diff options
author | Paolo Valente <paolo.valente@linaro.org> | 2019-01-29 12:06:31 +0100 |
---|---|---|
committer | Jens Axboe <axboe@kernel.dk> | 2019-01-31 12:50:23 -0700 |
commit | ac8b0cb415f3aa9162009d39624501d37031533b (patch) | |
tree | 7535aac3227f576c0625be34b15d1bbcedeb9d31 /block | |
parent | 05c2f5c30b3ca2346a5bb7c74b0c9515d8f4fbd2 (diff) | |
download | linux-ac8b0cb415f3aa9162009d39624501d37031533b.tar.bz2 |
block, bfq: do not plug I/O of in-service queue when harmful
If the in-service bfq_queue is sync and remains temporarily idle, then
I/O dispatching (from other queues) may be plugged. It may be dome for
two reasons: either to boost throughput, or to preserve the bandwidth
share of the in-service queue. In the first case, if the I/O of the
in-service queue, when it finally arrives, consists only of one small
I/O request, then it makes sense to plug even the I/O of the in-service
queue. In fact, serving such a small request immediately is likely to
lower throughput instead of boosting it, whereas waiting a little bit is
likely to let that request grow, thanks to request merging, and become
more profitable in terms of throughput (this is likely to happen exactly
because the I/O of the queue has been detected to boost throughput).
On the opposite end, if I/O dispatching is being plugged only to
preserve the bandwidth of the in-service queue, then it would be better
not to plug also the I/O of the in-service queue, because such a
plugging is likely to cause only loss of bandwidth for the queue.
Unfortunately, no distinction is made between the two cases, and the I/O
of the in-service queue is always plugged in case just a small I/O
request arrives. This commit draws this missing distinction and does not
perform harmful plugging.
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Diffstat (limited to 'block')
-rw-r--r-- | block/bfq-iosched.c | 31 |
1 files changed, 17 insertions, 14 deletions
diff --git a/block/bfq-iosched.c b/block/bfq-iosched.c index 2756f4b1432b..a6fe60114ade 100644 --- a/block/bfq-iosched.c +++ b/block/bfq-iosched.c @@ -4599,28 +4599,31 @@ static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq, bool budget_timeout = bfq_bfqq_budget_timeout(bfqq); /* - * There is just this request queued: if the request - * is small and the queue is not to be expired, then - * just exit. + * There is just this request queued: if + * - the request is small, and + * - we are idling to boost throughput, and + * - the queue is not to be expired, + * then just exit. * * In this way, if the device is being idled to wait * for a new request from the in-service queue, we * avoid unplugging the device and committing the - * device to serve just a small request. On the - * contrary, we wait for the block layer to decide - * when to unplug the device: hopefully, new requests - * will be merged to this one quickly, then the device - * will be unplugged and larger requests will be - * dispatched. + * device to serve just a small request. In contrast + * we wait for the block layer to decide when to + * unplug the device: hopefully, new requests will be + * merged to this one quickly, then the device will be + * unplugged and larger requests will be dispatched. */ - if (small_req && !budget_timeout) + if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) && + !budget_timeout) return; /* - * A large enough request arrived, or the queue is to - * be expired: in both cases disk idling is to be - * stopped, so clear wait_request flag and reset - * timer. + * A large enough request arrived, or idling is being + * performed to preserve service guarantees, or + * finally the queue is to be expired: in all these + * cases disk idling is to be stopped, so clear + * wait_request flag and reset timer. */ bfq_clear_bfqq_wait_request(bfqq); hrtimer_try_to_cancel(&bfqd->idle_slice_timer); |