diff options
author | Andy Lutomirski <luto@amacapital.net> | 2015-12-10 19:20:19 -0800 |
---|---|---|
committer | Ingo Molnar <mingo@kernel.org> | 2015-12-11 08:56:02 +0100 |
commit | 6b078f5de7fc0851af4102493c7b5bb07e49c4cb (patch) | |
tree | 6ad59677ef65dd5ab468705dcb46019996392293 /arch/x86/entry | |
parent | 677a73a9aa5433ea728200c26a7b3506d5eaa92b (diff) | |
download | linux-6b078f5de7fc0851af4102493c7b5bb07e49c4cb.tar.bz2 |
x86, vdso, pvclock: Simplify and speed up the vdso pvclock reader
The pvclock vdso code was too abstracted to understand easily
and excessively paranoid. Simplify it for a huge speedup.
This opens the door for additional simplifications, as the vdso
no longer accesses the pvti for any vcpu other than vcpu 0.
Before, vclock_gettime using kvm-clock took about 45ns on my
machine. With this change, it takes 29ns, which is almost as
fast as the pure TSC implementation.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/6b51dcc41f1b101f963945c5ec7093d72bdac429.1449702533.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'arch/x86/entry')
-rw-r--r-- | arch/x86/entry/vdso/vclock_gettime.c | 81 |
1 files changed, 46 insertions, 35 deletions
diff --git a/arch/x86/entry/vdso/vclock_gettime.c b/arch/x86/entry/vdso/vclock_gettime.c index ca94fa649251..c325ba1bdddf 100644 --- a/arch/x86/entry/vdso/vclock_gettime.c +++ b/arch/x86/entry/vdso/vclock_gettime.c @@ -78,47 +78,58 @@ static notrace const struct pvclock_vsyscall_time_info *get_pvti(int cpu) static notrace cycle_t vread_pvclock(int *mode) { - const struct pvclock_vsyscall_time_info *pvti; + const struct pvclock_vcpu_time_info *pvti = &get_pvti(0)->pvti; cycle_t ret; - u64 last; - u32 version; - u8 flags; - unsigned cpu, cpu1; - + u64 tsc, pvti_tsc; + u64 last, delta, pvti_system_time; + u32 version, pvti_tsc_to_system_mul, pvti_tsc_shift; /* - * Note: hypervisor must guarantee that: - * 1. cpu ID number maps 1:1 to per-CPU pvclock time info. - * 2. that per-CPU pvclock time info is updated if the - * underlying CPU changes. - * 3. that version is increased whenever underlying CPU - * changes. + * Note: The kernel and hypervisor must guarantee that cpu ID + * number maps 1:1 to per-CPU pvclock time info. + * + * Because the hypervisor is entirely unaware of guest userspace + * preemption, it cannot guarantee that per-CPU pvclock time + * info is updated if the underlying CPU changes or that that + * version is increased whenever underlying CPU changes. * + * On KVM, we are guaranteed that pvti updates for any vCPU are + * atomic as seen by *all* vCPUs. This is an even stronger + * guarantee than we get with a normal seqlock. + * + * On Xen, we don't appear to have that guarantee, but Xen still + * supplies a valid seqlock using the version field. + + * We only do pvclock vdso timing at all if + * PVCLOCK_TSC_STABLE_BIT is set, and we interpret that bit to + * mean that all vCPUs have matching pvti and that the TSC is + * synced, so we can just look at vCPU 0's pvti. */ - do { - cpu = __getcpu() & VGETCPU_CPU_MASK; - /* TODO: We can put vcpu id into higher bits of pvti.version. - * This will save a couple of cycles by getting rid of - * __getcpu() calls (Gleb). - */ - - pvti = get_pvti(cpu); - - version = __pvclock_read_cycles(&pvti->pvti, &ret, &flags); - - /* - * Test we're still on the cpu as well as the version. - * We could have been migrated just after the first - * vgetcpu but before fetching the version, so we - * wouldn't notice a version change. - */ - cpu1 = __getcpu() & VGETCPU_CPU_MASK; - } while (unlikely(cpu != cpu1 || - (pvti->pvti.version & 1) || - pvti->pvti.version != version)); - - if (unlikely(!(flags & PVCLOCK_TSC_STABLE_BIT))) + + if (unlikely(!(pvti->flags & PVCLOCK_TSC_STABLE_BIT))) { *mode = VCLOCK_NONE; + return 0; + } + + do { + version = pvti->version; + + /* This is also a read barrier, so we'll read version first. */ + tsc = rdtsc_ordered(); + + pvti_tsc_to_system_mul = pvti->tsc_to_system_mul; + pvti_tsc_shift = pvti->tsc_shift; + pvti_system_time = pvti->system_time; + pvti_tsc = pvti->tsc_timestamp; + + /* Make sure that the version double-check is last. */ + smp_rmb(); + } while (unlikely((version & 1) || version != pvti->version)); + + delta = tsc - pvti_tsc; + ret = pvti_system_time + + pvclock_scale_delta(delta, pvti_tsc_to_system_mul, + pvti_tsc_shift); /* refer to tsc.c read_tsc() comment for rationale */ last = gtod->cycle_last; |