be used no matter what, so return
@@ -308,18 +298,15 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
return 0;
}
- /*
- * Force the result of multiplication to be 64 bits even if both
- * operands are 32 bits.
- * Make sure to round up for half microseconds.
- */
- predicted_us = DIV_ROUND_CLOSEST_ULL((uint64_t)data->next_timer_us *
- data->correction_factor[data->bucket],
- RESOLUTION * DECAY);
- /*
- * Use the lowest expected idle interval to pick the idle state.
- */
- predicted_us = min(predicted_us, get_typical_interval(data, predicted_us));
+ /* Round up the result for half microseconds. */
+ predicted_us = div_u64(data->next_timer_ns *
+ data->correction_factor[data->bucket] +
+ (RESOLUTION * DECAY * NSEC_PER_USEC) / 2,
+ RESOLUTION * DECAY * NSEC_PER_USEC);
+ /* Use the lowest expected idle interval to pick the idle state. */
+ predicted_ns = (u64)min(predicted_us,
+ get_typical_interval(data, predicted_us)) *
+ NSEC_PER_USEC;
if (tick_nohz_tick_stopped()) {
/*
@@ -330,14 +317,15 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
* the known time till the closest timer event for the idle
* state selection.
*/
- if (predicted_us < TICK_USEC)
- predicted_us = ktime_to_us(delta_next);
+ if (predicted_ns < TICK_NSEC)
+ predicted_ns = delta_next;
} else {
/*
* Use the performance multiplier and the user-configurable
* latency_req to determine the maximum exit latency.
*/
- interactivity_req = predicted_us / performance_multiplier(nr_iowaiters);
+ interactivity_req = div64_u64(predicted_ns,
+ performance_multiplier(nr_iowaiters));
if (latency_req > interactivity_req)
latency_req = interactivity_req;
}
@@ -356,19 +344,19 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
if (idx == -1)
idx = i; /* first enabled state */
- if (s->target_residency > predicted_us) {
+ if (s->target_residency_ns > predicted_ns) {
/*
* Use a physical idle state, not busy polling, unless
* a timer is going to trigger soon enough.
*/
if ((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) &&
- s->exit_latency <= latency_req &&
- s->target_residency <= data->next_timer_us) {
- predicted_us = s->target_residency;
+ s->exit_latency_ns <= latency_req &&
+ s->target_residency_ns <= data->next_timer_ns) {
+ predicted_ns = s->target_residency_ns;
idx = i;
break;
}
- if (predicted_us < TICK_USEC)
+ if (predicted_ns < TICK_NSEC)
break;
if (!tick_nohz_tick_stopped()) {
@@ -378,7 +366,7 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
* tick in that case and let the governor run
* again in the next iteration of the loop.
*/
- predicted_us = drv->states[idx].target_residency;
+ predicted_ns = drv->states[idx].target_residency_ns;
break;
}
@@ -388,13 +376,13 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
* closest timer event, select this one to avoid getting
* stuck in the shallow one for too long.
*/
- if (drv->states[idx].target_residency < TICK_USEC &&
- s->target_residency <= ktime_to_us(delta_next))
+ if (drv->states[idx].target_residency_ns < TICK_NSEC &&
+ s->target_residency_ns <= delta_next)
idx = i;
return idx;
}
- if (s->exit_latency > latency_req)
+ if (s->exit_latency_ns > latency_req)
break;
idx = i;
@@ -408,12 +396,10 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
* expected idle duration is shorter than the tick period length.
*/
if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) ||
- predicted_us < TICK_USEC) && !tick_nohz_tick_stopped()) {
- unsigned int delta_next_us = ktime_to_us(delta_next);
-
+ predicted_ns < TICK_NSEC) && !tick_nohz_tick_stopped()) {
*stop_tick = false;
- if (idx > 0 && drv->states[idx].target_residency > delta_next_us) {
+ if (idx > 0 && drv->states[idx].target_residency_ns > delta_next) {
/*
* The tick is not going to be stopped and the target
* residency of the state to be returned is not within
@@ -425,7 +411,7 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
continue;
idx = i;
- if (drv->states[i].target_residency <= delta_next_us)
+ if (drv->states[i].target_residency_ns <= delta_next)
break;
}
}
@@ -461,7 +447,7 @@ static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
struct menu_device *data = this_cpu_ptr(&menu_devices);
int last_idx = dev->last_state_idx;
struct cpuidle_state *target = &drv->states[last_idx];
- unsigned int measured_us;
+ u64 measured_ns;
unsigned int new_factor;
/*
@@ -479,7 +465,7 @@ static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
* assume the state was never reached and the exit latency is 0.
*/
- if (data->tick_wakeup && data->next_timer_us > TICK_USEC) {
+ if (data->tick_wakeup && data->next_timer_ns > TICK_NSEC) {
/*
* The nohz code said that there wouldn't be any events within
* the tick boundary (if the tick was stopped), but the idle
@@ -489,7 +475,7 @@ static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
* have been idle long (but not forever) to help the idle
* duration predictor do a better job next time.
*/
- measured_us = 9 * MAX_INTERESTING / 10;
+ measured_ns = 9 * MAX_INTERESTING / 10;
} else if ((drv->states[last_idx].flags & CPUIDLE_FLAG_POLLING) &&
dev->poll_time_limit) {
/*
@@ -499,28 +485,29 @@ static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
* the CPU might have been woken up from idle by the next timer.
* Assume that to be the case.
*/
- measured_us = data->next_timer_us;
+ measured_ns = data->next_timer_ns;
} else {
/* measured value */
- measured_us = dev->last_residency;
+ measured_ns = dev->last_residency_ns;
/* Deduct exit latency */
- if (measured_us > 2 * target->exit_latency)
- measured_us -= target->exit_latency;
+ if (measured_ns > 2 * target->exit_latency_ns)
+ measured_ns -= target->exit_latency_ns;
else
- measured_us /= 2;
+ measured_ns /= 2;
}
/* Make sure our coefficients do not exceed unity */
- if (measured_us > data->next_timer_us)
- measured_us = data->next_timer_us;
+ if (measured_ns > data->next_timer_ns)
+ measured_ns = data->next_timer_ns;
/* Update our correction ratio */
new_factor = data->correction_factor[data->bucket];
new_factor -= new_factor / DECAY;
- if (data->next_timer_us > 0 && measured_us < MAX_INTERESTING)
- new_factor += RESOLUTION * measured_us / data->next_timer_us;
+ if (data->next_timer_ns > 0 && measured_ns < MAX_INTERESTING)
+ new_factor += div64_u64(RESOLUTION * measured_ns,
+ data->next_timer_ns);
else
/*
* we were idle so long that we count it as a perfect
@@ -540,7 +527,7 @@ static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
data->correction_factor[data->bucket] = new_factor;
/* update the repeating-pattern data */
- data->intervals[data->interval_ptr++] = measured_us;
+ data->intervals[data->interval_ptr++] = ktime_to_us(measured_ns);
if (data->interval_ptr >= INTERVALS)
data->interval_ptr = 0;
}