summaryrefslogtreecommitdiffstats
path: root/arch/x86/kvm/x86.c
diff options
context:
space:
mode:
authorMarcelo Tosatti <mtosatti@redhat.com>2012-11-27 23:29:01 -0200
committerMarcelo Tosatti <mtosatti@redhat.com>2012-11-27 23:29:13 -0200
commitd828199e84447795c6669ff0e6c6d55eb9beeff6 (patch)
treec11fc58c50234ddf06f1c4ca98a4115c8fe8ac2f /arch/x86/kvm/x86.c
parent16e8d74d2da9920f874b10a3d979fb25c01f518f (diff)
downloadlinux-d828199e84447795c6669ff0e6c6d55eb9beeff6.tar.bz2
KVM: x86: implement PVCLOCK_TSC_STABLE_BIT pvclock flag
KVM added a global variable to guarantee monotonicity in the guest. One of the reasons for that is that the time between 1. ktime_get_ts(&timespec); 2. rdtscll(tsc); Is variable. That is, given a host with stable TSC, suppose that two VCPUs read the same time via ktime_get_ts() above. The time required to execute 2. is not the same on those two instances executing in different VCPUS (cache misses, interrupts...). If the TSC value that is used by the host to interpolate when calculating the monotonic time is the same value used to calculate the tsc_timestamp value stored in the pvclock data structure, and a single <system_timestamp, tsc_timestamp> tuple is visible to all vcpus simultaneously, this problem disappears. See comment on top of pvclock_update_vm_gtod_copy for details. Monotonicity is then guaranteed by synchronicity of the host TSCs and guest TSCs. Set TSC stable pvclock flag in that case, allowing the guest to read clock from userspace. Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Diffstat (limited to 'arch/x86/kvm/x86.c')
-rw-r--r--arch/x86/kvm/x86.c235
1 files changed, 227 insertions, 8 deletions
diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c
index c077b817d1c3..a7b97a49d8ad 100644
--- a/arch/x86/kvm/x86.c
+++ b/arch/x86/kvm/x86.c
@@ -1048,7 +1048,9 @@ static inline u64 get_kernel_ns(void)
return timespec_to_ns(&ts);
}
+#ifdef CONFIG_X86_64
static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
+#endif
static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
unsigned long max_tsc_khz;
@@ -1190,21 +1192,170 @@ void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
EXPORT_SYMBOL_GPL(kvm_write_tsc);
+#ifdef CONFIG_X86_64
+
+static cycle_t read_tsc(void)
+{
+ cycle_t ret;
+ u64 last;
+
+ /*
+ * Empirically, a fence (of type that depends on the CPU)
+ * before rdtsc is enough to ensure that rdtsc is ordered
+ * with respect to loads. The various CPU manuals are unclear
+ * as to whether rdtsc can be reordered with later loads,
+ * but no one has ever seen it happen.
+ */
+ rdtsc_barrier();
+ ret = (cycle_t)vget_cycles();
+
+ last = pvclock_gtod_data.clock.cycle_last;
+
+ if (likely(ret >= last))
+ return ret;
+
+ /*
+ * GCC likes to generate cmov here, but this branch is extremely
+ * predictable (it's just a funciton of time and the likely is
+ * very likely) and there's a data dependence, so force GCC
+ * to generate a branch instead. I don't barrier() because
+ * we don't actually need a barrier, and if this function
+ * ever gets inlined it will generate worse code.
+ */
+ asm volatile ("");
+ return last;
+}
+
+static inline u64 vgettsc(cycle_t *cycle_now)
+{
+ long v;
+ struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
+
+ *cycle_now = read_tsc();
+
+ v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
+ return v * gtod->clock.mult;
+}
+
+static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
+{
+ unsigned long seq;
+ u64 ns;
+ int mode;
+ struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
+
+ ts->tv_nsec = 0;
+ do {
+ seq = read_seqcount_begin(&gtod->seq);
+ mode = gtod->clock.vclock_mode;
+ ts->tv_sec = gtod->monotonic_time_sec;
+ ns = gtod->monotonic_time_snsec;
+ ns += vgettsc(cycle_now);
+ ns >>= gtod->clock.shift;
+ } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
+ timespec_add_ns(ts, ns);
+
+ return mode;
+}
+
+/* returns true if host is using tsc clocksource */
+static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
+{
+ struct timespec ts;
+
+ /* checked again under seqlock below */
+ if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
+ return false;
+
+ if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
+ return false;
+
+ monotonic_to_bootbased(&ts);
+ *kernel_ns = timespec_to_ns(&ts);
+
+ return true;
+}
+#endif
+
+/*
+ *
+ * Assuming a stable TSC across physical CPUS, the following condition
+ * is possible. Each numbered line represents an event visible to both
+ * CPUs at the next numbered event.
+ *
+ * "timespecX" represents host monotonic time. "tscX" represents
+ * RDTSC value.
+ *
+ * VCPU0 on CPU0 | VCPU1 on CPU1
+ *
+ * 1. read timespec0,tsc0
+ * 2. | timespec1 = timespec0 + N
+ * | tsc1 = tsc0 + M
+ * 3. transition to guest | transition to guest
+ * 4. ret0 = timespec0 + (rdtsc - tsc0) |
+ * 5. | ret1 = timespec1 + (rdtsc - tsc1)
+ * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
+ *
+ * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
+ *
+ * - ret0 < ret1
+ * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
+ * ...
+ * - 0 < N - M => M < N
+ *
+ * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
+ * always the case (the difference between two distinct xtime instances
+ * might be smaller then the difference between corresponding TSC reads,
+ * when updating guest vcpus pvclock areas).
+ *
+ * To avoid that problem, do not allow visibility of distinct
+ * system_timestamp/tsc_timestamp values simultaneously: use a master
+ * copy of host monotonic time values. Update that master copy
+ * in lockstep.
+ *
+ * Rely on synchronization of host TSCs for monotonicity.
+ *
+ */
+
+static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
+{
+#ifdef CONFIG_X86_64
+ struct kvm_arch *ka = &kvm->arch;
+ int vclock_mode;
+
+ /*
+ * If the host uses TSC clock, then passthrough TSC as stable
+ * to the guest.
+ */
+ ka->use_master_clock = kvm_get_time_and_clockread(
+ &ka->master_kernel_ns,
+ &ka->master_cycle_now);
+
+ if (ka->use_master_clock)
+ atomic_set(&kvm_guest_has_master_clock, 1);
+
+ vclock_mode = pvclock_gtod_data.clock.vclock_mode;
+ trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode);
+#endif
+}
+
static int kvm_guest_time_update(struct kvm_vcpu *v)
{
- unsigned long flags;
+ unsigned long flags, this_tsc_khz;
struct kvm_vcpu_arch *vcpu = &v->arch;
+ struct kvm_arch *ka = &v->kvm->arch;
void *shared_kaddr;
- unsigned long this_tsc_khz;
s64 kernel_ns, max_kernel_ns;
- u64 tsc_timestamp;
+ u64 tsc_timestamp, host_tsc;
struct pvclock_vcpu_time_info *guest_hv_clock;
u8 pvclock_flags;
+ bool use_master_clock;
+
+ kernel_ns = 0;
+ host_tsc = 0;
/* Keep irq disabled to prevent changes to the clock */
local_irq_save(flags);
- tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, native_read_tsc());
- kernel_ns = get_kernel_ns();
this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
if (unlikely(this_tsc_khz == 0)) {
local_irq_restore(flags);
@@ -1213,6 +1364,24 @@ static int kvm_guest_time_update(struct kvm_vcpu *v)
}
/*
+ * If the host uses TSC clock, then passthrough TSC as stable
+ * to the guest.
+ */
+ spin_lock(&ka->pvclock_gtod_sync_lock);
+ use_master_clock = ka->use_master_clock;
+ if (use_master_clock) {
+ host_tsc = ka->master_cycle_now;
+ kernel_ns = ka->master_kernel_ns;
+ }
+ spin_unlock(&ka->pvclock_gtod_sync_lock);
+ if (!use_master_clock) {
+ host_tsc = native_read_tsc();
+ kernel_ns = get_kernel_ns();
+ }
+
+ tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
+
+ /*
* We may have to catch up the TSC to match elapsed wall clock
* time for two reasons, even if kvmclock is used.
* 1) CPU could have been running below the maximum TSC rate
@@ -1273,9 +1442,14 @@ static int kvm_guest_time_update(struct kvm_vcpu *v)
vcpu->hw_tsc_khz = this_tsc_khz;
}
- if (max_kernel_ns > kernel_ns)
- kernel_ns = max_kernel_ns;
-
+ /* with a master <monotonic time, tsc value> tuple,
+ * pvclock clock reads always increase at the (scaled) rate
+ * of guest TSC - no need to deal with sampling errors.
+ */
+ if (!use_master_clock) {
+ if (max_kernel_ns > kernel_ns)
+ kernel_ns = max_kernel_ns;
+ }
/* With all the info we got, fill in the values */
vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
@@ -1301,6 +1475,10 @@ static int kvm_guest_time_update(struct kvm_vcpu *v)
vcpu->pvclock_set_guest_stopped_request = false;
}
+ /* If the host uses TSC clocksource, then it is stable */
+ if (use_master_clock)
+ pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
+
vcpu->hv_clock.flags = pvclock_flags;
memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
@@ -4912,6 +5090,17 @@ static void kvm_set_mmio_spte_mask(void)
#ifdef CONFIG_X86_64
static void pvclock_gtod_update_fn(struct work_struct *work)
{
+ struct kvm *kvm;
+
+ struct kvm_vcpu *vcpu;
+ int i;
+
+ raw_spin_lock(&kvm_lock);
+ list_for_each_entry(kvm, &vm_list, vm_list)
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
+ atomic_set(&kvm_guest_has_master_clock, 0);
+ raw_spin_unlock(&kvm_lock);
}
static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
@@ -5303,6 +5492,29 @@ static void process_nmi(struct kvm_vcpu *vcpu)
kvm_make_request(KVM_REQ_EVENT, vcpu);
}
+static void kvm_gen_update_masterclock(struct kvm *kvm)
+{
+#ifdef CONFIG_X86_64
+ int i;
+ struct kvm_vcpu *vcpu;
+ struct kvm_arch *ka = &kvm->arch;
+
+ spin_lock(&ka->pvclock_gtod_sync_lock);
+ kvm_make_mclock_inprogress_request(kvm);
+ /* no guest entries from this point */
+ pvclock_update_vm_gtod_copy(kvm);
+
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
+
+ /* guest entries allowed */
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
+
+ spin_unlock(&ka->pvclock_gtod_sync_lock);
+#endif
+}
+
static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
{
int r;
@@ -5315,6 +5527,8 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
kvm_mmu_unload(vcpu);
if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
__kvm_migrate_timers(vcpu);
+ if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
+ kvm_gen_update_masterclock(vcpu->kvm);
if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
r = kvm_guest_time_update(vcpu);
if (unlikely(r))
@@ -6219,6 +6433,8 @@ int kvm_arch_hardware_enable(void *garbage)
kvm_for_each_vcpu(i, vcpu, kvm) {
vcpu->arch.tsc_offset_adjustment += delta_cyc;
vcpu->arch.last_host_tsc = local_tsc;
+ set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
+ &vcpu->requests);
}
/*
@@ -6356,6 +6572,9 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
raw_spin_lock_init(&kvm->arch.tsc_write_lock);
mutex_init(&kvm->arch.apic_map_lock);
+ spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
+
+ pvclock_update_vm_gtod_copy(kvm);
return 0;
}