diff options
author | Sean Christopherson <seanjc@google.com> | 2021-11-25 01:49:44 +0000 |
---|---|---|
committer | Paolo Bonzini <pbonzini@redhat.com> | 2021-11-26 07:11:29 -0500 |
commit | 712494de96f35f3e146b36b752c2afe0fdc0f0cc (patch) | |
tree | 1bc2b07e7f7f4d5238efa3d7dd8d1304ebdb1560 /arch/x86 | |
parent | 40e5f9080472b614eeedcc5ba678289cd98d70df (diff) | |
download | linux-712494de96f35f3e146b36b752c2afe0fdc0f0cc.tar.bz2 |
KVM: nVMX: Emulate guest TLB flush on nested VM-Enter with new vpid12
Fully emulate a guest TLB flush on nested VM-Enter which changes vpid12,
i.e. L2's VPID, instead of simply doing INVVPID to flush real hardware's
TLB entries for vpid02. From L1's perspective, changing L2's VPID is
effectively a TLB flush unless "hardware" has previously cached entries
for the new vpid12. Because KVM tracks only a single vpid12, KVM doesn't
know if the new vpid12 has been used in the past and so must treat it as
a brand new, never been used VPID, i.e. must assume that the new vpid12
represents a TLB flush from L1's perspective.
For example, if L1 and L2 share a CR3, the first VM-Enter to L2 (with a
VPID) is effectively a TLB flush as hardware/KVM has never seen vpid12
and thus can't have cached entries in the TLB for vpid12.
Reported-by: Lai Jiangshan <jiangshanlai+lkml@gmail.com>
Fixes: 5c614b3583e7 ("KVM: nVMX: nested VPID emulation")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211125014944.536398-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'arch/x86')
-rw-r--r-- | arch/x86/kvm/vmx/nested.c | 37 |
1 files changed, 17 insertions, 20 deletions
diff --git a/arch/x86/kvm/vmx/nested.c b/arch/x86/kvm/vmx/nested.c index 8e55aaef33ee..64f2828035c2 100644 --- a/arch/x86/kvm/vmx/nested.c +++ b/arch/x86/kvm/vmx/nested.c @@ -1162,29 +1162,26 @@ static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu, WARN_ON(!enable_vpid); /* - * If VPID is enabled and used by vmc12, but L2 does not have a unique - * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate - * a VPID for L2, flush the current context as the effective ASID is - * common to both L1 and L2. - * - * Defer the flush so that it runs after vmcs02.EPTP has been set by - * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid - * redundant flushes further down the nested pipeline. - * - * If a TLB flush isn't required due to any of the above, and vpid12 is - * changing then the new "virtual" VPID (vpid12) will reuse the same - * "real" VPID (vpid02), and so needs to be flushed. There's no direct - * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for - * all nested vCPUs. Remember, a flush on VM-Enter does not invalidate - * guest-physical mappings, so there is no need to sync the nEPT MMU. + * VPID is enabled and in use by vmcs12. If vpid12 is changing, then + * emulate a guest TLB flush as KVM does not track vpid12 history nor + * is the VPID incorporated into the MMU context. I.e. KVM must assume + * that the new vpid12 has never been used and thus represents a new + * guest ASID that cannot have entries in the TLB. */ - if (!nested_has_guest_tlb_tag(vcpu)) { - kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); - } else if (is_vmenter && - vmcs12->virtual_processor_id != vmx->nested.last_vpid) { + if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) { vmx->nested.last_vpid = vmcs12->virtual_processor_id; - vpid_sync_context(nested_get_vpid02(vcpu)); + kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); + return; } + + /* + * If VPID is enabled, used by vmc12, and vpid12 is not changing but + * does not have a unique TLB tag (ASID), i.e. EPT is disabled and + * KVM was unable to allocate a VPID for L2, flush the current context + * as the effective ASID is common to both L1 and L2. + */ + if (!nested_has_guest_tlb_tag(vcpu)) + kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); } static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask) |