summaryrefslogtreecommitdiffstats
path: root/drivers/cpufreq
diff options
context:
space:
mode:
authorRafael J. Wysocki <rafael.j.wysocki@intel.com>2022-05-25 15:01:30 +0200
committerRafael J. Wysocki <rafael.j.wysocki@intel.com>2022-05-25 15:01:30 +0200
commit990247af7cf59190271da405458aefaed985e831 (patch)
treefbd745705b88cb6a7e166d84cca556d30c1918be /drivers/cpufreq
parent09583dfed2cb9723da31601cb7080490c2e2e2d7 (diff)
parent39b360102f3ac6b12cafac9db25762071eb0418c (diff)
downloadlinux-990247af7cf59190271da405458aefaed985e831.tar.bz2
Merge tag 'cpufreq-arm-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vireshk/pm
Pull ARM cpufreq updates for 5.19-rc1 from Viresh Kumar: - Tegra234 cpufreq support (Sumit Gupta). - Mediatek cleanups and enhancements (Wan Jiabing, Rex-BC Chen, and Jia-Wei Chang). * tag 'cpufreq-arm-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vireshk/pm: (21 commits) cpufreq: mediatek: Add support for MT8186 cpufreq: mediatek: Link CCI device to CPU dt-bindings: cpufreq: mediatek: Add MediaTek CCI property cpufreq: mediatek: Fix potential deadlock problem in mtk_cpufreq_set_target cpufreq: mediatek: Add opp notification support cpufreq: mediatek: Refine mtk_cpufreq_voltage_tracking() cpufreq: mediatek: Move voltage limits to platform data cpufreq: mediatek: Unregister platform device on exit cpufreq: mediatek: Fix NULL pointer dereference in mediatek-cpufreq cpufreq: mediatek: Make sram regulator optional cpufreq: mediatek: Record previous target vproc value cpufreq: mediatek: Replace old_* with pre_* cpufreq: mediatek: Use device print to show logs cpufreq: mediatek: Enable clocks and regulators cpufreq: mediatek: Remove unused headers cpufreq: mediatek: Cleanup variables and error handling in mtk_cpu_dvfs_info_init() cpufreq: mediatek: Use module_init and add module_exit arm64: tegra: add node for tegra234 cpufreq cpufreq: tegra194: Add support for Tegra234 cpufreq: tegra194: add soc data to support multiple soc ...
Diffstat (limited to 'drivers/cpufreq')
-rw-r--r--drivers/cpufreq/mediatek-cpufreq.c636
-rw-r--r--drivers/cpufreq/tegra194-cpufreq.c246
2 files changed, 623 insertions, 259 deletions
diff --git a/drivers/cpufreq/mediatek-cpufreq.c b/drivers/cpufreq/mediatek-cpufreq.c
index 866163883b48..37a1eb20f5ba 100644
--- a/drivers/cpufreq/mediatek-cpufreq.c
+++ b/drivers/cpufreq/mediatek-cpufreq.c
@@ -8,18 +8,22 @@
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/cpumask.h>
+#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/of.h>
+#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/regulator/consumer.h>
-#include <linux/slab.h>
-#include <linux/thermal.h>
-#define MIN_VOLT_SHIFT (100000)
-#define MAX_VOLT_SHIFT (200000)
-#define MAX_VOLT_LIMIT (1150000)
-#define VOLT_TOL (10000)
+struct mtk_cpufreq_platform_data {
+ int min_volt_shift;
+ int max_volt_shift;
+ int proc_max_volt;
+ int sram_min_volt;
+ int sram_max_volt;
+ bool ccifreq_supported;
+};
/*
* The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS
@@ -35,6 +39,7 @@
struct mtk_cpu_dvfs_info {
struct cpumask cpus;
struct device *cpu_dev;
+ struct device *cci_dev;
struct regulator *proc_reg;
struct regulator *sram_reg;
struct clk *cpu_clk;
@@ -42,8 +47,20 @@ struct mtk_cpu_dvfs_info {
struct list_head list_head;
int intermediate_voltage;
bool need_voltage_tracking;
+ int vproc_on_boot;
+ int pre_vproc;
+ /* Avoid race condition for regulators between notify and policy */
+ struct mutex reg_lock;
+ struct notifier_block opp_nb;
+ unsigned int opp_cpu;
+ unsigned long current_freq;
+ const struct mtk_cpufreq_platform_data *soc_data;
+ int vtrack_max;
+ bool ccifreq_bound;
};
+static struct platform_device *cpufreq_pdev;
+
static LIST_HEAD(dvfs_info_list);
static struct mtk_cpu_dvfs_info *mtk_cpu_dvfs_info_lookup(int cpu)
@@ -61,142 +78,123 @@ static struct mtk_cpu_dvfs_info *mtk_cpu_dvfs_info_lookup(int cpu)
static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info,
int new_vproc)
{
+ const struct mtk_cpufreq_platform_data *soc_data = info->soc_data;
struct regulator *proc_reg = info->proc_reg;
struct regulator *sram_reg = info->sram_reg;
- int old_vproc, old_vsram, new_vsram, vsram, vproc, ret;
-
- old_vproc = regulator_get_voltage(proc_reg);
- if (old_vproc < 0) {
- pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc);
- return old_vproc;
- }
- /* Vsram should not exceed the maximum allowed voltage of SoC. */
- new_vsram = min(new_vproc + MIN_VOLT_SHIFT, MAX_VOLT_LIMIT);
-
- if (old_vproc < new_vproc) {
- /*
- * When scaling up voltages, Vsram and Vproc scale up step
- * by step. At each step, set Vsram to (Vproc + 200mV) first,
- * then set Vproc to (Vsram - 100mV).
- * Keep doing it until Vsram and Vproc hit target voltages.
- */
- do {
- old_vsram = regulator_get_voltage(sram_reg);
- if (old_vsram < 0) {
- pr_err("%s: invalid Vsram value: %d\n",
- __func__, old_vsram);
- return old_vsram;
- }
- old_vproc = regulator_get_voltage(proc_reg);
- if (old_vproc < 0) {
- pr_err("%s: invalid Vproc value: %d\n",
- __func__, old_vproc);
- return old_vproc;
- }
-
- vsram = min(new_vsram, old_vproc + MAX_VOLT_SHIFT);
+ int pre_vproc, pre_vsram, new_vsram, vsram, vproc, ret;
+ int retry = info->vtrack_max;
+
+ pre_vproc = regulator_get_voltage(proc_reg);
+ if (pre_vproc < 0) {
+ dev_err(info->cpu_dev,
+ "invalid Vproc value: %d\n", pre_vproc);
+ return pre_vproc;
+ }
- if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
- vsram = MAX_VOLT_LIMIT;
+ pre_vsram = regulator_get_voltage(sram_reg);
+ if (pre_vsram < 0) {
+ dev_err(info->cpu_dev, "invalid Vsram value: %d\n", pre_vsram);
+ return pre_vsram;
+ }
- /*
- * If the target Vsram hits the maximum voltage,
- * try to set the exact voltage value first.
- */
- ret = regulator_set_voltage(sram_reg, vsram,
- vsram);
- if (ret)
- ret = regulator_set_voltage(sram_reg,
- vsram - VOLT_TOL,
- vsram);
+ new_vsram = clamp(new_vproc + soc_data->min_volt_shift,
+ soc_data->sram_min_volt, soc_data->sram_max_volt);
- vproc = new_vproc;
- } else {
- ret = regulator_set_voltage(sram_reg, vsram,
- vsram + VOLT_TOL);
+ do {
+ if (pre_vproc <= new_vproc) {
+ vsram = clamp(pre_vproc + soc_data->max_volt_shift,
+ soc_data->sram_min_volt, new_vsram);
+ ret = regulator_set_voltage(sram_reg, vsram,
+ soc_data->sram_max_volt);
- vproc = vsram - MIN_VOLT_SHIFT;
- }
if (ret)
return ret;
+ if (vsram == soc_data->sram_max_volt ||
+ new_vsram == soc_data->sram_min_volt)
+ vproc = new_vproc;
+ else
+ vproc = vsram - soc_data->min_volt_shift;
+
ret = regulator_set_voltage(proc_reg, vproc,
- vproc + VOLT_TOL);
+ soc_data->proc_max_volt);
if (ret) {
- regulator_set_voltage(sram_reg, old_vsram,
- old_vsram);
+ regulator_set_voltage(sram_reg, pre_vsram,
+ soc_data->sram_max_volt);
return ret;
}
- } while (vproc < new_vproc || vsram < new_vsram);
- } else if (old_vproc > new_vproc) {
- /*
- * When scaling down voltages, Vsram and Vproc scale down step
- * by step. At each step, set Vproc to (Vsram - 200mV) first,
- * then set Vproc to (Vproc + 100mV).
- * Keep doing it until Vsram and Vproc hit target voltages.
- */
- do {
- old_vproc = regulator_get_voltage(proc_reg);
- if (old_vproc < 0) {
- pr_err("%s: invalid Vproc value: %d\n",
- __func__, old_vproc);
- return old_vproc;
- }
- old_vsram = regulator_get_voltage(sram_reg);
- if (old_vsram < 0) {
- pr_err("%s: invalid Vsram value: %d\n",
- __func__, old_vsram);
- return old_vsram;
- }
-
- vproc = max(new_vproc, old_vsram - MAX_VOLT_SHIFT);
+ } else if (pre_vproc > new_vproc) {
+ vproc = max(new_vproc,
+ pre_vsram - soc_data->max_volt_shift);
ret = regulator_set_voltage(proc_reg, vproc,
- vproc + VOLT_TOL);
+ soc_data->proc_max_volt);
if (ret)
return ret;
if (vproc == new_vproc)
vsram = new_vsram;
else
- vsram = max(new_vsram, vproc + MIN_VOLT_SHIFT);
-
- if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
- vsram = MAX_VOLT_LIMIT;
-
- /*
- * If the target Vsram hits the maximum voltage,
- * try to set the exact voltage value first.
- */
- ret = regulator_set_voltage(sram_reg, vsram,
- vsram);
- if (ret)
- ret = regulator_set_voltage(sram_reg,
- vsram - VOLT_TOL,
- vsram);
- } else {
- ret = regulator_set_voltage(sram_reg, vsram,
- vsram + VOLT_TOL);
- }
+ vsram = max(new_vsram,
+ vproc + soc_data->min_volt_shift);
+ ret = regulator_set_voltage(sram_reg, vsram,
+ soc_data->sram_max_volt);
if (ret) {
- regulator_set_voltage(proc_reg, old_vproc,
- old_vproc);
+ regulator_set_voltage(proc_reg, pre_vproc,
+ soc_data->proc_max_volt);
return ret;
}
- } while (vproc > new_vproc + VOLT_TOL ||
- vsram > new_vsram + VOLT_TOL);
- }
+ }
+
+ pre_vproc = vproc;
+ pre_vsram = vsram;
+
+ if (--retry < 0) {
+ dev_err(info->cpu_dev,
+ "over loop count, failed to set voltage\n");
+ return -EINVAL;
+ }
+ } while (vproc != new_vproc || vsram != new_vsram);
return 0;
}
static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc)
{
+ const struct mtk_cpufreq_platform_data *soc_data = info->soc_data;
+ int ret;
+
if (info->need_voltage_tracking)
- return mtk_cpufreq_voltage_tracking(info, vproc);
+ ret = mtk_cpufreq_voltage_tracking(info, vproc);
else
- return regulator_set_voltage(info->proc_reg, vproc,
- vproc + VOLT_TOL);
+ ret = regulator_set_voltage(info->proc_reg, vproc,
+ soc_data->proc_max_volt);
+ if (!ret)
+ info->pre_vproc = vproc;
+
+ return ret;
+}
+
+static bool is_ccifreq_ready(struct mtk_cpu_dvfs_info *info)
+{
+ struct device_link *sup_link;
+
+ if (info->ccifreq_bound)
+ return true;
+
+ sup_link = device_link_add(info->cpu_dev, info->cci_dev,
+ DL_FLAG_AUTOREMOVE_CONSUMER);
+ if (!sup_link) {
+ dev_err(info->cpu_dev, "cpu%d: sup_link is NULL\n", info->opp_cpu);
+ return false;
+ }
+
+ if (sup_link->supplier->links.status != DL_DEV_DRIVER_BOUND)
+ return false;
+
+ info->ccifreq_bound = true;
+
+ return true;
}
static int mtk_cpufreq_set_target(struct cpufreq_policy *policy,
@@ -208,219 +206,367 @@ static int mtk_cpufreq_set_target(struct cpufreq_policy *policy,
struct mtk_cpu_dvfs_info *info = policy->driver_data;
struct device *cpu_dev = info->cpu_dev;
struct dev_pm_opp *opp;
- long freq_hz, old_freq_hz;
- int vproc, old_vproc, inter_vproc, target_vproc, ret;
+ long freq_hz, pre_freq_hz;
+ int vproc, pre_vproc, inter_vproc, target_vproc, ret;
inter_vproc = info->intermediate_voltage;
- old_freq_hz = clk_get_rate(cpu_clk);
- old_vproc = regulator_get_voltage(info->proc_reg);
- if (old_vproc < 0) {
- pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc);
- return old_vproc;
+ pre_freq_hz = clk_get_rate(cpu_clk);
+
+ mutex_lock(&info->reg_lock);
+
+ if (unlikely(info->pre_vproc <= 0))
+ pre_vproc = regulator_get_voltage(info->proc_reg);
+ else
+ pre_vproc = info->pre_vproc;
+
+ if (pre_vproc < 0) {
+ dev_err(cpu_dev, "invalid Vproc value: %d\n", pre_vproc);
+ ret = pre_vproc;
+ goto out;
}
freq_hz = freq_table[index].frequency * 1000;
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
if (IS_ERR(opp)) {
- pr_err("cpu%d: failed to find OPP for %ld\n",
- policy->cpu, freq_hz);
- return PTR_ERR(opp);
+ dev_err(cpu_dev, "cpu%d: failed to find OPP for %ld\n",
+ policy->cpu, freq_hz);
+ ret = PTR_ERR(opp);
+ goto out;
}
vproc = dev_pm_opp_get_voltage(opp);
dev_pm_opp_put(opp);
/*
+ * If MediaTek cci is supported but is not ready, we will use the value
+ * of max(target cpu voltage, booting voltage) to prevent high freqeuncy
+ * low voltage crash.
+ */
+ if (info->soc_data->ccifreq_supported && !is_ccifreq_ready(info))
+ vproc = max(vproc, info->vproc_on_boot);
+
+ /*
* If the new voltage or the intermediate voltage is higher than the
* current voltage, scale up voltage first.
*/
- target_vproc = (inter_vproc > vproc) ? inter_vproc : vproc;
- if (old_vproc < target_vproc) {
+ target_vproc = max(inter_vproc, vproc);
+ if (pre_vproc <= target_vproc) {
ret = mtk_cpufreq_set_voltage(info, target_vproc);
if (ret) {
- pr_err("cpu%d: failed to scale up voltage!\n",
- policy->cpu);
- mtk_cpufreq_set_voltage(info, old_vproc);
- return ret;
+ dev_err(cpu_dev,
+ "cpu%d: failed to scale up voltage!\n", policy->cpu);
+ mtk_cpufreq_set_voltage(info, pre_vproc);
+ goto out;
}
}
/* Reparent the CPU clock to intermediate clock. */
ret = clk_set_parent(cpu_clk, info->inter_clk);
if (ret) {
- pr_err("cpu%d: failed to re-parent cpu clock!\n",
- policy->cpu);
- mtk_cpufreq_set_voltage(info, old_vproc);
- WARN_ON(1);
- return ret;
+ dev_err(cpu_dev,
+ "cpu%d: failed to re-parent cpu clock!\n", policy->cpu);
+ mtk_cpufreq_set_voltage(info, pre_vproc);
+ goto out;
}
/* Set the original PLL to target rate. */
ret = clk_set_rate(armpll, freq_hz);
if (ret) {
- pr_err("cpu%d: failed to scale cpu clock rate!\n",
- policy->cpu);
+ dev_err(cpu_dev,
+ "cpu%d: failed to scale cpu clock rate!\n", policy->cpu);
clk_set_parent(cpu_clk, armpll);
- mtk_cpufreq_set_voltage(info, old_vproc);
- return ret;
+ mtk_cpufreq_set_voltage(info, pre_vproc);
+ goto out;
}
/* Set parent of CPU clock back to the original PLL. */
ret = clk_set_parent(cpu_clk, armpll);
if (ret) {
- pr_err("cpu%d: failed to re-parent cpu clock!\n",
- policy->cpu);
+ dev_err(cpu_dev,
+ "cpu%d: failed to re-parent cpu clock!\n", policy->cpu);
mtk_cpufreq_set_voltage(info, inter_vproc);
- WARN_ON(1);
- return ret;
+ goto out;
}
/*
* If the new voltage is lower than the intermediate voltage or the
* original voltage, scale down to the new voltage.
*/
- if (vproc < inter_vproc || vproc < old_vproc) {
+ if (vproc < inter_vproc || vproc < pre_vproc) {
ret = mtk_cpufreq_set_voltage(info, vproc);
if (ret) {
- pr_err("cpu%d: failed to scale down voltage!\n",
- policy->cpu);
+ dev_err(cpu_dev,
+ "cpu%d: failed to scale down voltage!\n", policy->cpu);
clk_set_parent(cpu_clk, info->inter_clk);
- clk_set_rate(armpll, old_freq_hz);
+ clk_set_rate(armpll, pre_freq_hz);
clk_set_parent(cpu_clk, armpll);
- return ret;
+ goto out;
}
}
- return 0;
+ info->current_freq = freq_hz;
+
+out:
+ mutex_unlock(&info->reg_lock);
+
+ return ret;
}
#define DYNAMIC_POWER "dynamic-power-coefficient"
+static int mtk_cpufreq_opp_notifier(struct notifier_block *nb,
+ unsigned long event, void *data)
+{
+ struct dev_pm_opp *opp = data;
+ struct dev_pm_opp *new_opp;
+ struct mtk_cpu_dvfs_info *info;
+ unsigned long freq, volt;
+ struct cpufreq_policy *policy;
+ int ret = 0;
+
+ info = container_of(nb, struct mtk_cpu_dvfs_info, opp_nb);
+
+ if (event == OPP_EVENT_ADJUST_VOLTAGE) {
+ freq = dev_pm_opp_get_freq(opp);
+
+ mutex_lock(&info->reg_lock);
+ if (info->current_freq == freq) {
+ volt = dev_pm_opp_get_voltage(opp);
+ ret = mtk_cpufreq_set_voltage(info, volt);
+ if (ret)
+ dev_err(info->cpu_dev,
+ "failed to scale voltage: %d\n", ret);
+ }
+ mutex_unlock(&info->reg_lock);
+ } else if (event == OPP_EVENT_DISABLE) {
+ freq = dev_pm_opp_get_freq(opp);
+
+ /* case of current opp item is disabled */
+ if (info->current_freq == freq) {
+ freq = 1;
+ new_opp = dev_pm_opp_find_freq_ceil(info->cpu_dev,
+ &freq);
+ if (IS_ERR(new_opp)) {
+ dev_err(info->cpu_dev,
+ "all opp items are disabled\n");
+ ret = PTR_ERR(new_opp);
+ return notifier_from_errno(ret);
+ }
+
+ dev_pm_opp_put(new_opp);
+ policy = cpufreq_cpu_get(info->opp_cpu);
+ if (policy) {
+ cpufreq_driver_target(policy, freq / 1000,
+ CPUFREQ_RELATION_L);
+ cpufreq_cpu_put(policy);
+ }
+ }
+ }
+
+ return notifier_from_errno(ret);
+}
+
+static struct device *of_get_cci(struct device *cpu_dev)
+{
+ struct device_node *np;
+ struct platform_device *pdev;
+
+ np = of_parse_phandle(cpu_dev->of_node, "mediatek,cci", 0);
+ if (IS_ERR_OR_NULL(np))
+ return NULL;
+
+ pdev = of_find_device_by_node(np);
+ of_node_put(np);
+ if (IS_ERR_OR_NULL(pdev))
+ return NULL;
+
+ return &pdev->dev;
+}
+
static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu)
{
struct device *cpu_dev;
- struct regulator *proc_reg = ERR_PTR(-ENODEV);
- struct regulator *sram_reg = ERR_PTR(-ENODEV);
- struct clk *cpu_clk = ERR_PTR(-ENODEV);
- struct clk *inter_clk = ERR_PTR(-ENODEV);
struct dev_pm_opp *opp;
unsigned long rate;
int ret;
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev) {
- pr_err("failed to get cpu%d device\n", cpu);
+ dev_err(cpu_dev, "failed to get cpu%d device\n", cpu);
return -ENODEV;
}
+ info->cpu_dev = cpu_dev;
- cpu_clk = clk_get(cpu_dev, "cpu");
- if (IS_ERR(cpu_clk)) {
- if (PTR_ERR(cpu_clk) == -EPROBE_DEFER)
- pr_warn("cpu clk for cpu%d not ready, retry.\n", cpu);
- else
- pr_err("failed to get cpu clk for cpu%d\n", cpu);
-
- ret = PTR_ERR(cpu_clk);
- return ret;
+ info->ccifreq_bound = false;
+ if (info->soc_data->ccifreq_supported) {
+ info->cci_dev = of_get_cci(info->cpu_dev);
+ if (IS_ERR_OR_NULL(info->cci_dev)) {
+ ret = PTR_ERR(info->cci_dev);
+ dev_err(cpu_dev, "cpu%d: failed to get cci device\n", cpu);
+ return -ENODEV;
+ }
}
- inter_clk = clk_get(cpu_dev, "intermediate");
- if (IS_ERR(inter_clk)) {
- if (PTR_ERR(inter_clk) == -EPROBE_DEFER)
- pr_warn("intermediate clk for cpu%d not ready, retry.\n",
- cpu);
- else
- pr_err("failed to get intermediate clk for cpu%d\n",
- cpu);
+ info->cpu_clk = clk_get(cpu_dev, "cpu");
+ if (IS_ERR(info->cpu_clk)) {
+ ret = PTR_ERR(info->cpu_clk);
+ return dev_err_probe(cpu_dev, ret,
+ "cpu%d: failed to get cpu clk\n", cpu);
+ }
- ret = PTR_ERR(inter_clk);
+ info->inter_clk = clk_get(cpu_dev, "intermediate");
+ if (IS_ERR(info->inter_clk)) {
+ ret = PTR_ERR(info->inter_clk);
+ dev_err_probe(cpu_dev, ret,
+ "cpu%d: failed to get intermediate clk\n", cpu);
goto out_free_resources;
}
- proc_reg = regulator_get_optional(cpu_dev, "proc");
- if (IS_ERR(proc_reg)) {
- if (PTR_ERR(proc_reg) == -EPROBE_DEFER)
- pr_warn("proc regulator for cpu%d not ready, retry.\n",
- cpu);
- else
- pr_err("failed to get proc regulator for cpu%d\n",
- cpu);
+ info->proc_reg = regulator_get_optional(cpu_dev, "proc");
+ if (IS_ERR(info->proc_reg)) {
+ ret = PTR_ERR(info->proc_reg);
+ dev_err_probe(cpu_dev, ret,
+ "cpu%d: failed to get proc regulator\n", cpu);
+ goto out_free_resources;
+ }
- ret = PTR_ERR(proc_reg);
+ ret = regulator_enable(info->proc_reg);
+ if (ret) {
+ dev_warn(cpu_dev, "cpu%d: failed to enable vproc\n", cpu);
goto out_free_resources;
}
/* Both presence and absence of sram regulator are valid cases. */
- sram_reg = regulator_get_exclusive(cpu_dev, "sram");
+ info->sram_reg = regulator_get_optional(cpu_dev, "sram");
+ if (IS_ERR(info->sram_reg))
+ info->sram_reg = NULL;
+ else {
+ ret = regulator_enable(info->sram_reg);
+ if (ret) {
+ dev_warn(cpu_dev, "cpu%d: failed to enable vsram\n", cpu);
+ goto out_free_resources;
+ }
+ }
/* Get OPP-sharing information from "operating-points-v2" bindings */
ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, &info->cpus);
if (ret) {
- pr_err("failed to get OPP-sharing information for cpu%d\n",
- cpu);
+ dev_err(cpu_dev,
+ "cpu%d: failed to get OPP-sharing information\n", cpu);
goto out_free_resources;
}
ret = dev_pm_opp_of_cpumask_add_table(&info->cpus);
if (ret) {
- pr_warn("no OPP table for cpu%d\n", cpu);
+ dev_warn(cpu_dev, "cpu%d: no OPP table\n", cpu);
goto out_free_resources;
}
+ ret = clk_prepare_enable(info->cpu_clk);
+ if (ret)
+ goto out_free_opp_table;
+
+ ret = clk_prepare_enable(info->inter_clk);
+ if (ret)
+ goto out_disable_mux_clock;
+
+ if (info->soc_data->ccifreq_supported) {
+ info->vproc_on_boot = regulator_get_voltage(info->proc_reg);
+ if (info->vproc_on_boot < 0) {
+ dev_err(info->cpu_dev,
+ "invalid Vproc value: %d\n", info->vproc_on_boot);
+ goto out_disable_inter_clock;
+ }
+ }
+
/* Search a safe voltage for intermediate frequency. */
- rate = clk_get_rate(inter_clk);
+ rate = clk_get_rate(info->inter_clk);
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
if (IS_ERR(opp)) {
- pr_err("failed to get intermediate opp for cpu%d\n", cpu);
+ dev_err(cpu_dev, "cpu%d: failed to get intermediate opp\n", cpu);
ret = PTR_ERR(opp);
- goto out_free_opp_table;
+ goto out_disable_inter_clock;
}
info->intermediate_voltage = dev_pm_opp_get_voltage(opp);
dev_pm_opp_put(opp);
- info->cpu_dev = cpu_dev;
- info->proc_reg = proc_reg;
- info->sram_reg = IS_ERR(sram_reg) ? NULL : sram_reg;
- info->cpu_clk = cpu_clk;
- info->inter_clk = inter_clk;
+ mutex_init(&info->reg_lock);
+ info->current_freq = clk_get_rate(info->cpu_clk);
+
+ info->opp_cpu = cpu;
+ info->opp_nb.notifier_call = mtk_cpufreq_opp_notifier;
+ ret = dev_pm_opp_register_notifier(cpu_dev, &info->opp_nb);
+ if (ret) {
+ dev_err(cpu_dev, "cpu%d: failed to register opp notifier\n", cpu);
+ goto out_disable_inter_clock;
+ }
/*
* If SRAM regulator is present, software "voltage tracking" is needed
* for this CPU power domain.
*/
- info->need_voltage_tracking = !IS_ERR(sram_reg);
+ info->need_voltage_tracking = (info->sram_reg != NULL);
+
+ /*
+ * We assume min voltage is 0 and tracking target voltage using
+ * min_volt_shift for each iteration.
+ * The vtrack_max is 3 times of expeted iteration count.
+ */
+ info->vtrack_max = 3 * DIV_ROUND_UP(max(info->soc_data->sram_max_volt,
+ info->soc_data->proc_max_volt),
+ info->soc_data->min_volt_shift);
return 0;
+out_disable_inter_clock:
+ clk_disable_unprepare(info->inter_clk);
+
+out_disable_mux_clock:
+ clk_disable_unprepare(info->cpu_clk);
+
out_free_opp_table:
dev_pm_opp_of_cpumask_remove_table(&info->cpus);
out_free_resources:
- if (!IS_ERR(proc_reg))
- regulator_put(proc_reg);
- if (!IS_ERR(sram_reg))
- regulator_put(sram_reg);
- if (!IS_ERR(cpu_clk))
- clk_put(cpu_clk);
- if (!IS_ERR(inter_clk))
- clk_put(inter_clk);
+ if (regulator_is_enabled(info->proc_reg))
+ regulator_disable(info->proc_reg);
+ if (info->sram_reg && regulator_is_enabled(info->sram_reg))
+ regulator_disable(info->sram_reg);
+
+ if (!IS_ERR(info->proc_reg))
+ regulator_put(info->proc_reg);
+ if (!IS_ERR(info->sram_reg))
+ regulator_put(info->sram_reg);
+ if (!IS_ERR(info->cpu_clk))
+ clk_put(info->cpu_clk);
+ if (!IS_ERR(info->inter_clk))
+ clk_put(info->inter_clk);
return ret;
}
static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info)
{
- if (!IS_ERR(info->proc_reg))
+ if (!IS_ERR(info->proc_reg)) {
+ regulator_disable(info->proc_reg);
regulator_put(info->proc_reg);
- if (!IS_ERR(info->sram_reg))
+ }
+ if (!IS_ERR(info->sram_reg)) {
+ regulator_disable(info->sram_reg);
regulator_put(info->sram_reg);
- if (!IS_ERR(info->cpu_clk))
+ }
+ if (!IS_ERR(info->cpu_clk)) {
+ clk_disable_unprepare(info->cpu_clk);
clk_put(info->cpu_clk);
- if (!IS_ERR(info->inter_clk))
+ }
+ if (!IS_ERR(info->inter_clk)) {
+ clk_disable_unprepare(info->inter_clk);
clk_put(info->inter_clk);
+ }
dev_pm_opp_of_cpumask_remove_table(&info->cpus);
+ dev_pm_opp_unregister_notifier(info->cpu_dev, &info->opp_nb);
}
static int mtk_cpufreq_init(struct cpufreq_policy *policy)
@@ -432,14 +578,15 @@ static int mtk_cpufreq_init(struct cpufreq_policy *policy)
info = mtk_cpu_dvfs_info_lookup(policy->cpu);
if (!info) {
pr_err("dvfs info for cpu%d is not initialized.\n",
- policy->cpu);
+ policy->cpu);
return -EINVAL;
}
ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table);
if (ret) {
- pr_err("failed to init cpufreq table for cpu%d: %d\n",
- policy->cpu, ret);
+ dev_err(info->cpu_dev,
+ "failed to init cpufreq table for cpu%d: %d\n",
+ policy->cpu, ret);
return ret;
}
@@ -476,9 +623,17 @@ static struct cpufreq_driver mtk_cpufreq_driver = {
static int mtk_cpufreq_probe(struct platform_device *pdev)
{
+ const struct mtk_cpufreq_platform_data *data;
struct mtk_cpu_dvfs_info *info, *tmp;
int cpu, ret;
+ data = dev_get_platdata(&pdev->dev);
+ if (!data) {
+ dev_err(&pdev->dev,
+ "failed to get mtk cpufreq platform data\n");
+ return -ENODEV;
+ }
+
for_each_possible_cpu(cpu) {
info = mtk_cpu_dvfs_info_lookup(cpu);
if (info)
@@ -490,6 +645,7 @@ static int mtk_cpufreq_probe(struct platform_device *pdev)
goto release_dvfs_info_list;
}
+ info->soc_data = data;
ret = mtk_cpu_dvfs_info_init(info, cpu);
if (ret) {
dev_err(&pdev->dev,
@@ -525,20 +681,47 @@ static struct platform_driver mtk_cpufreq_platdrv = {
.probe = mtk_cpufreq_probe,
};
+static const struct mtk_cpufreq_platform_data mt2701_platform_data = {
+ .min_volt_shift = 100000,
+ .max_volt_shift = 200000,
+ .proc_max_volt = 1150000,
+ .sram_min_volt = 0,
+ .sram_max_volt = 1150000,
+ .ccifreq_supported = false,
+};
+
+static const struct mtk_cpufreq_platform_data mt8183_platform_data = {
+ .min_volt_shift = 100000,
+ .max_volt_shift = 200000,
+ .proc_max_volt = 1150000,
+ .sram_min_volt = 0,
+ .sram_max_volt = 1150000,
+ .ccifreq_supported = true,
+};
+
+static const struct mtk_cpufreq_platform_data mt8186_platform_data = {
+ .min_volt_shift = 100000,
+ .max_volt_shift = 250000,
+ .proc_max_volt = 1118750,
+ .sram_min_volt = 850000,
+ .sram_max_volt = 1118750,
+ .ccifreq_supported = true,
+};
+
/* List of machines supported by this driver */
static const struct of_device_id mtk_cpufreq_machines[] __initconst = {
- { .compatible = "mediatek,mt2701", },
- { .compatible = "mediatek,mt2712", },
- { .compatible = "mediatek,mt7622", },
- { .compatible = "mediatek,mt7623", },
- { .compatible = "mediatek,mt8167", },
- { .compatible = "mediatek,mt817x", },
- { .compatible = "mediatek,mt8173", },
- { .compatible = "mediatek,mt8176", },
- { .compatible = "mediatek,mt8183", },
- { .compatible = "mediatek,mt8365", },
- { .compatible = "mediatek,mt8516", },
-
+ { .compatible = "mediatek,mt2701", .data = &mt2701_platform_data },
+ { .compatible = "mediatek,mt2712", .data = &mt2701_platform_data },
+ { .compatible = "mediatek,mt7622", .data = &mt2701_platform_data },
+ { .compatible = "mediatek,mt7623", .data = &mt2701_platform_data },
+ { .compatible = "mediatek,mt8167", .data = &mt2701_platform_data },
+ { .compatible = "mediatek,mt817x", .data = &mt2701_platform_data },
+ { .compatible = "mediatek,mt8173", .data = &mt2701_platform_data },
+ { .compatible = "mediatek,mt8176", .data = &mt2701_platform_data },
+ { .compatible = "mediatek,mt8183", .data = &mt8183_platform_data },
+ { .compatible = "mediatek,mt8186", .data = &mt8186_platform_data },
+ { .compatible = "mediatek,mt8365", .data = &mt2701_platform_data },
+ { .compatible = "mediatek,mt8516", .data = &mt2701_platform_data },
{ }
};
MODULE_DEVICE_TABLE(of, mtk_cpufreq_machines);
@@ -547,7 +730,7 @@ static int __init mtk_cpufreq_driver_init(void)
{
struct device_node *np;
const struct of_device_id *match;
- struct platform_device *pdev;
+ const struct mtk_cpufreq_platform_data *data;
int err;
np = of_find_node_by_path("/");
@@ -560,6 +743,7 @@ static int __init mtk_cpufreq_driver_init(void)
pr_debug("Machine is not compatible with mtk-cpufreq\n");
return -ENODEV;
}
+ data = match->data;
err = platform_driver_register(&mtk_cpufreq_platdrv);
if (err)
@@ -571,16 +755,24 @@ static int __init mtk_cpufreq_driver_init(void)
* and the device registration codes are put here to handle defer
* probing.
*/
- pdev = platform_device_register_simple("mtk-cpufreq", -1, NULL, 0);
- if (IS_ERR(pdev)) {
+ cpufreq_pdev = platform_device_register_data(NULL, "mtk-cpufreq", -1,
+ data, sizeof(*data));
+ if (IS_ERR(cpufreq_pdev)) {
pr_err("failed to register mtk-cpufreq platform device\n");
platform_driver_unregister(&mtk_cpufreq_platdrv);
- return PTR_ERR(pdev);
+ return PTR_ERR(cpufreq_pdev);
}
return 0;
}
-device_initcall(mtk_cpufreq_driver_init);
+module_init(mtk_cpufreq_driver_init)
+
+static void __exit mtk_cpufreq_driver_exit(void)
+{
+ platform_device_unregister(cpufreq_pdev);
+ platform_driver_unregister(&mtk_cpufreq_platdrv);
+}
+module_exit(mtk_cpufreq_driver_exit)
MODULE_DESCRIPTION("MediaTek CPUFreq driver");
MODULE_AUTHOR("Pi-Cheng Chen <pi-cheng.chen@linaro.org>");
diff --git a/drivers/cpufreq/tegra194-cpufreq.c b/drivers/cpufreq/tegra194-cpufreq.c
index ac381db25dbe..2a6a98764a8c 100644
--- a/drivers/cpufreq/tegra194-cpufreq.c
+++ b/drivers/cpufreq/tegra194-cpufreq.c
@@ -1,6 +1,6 @@
// SPDX-License-Identifier: GPL-2.0
/*
- * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved
+ * Copyright (c) 2020 - 2022, NVIDIA CORPORATION. All rights reserved
*/
#include <linux/cpu.h>
@@ -24,6 +24,17 @@
#define CPUFREQ_TBL_STEP_HZ (50 * KHZ * KHZ)
#define MAX_CNT ~0U
+#define NDIV_MASK 0x1FF
+
+#define CORE_OFFSET(cpu) (cpu * 8)
+#define CMU_CLKS_BASE 0x2000
+#define SCRATCH_FREQ_CORE_REG(data, cpu) (data->regs + CMU_CLKS_BASE + CORE_OFFSET(cpu))
+
+#define MMCRAB_CLUSTER_BASE(cl) (0x30000 + (cl * 0x10000))
+#define CLUSTER_ACTMON_BASE(data, cl) \
+ (data->regs + (MMCRAB_CLUSTER_BASE(cl) + data->soc->actmon_cntr_base))
+#define CORE_ACTMON_CNTR_REG(data, cl, cpu) (CLUSTER_ACTMON_BASE(data, cl) + CORE_OFFSET(cpu))
+
/* cpufreq transisition latency */
#define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */
@@ -35,12 +46,6 @@ enum cluster {
MAX_CLUSTERS,
};
-struct tegra194_cpufreq_data {
- void __iomem *regs;
- size_t num_clusters;
- struct cpufreq_frequency_table **tables;
-};
-
struct tegra_cpu_ctr {
u32 cpu;
u32 coreclk_cnt, last_coreclk_cnt;
@@ -52,13 +57,127 @@ struct read_counters_work {
struct tegra_cpu_ctr c;
};
+struct tegra_cpufreq_ops {
+ void (*read_counters)(struct tegra_cpu_ctr *c);
+ void (*set_cpu_ndiv)(struct cpufreq_policy *policy, u64 ndiv);
+ void (*get_cpu_cluster_id)(u32 cpu, u32 *cpuid, u32 *clusterid);
+ int (*get_cpu_ndiv)(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv);
+};
+
+struct tegra_cpufreq_soc {
+ struct tegra_cpufreq_ops *ops;
+ int maxcpus_per_cluster;
+ phys_addr_t actmon_cntr_base;
+};
+
+struct tegra194_cpufreq_data {
+ void __iomem *regs;
+ size_t num_clusters;
+ struct cpufreq_frequency_table **tables;
+ const struct tegra_cpufreq_soc *soc;
+};
+
static struct workqueue_struct *read_counters_wq;
-static void get_cpu_cluster(void *cluster)
+static void tegra_get_cpu_mpidr(void *mpidr)
+{
+ *((u64 *)mpidr) = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
+}
+
+static void tegra234_get_cpu_cluster_id(u32 cpu, u32 *cpuid, u32 *clusterid)
+{
+ u64 mpidr;
+
+ smp_call_function_single(cpu, tegra_get_cpu_mpidr, &mpidr, true);
+
+ if (cpuid)
+ *cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
+ if (clusterid)
+ *clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 2);
+}
+
+static int tegra234_get_cpu_ndiv(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv)
{
- u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
+ struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
+ void __iomem *freq_core_reg;
+ u64 mpidr_id;
+
+ /* use physical id to get address of per core frequency register */
+ mpidr_id = (clusterid * data->soc->maxcpus_per_cluster) + cpuid;
+ freq_core_reg = SCRATCH_FREQ_CORE_REG(data, mpidr_id);
+
+ *ndiv = readl(freq_core_reg) & NDIV_MASK;
+
+ return 0;
+}
- *((uint32_t *)cluster) = MPIDR_AFFINITY_LEVEL(mpidr, 1);
+static void tegra234_set_cpu_ndiv(struct cpufreq_policy *policy, u64 ndiv)
+{
+ struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
+ void __iomem *freq_core_reg;
+ u32 cpu, cpuid, clusterid;
+ u64 mpidr_id;
+
+ for_each_cpu_and(cpu, policy->cpus, cpu_online_mask) {
+ data->soc->ops->get_cpu_cluster_id(cpu, &cpuid, &clusterid);
+
+ /* use physical id to get address of per core frequency register */
+ mpidr_id = (clusterid * data->soc->maxcpus_per_cluster) + cpuid;
+ freq_core_reg = SCRATCH_FREQ_CORE_REG(data, mpidr_id);
+
+ writel(ndiv, freq_core_reg);
+ }
+}
+
+/*
+ * This register provides access to two counter values with a single
+ * 64-bit read. The counter values are used to determine the average
+ * actual frequency a core has run at over a period of time.
+ * [63:32] PLLP counter: Counts at fixed frequency (408 MHz)
+ * [31:0] Core clock counter: Counts on every core clock cycle
+ */
+static void tegra234_read_counters(struct tegra_cpu_ctr *c)
+{
+ struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
+ void __iomem *actmon_reg;
+ u32 cpuid, clusterid;
+ u64 val;
+
+ data->soc->ops->get_cpu_cluster_id(c->cpu, &cpuid, &clusterid);
+ actmon_reg = CORE_ACTMON_CNTR_REG(data, clusterid, cpuid);
+
+ val = readq(actmon_reg);
+ c->last_refclk_cnt = upper_32_bits(val);
+ c->last_coreclk_cnt = lower_32_bits(val);
+ udelay(US_DELAY);
+ val = readq(actmon_reg);
+ c->refclk_cnt = upper_32_bits(val);
+ c->coreclk_cnt = lower_32_bits(val);
+}
+
+static struct tegra_cpufreq_ops tegra234_cpufreq_ops = {
+ .read_counters = tegra234_read_counters,
+ .get_cpu_cluster_id = tegra234_get_cpu_cluster_id,
+ .get_cpu_ndiv = tegra234_get_cpu_ndiv,
+ .set_cpu_ndiv = tegra234_set_cpu_ndiv,
+};
+
+const struct tegra_cpufreq_soc tegra234_cpufreq_soc = {
+ .ops = &tegra234_cpufreq_ops,
+ .actmon_cntr_base = 0x9000,
+ .maxcpus_per_cluster = 4,
+};
+
+static void tegra194_get_cpu_cluster_id(u32 cpu, u32 *cpuid, u32 *clusterid)
+{
+ u64 mpidr;
+
+ smp_call_function_single(cpu, tegra_get_cpu_mpidr, &mpidr, true);
+
+ if (cpuid)
+ *cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 0);
+ if (clusterid)
+ *clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
}
/*
@@ -85,11 +204,24 @@ static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response
return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv);
}
+static void tegra194_read_counters(struct tegra_cpu_ctr *c)
+{
+ u64 val;
+
+ val = read_freq_feedback();
+ c->last_refclk_cnt = lower_32_bits(val);
+ c->last_coreclk_cnt = upper_32_bits(val);
+ udelay(US_DELAY);
+ val = read_freq_feedback();
+ c->refclk_cnt = lower_32_bits(val);
+ c->coreclk_cnt = upper_32_bits(val);
+}
+
static void tegra_read_counters(struct work_struct *work)
{
+ struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
struct read_counters_work *read_counters_work;
struct tegra_cpu_ctr *c;
- u64 val;
/*
* ref_clk_counter(32 bit counter) runs on constant clk,
@@ -107,13 +239,7 @@ static void tegra_read_counters(struct work_struct *work)
work);
c = &read_counters_work->c;
- val = read_freq_feedback();
- c->last_refclk_cnt = lower_32_bits(val);
- c->last_coreclk_cnt = upper_32_bits(val);
- udelay(US_DELAY);
- val = read_freq_feedback();
- c->refclk_cnt = lower_32_bits(val);
- c->coreclk_cnt = upper_32_bits(val);
+ data->soc->ops->read_counters(c);
}
/*
@@ -177,7 +303,7 @@ static unsigned int tegra194_calculate_speed(u32 cpu)
return (rate_mhz * KHZ); /* in KHz */
}
-static void get_cpu_ndiv(void *ndiv)
+static void tegra194_get_cpu_ndiv_sysreg(void *ndiv)
{
u64 ndiv_val;
@@ -186,30 +312,43 @@ static void get_cpu_ndiv(void *ndiv)
*(u64 *)ndiv = ndiv_val;
}
-static void set_cpu_ndiv(void *data)
+static int tegra194_get_cpu_ndiv(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv)
+{
+ int ret;
+
+ ret = smp_call_function_single(cpu, tegra194_get_cpu_ndiv_sysreg, &ndiv, true);
+
+ return ret;
+}
+
+static void tegra194_set_cpu_ndiv_sysreg(void *data)
{
- struct cpufreq_frequency_table *tbl = data;
- u64 ndiv_val = (u64)tbl->driver_data;
+ u64 ndiv_val = *(u64 *)data;
asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val));
}
+static void tegra194_set_cpu_ndiv(struct cpufreq_policy *policy, u64 ndiv)
+{
+ on_each_cpu_mask(policy->cpus, tegra194_set_cpu_ndiv_sysreg, &ndiv, true);
+}
+
static unsigned int tegra194_get_speed(u32 cpu)
{
struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
struct cpufreq_frequency_table *pos;
+ u32 cpuid, clusterid;
unsigned int rate;
u64 ndiv;
int ret;
- u32 cl;
- smp_call_function_single(cpu, get_cpu_cluster, &cl, true);
+ data->soc->ops->get_cpu_cluster_id(cpu, &cpuid, &clusterid);
/* reconstruct actual cpu freq using counters */
rate = tegra194_calculate_speed(cpu);
/* get last written ndiv value */
- ret = smp_call_function_single(cpu, get_cpu_ndiv, &ndiv, true);
+ ret = data->soc->ops->get_cpu_ndiv(cpu, cpuid, clusterid, &ndiv);
if (WARN_ON_ONCE(ret))
return rate;
@@ -219,7 +358,7 @@ static unsigned int tegra194_get_speed(u32 cpu)
* to the last written ndiv value from freq_table. This is
* done to return consistent value.
*/
- cpufreq_for_each_valid_entry(pos, data->tables[cl]) {
+ cpufreq_for_each_valid_entry(pos, data->tables[clusterid]) {
if (pos->driver_data != ndiv)
continue;
@@ -237,19 +376,22 @@ static unsigned int tegra194_get_speed(u32 cpu)
static int tegra194_cpufreq_init(struct cpufreq_policy *policy)
{
struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
- u32 cpu;
- u32 cl;
+ int maxcpus_per_cluster = data->soc->maxcpus_per_cluster;
+ u32 start_cpu, cpu;
+ u32 clusterid;
- smp_call_function_single(policy->cpu, get_cpu_cluster, &cl, true);
+ data->soc->ops->get_cpu_cluster_id(policy->cpu, NULL, &clusterid);
- if (cl >= data->num_clusters || !data->tables[cl])
+ if (clusterid >= data->num_clusters || !data->tables[clusterid])
return -EINVAL;
+ start_cpu = rounddown(policy->cpu, maxcpus_per_cluster);
/* set same policy for all cpus in a cluster */
- for (cpu = (cl * 2); cpu < ((cl + 1) * 2); cpu++)
- cpumask_set_cpu(cpu, policy->cpus);
-
- policy->freq_table = data->tables[cl];
+ for (cpu = start_cpu; cpu < (start_cpu + maxcpus_per_cluster); cpu++) {
+ if (cpu_possible(cpu))
+ cpumask_set_cpu(cpu, policy->cpus);
+ }
+ policy->freq_table = data->tables[clusterid];
policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY;
return 0;
@@ -259,13 +401,14 @@ static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy,
unsigned int index)
{
struct cpufreq_frequency_table *tbl = policy->freq_table + index;
+ struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
/*
* Each core writes frequency in per core register. Then both cores
* in a cluster run at same frequency which is the maximum frequency
* request out of the values requested by both cores in that cluster.
*/
- on_each_cpu_mask(policy->cpus, set_cpu_ndiv, tbl, true);
+ data->soc->ops->set_cpu_ndiv(policy, (u64)tbl->driver_data);
return 0;
}
@@ -280,6 +423,18 @@ static struct cpufreq_driver tegra194_cpufreq_driver = {
.attr = cpufreq_generic_attr,
};
+static struct tegra_cpufreq_ops tegra194_cpufreq_ops = {
+ .read_counters = tegra194_read_counters,
+ .get_cpu_cluster_id = tegra194_get_cpu_cluster_id,
+ .get_cpu_ndiv = tegra194_get_cpu_ndiv,
+ .set_cpu_ndiv = tegra194_set_cpu_ndiv,
+};
+
+const struct tegra_cpufreq_soc tegra194_cpufreq_soc = {
+ .ops = &tegra194_cpufreq_ops,
+ .maxcpus_per_cluster = 2,
+};
+
static void tegra194_cpufreq_free_resources(void)
{
destroy_workqueue(read_counters_wq);
@@ -359,6 +514,7 @@ init_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp,
static int tegra194_cpufreq_probe(struct platform_device *pdev)
{
+ const struct tegra_cpufreq_soc *soc;
struct tegra194_cpufreq_data *data;
struct tegra_bpmp *bpmp;
int err, i;
@@ -367,12 +523,28 @@ static int tegra194_cpufreq_probe(struct platform_device *pdev)
if (!data)
return -ENOMEM;
+ soc = of_device_get_match_data(&pdev->dev);
+
+ if (soc->ops && soc->maxcpus_per_cluster) {
+ data->soc = soc;
+ } else {
+ dev_err(&pdev->dev, "soc data missing\n");
+ return -EINVAL;
+ }
+
data->num_clusters = MAX_CLUSTERS;
data->tables = devm_kcalloc(&pdev->dev, data->num_clusters,
sizeof(*data->tables), GFP_KERNEL);
if (!data->tables)
return -ENOMEM;
+ if (soc->actmon_cntr_base) {
+ /* mmio registers are used for frequency request and re-construction */
+ data->regs = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(data->regs))
+ return PTR_ERR(data->regs);
+ }
+
platform_set_drvdata(pdev, data);
bpmp = tegra_bpmp_get(&pdev->dev);
@@ -416,10 +588,10 @@ static int tegra194_cpufreq_remove(struct platform_device *pdev)
}
static const struct of_device_id tegra194_cpufreq_of_match[] = {
- { .compatible = "nvidia,tegra194-ccplex", },
+ { .compatible = "nvidia,tegra194-ccplex", .data = &tegra194_cpufreq_soc },
+ { .compatible = "nvidia,tegra234-ccplex-cluster", .data = &tegra234_cpufreq_soc },
{ /* sentinel */ }
};
-MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match);
static struct platform_driver tegra194_ccplex_driver = {
.driver = {