summaryrefslogtreecommitdiffstats
path: root/arch/arm64/kvm
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2020-06-03 15:13:47 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2020-06-03 15:13:47 -0700
commit039aeb9deb9291f3b19c375a8bc6fa7f768996cc (patch)
treed98d5ddf276843995aa214157b587bb88270c530 /arch/arm64/kvm
parent6b2591c21273ebf65c13dae5d260ce88f0f197dd (diff)
parent13ffbd8db1dd43d63d086517872a4e702a6bf309 (diff)
downloadlinux-039aeb9deb9291f3b19c375a8bc6fa7f768996cc.tar.bz2
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini: "ARM: - Move the arch-specific code into arch/arm64/kvm - Start the post-32bit cleanup - Cherry-pick a few non-invasive pre-NV patches x86: - Rework of TLB flushing - Rework of event injection, especially with respect to nested virtualization - Nested AMD event injection facelift, building on the rework of generic code and fixing a lot of corner cases - Nested AMD live migration support - Optimization for TSC deadline MSR writes and IPIs - Various cleanups - Asynchronous page fault cleanups (from tglx, common topic branch with tip tree) - Interrupt-based delivery of asynchronous "page ready" events (host side) - Hyper-V MSRs and hypercalls for guest debugging - VMX preemption timer fixes s390: - Cleanups Generic: - switch vCPU thread wakeup from swait to rcuwait The other architectures, and the guest side of the asynchronous page fault work, will come next week" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (256 commits) KVM: selftests: fix rdtsc() for vmx_tsc_adjust_test KVM: check userspace_addr for all memslots KVM: selftests: update hyperv_cpuid with SynDBG tests x86/kvm/hyper-v: Add support for synthetic debugger via hypercalls x86/kvm/hyper-v: enable hypercalls regardless of hypercall page x86/kvm/hyper-v: Add support for synthetic debugger interface x86/hyper-v: Add synthetic debugger definitions KVM: selftests: VMX preemption timer migration test KVM: nVMX: Fix VMX preemption timer migration x86/kvm/hyper-v: Explicitly align hcall param for kvm_hyperv_exit KVM: x86/pmu: Support full width counting KVM: x86/pmu: Tweak kvm_pmu_get_msr to pass 'struct msr_data' in KVM: x86: announce KVM_FEATURE_ASYNC_PF_INT KVM: x86: acknowledgment mechanism for async pf page ready notifications KVM: x86: interrupt based APF 'page ready' event delivery KVM: introduce kvm_read_guest_offset_cached() KVM: rename kvm_arch_can_inject_async_page_present() to kvm_arch_can_dequeue_async_page_present() KVM: x86: extend struct kvm_vcpu_pv_apf_data with token info Revert "KVM: async_pf: Fix #DF due to inject "Page not Present" and "Page Ready" exceptions simultaneously" KVM: VMX: Replace zero-length array with flexible-array ...
Diffstat (limited to 'arch/arm64/kvm')
-rw-r--r--arch/arm64/kvm/Kconfig22
-rw-r--r--arch/arm64/kvm/Makefile46
-rw-r--r--arch/arm64/kvm/aarch32.c204
-rw-r--r--arch/arm64/kvm/arch_timer.c1171
-rw-r--r--arch/arm64/kvm/arm.c1710
-rw-r--r--arch/arm64/kvm/guest.c29
-rw-r--r--arch/arm64/kvm/handle_exit.c2
-rw-r--r--arch/arm64/kvm/hyp/Makefile16
-rw-r--r--arch/arm64/kvm/hyp/aarch32.c140
-rw-r--r--arch/arm64/kvm/hyp/switch.c8
-rw-r--r--arch/arm64/kvm/hyp/timer-sr.c48
-rw-r--r--arch/arm64/kvm/hyp/vgic-v3-sr.c1113
-rw-r--r--arch/arm64/kvm/hypercalls.c71
-rw-r--r--arch/arm64/kvm/inject_fault.c75
-rw-r--r--arch/arm64/kvm/mmio.c200
-rw-r--r--arch/arm64/kvm/mmu.c2467
-rw-r--r--arch/arm64/kvm/perf.c57
-rw-r--r--arch/arm64/kvm/pmu-emul.c869
-rw-r--r--arch/arm64/kvm/psci.c564
-rw-r--r--arch/arm64/kvm/pvtime.c131
-rw-r--r--arch/arm64/kvm/reset.c27
-rw-r--r--arch/arm64/kvm/sys_regs.c212
-rw-r--r--arch/arm64/kvm/trace.h216
-rw-r--r--arch/arm64/kvm/trace_arm.h378
-rw-r--r--arch/arm64/kvm/trace_handle_exit.h215
-rw-r--r--arch/arm64/kvm/vgic-sys-reg-v3.c2
-rw-r--r--arch/arm64/kvm/vgic/trace.h38
-rw-r--r--arch/arm64/kvm/vgic/vgic-debug.c300
-rw-r--r--arch/arm64/kvm/vgic/vgic-init.c556
-rw-r--r--arch/arm64/kvm/vgic/vgic-irqfd.c141
-rw-r--r--arch/arm64/kvm/vgic/vgic-its.c2783
-rw-r--r--arch/arm64/kvm/vgic/vgic-kvm-device.c741
-rw-r--r--arch/arm64/kvm/vgic/vgic-mmio-v2.c550
-rw-r--r--arch/arm64/kvm/vgic/vgic-mmio-v3.c1063
-rw-r--r--arch/arm64/kvm/vgic/vgic-mmio.c1088
-rw-r--r--arch/arm64/kvm/vgic/vgic-mmio.h227
-rw-r--r--arch/arm64/kvm/vgic/vgic-v2.c504
-rw-r--r--arch/arm64/kvm/vgic/vgic-v3.c693
-rw-r--r--arch/arm64/kvm/vgic/vgic-v4.c453
-rw-r--r--arch/arm64/kvm/vgic/vgic.c1020
-rw-r--r--arch/arm64/kvm/vgic/vgic.h321
41 files changed, 20032 insertions, 439 deletions
diff --git a/arch/arm64/kvm/Kconfig b/arch/arm64/kvm/Kconfig
index 449386d76441..f1c1f981482c 100644
--- a/arch/arm64/kvm/Kconfig
+++ b/arch/arm64/kvm/Kconfig
@@ -3,7 +3,6 @@
# KVM configuration
#
-source "virt/kvm/Kconfig"
source "virt/lib/Kconfig"
menuconfig VIRTUALIZATION
@@ -18,7 +17,7 @@ menuconfig VIRTUALIZATION
if VIRTUALIZATION
-config KVM
+menuconfig KVM
bool "Kernel-based Virtual Machine (KVM) support"
depends on OF
# for TASKSTATS/TASK_DELAY_ACCT:
@@ -28,13 +27,11 @@ config KVM
select HAVE_KVM_CPU_RELAX_INTERCEPT
select HAVE_KVM_ARCH_TLB_FLUSH_ALL
select KVM_MMIO
- select KVM_ARM_HOST
select KVM_GENERIC_DIRTYLOG_READ_PROTECT
select SRCU
select KVM_VFIO
select HAVE_KVM_EVENTFD
select HAVE_KVM_IRQFD
- select KVM_ARM_PMU if HW_PERF_EVENTS
select HAVE_KVM_MSI
select HAVE_KVM_IRQCHIP
select HAVE_KVM_IRQ_ROUTING
@@ -45,23 +42,24 @@ config KVM
select TASK_DELAY_ACCT
---help---
Support hosting virtualized guest machines.
- We don't support KVM with 16K page tables yet, due to the multiple
- levels of fake page tables.
If unsure, say N.
-config KVM_ARM_HOST
- bool
- ---help---
- Provides host support for ARM processors.
+if KVM
+
+source "virt/kvm/Kconfig"
config KVM_ARM_PMU
- bool
+ bool "Virtual Performance Monitoring Unit (PMU) support"
+ depends on HW_PERF_EVENTS
+ default y
---help---
Adds support for a virtual Performance Monitoring Unit (PMU) in
virtual machines.
config KVM_INDIRECT_VECTORS
- def_bool KVM && (HARDEN_BRANCH_PREDICTOR || HARDEN_EL2_VECTORS)
+ def_bool HARDEN_BRANCH_PREDICTOR || HARDEN_EL2_VECTORS
+
+endif # KVM
endif # VIRTUALIZATION
diff --git a/arch/arm64/kvm/Makefile b/arch/arm64/kvm/Makefile
index 5ffbdc39e780..8d3d9513cbfe 100644
--- a/arch/arm64/kvm/Makefile
+++ b/arch/arm64/kvm/Makefile
@@ -3,37 +3,25 @@
# Makefile for Kernel-based Virtual Machine module
#
-ccflags-y += -I $(srctree)/$(src) -I $(srctree)/virt/kvm/arm/vgic
+ccflags-y += -I $(srctree)/$(src)
KVM=../../../virt/kvm
-obj-$(CONFIG_KVM_ARM_HOST) += kvm.o
-obj-$(CONFIG_KVM_ARM_HOST) += hyp/
+obj-$(CONFIG_KVM) += kvm.o
+obj-$(CONFIG_KVM) += hyp/
-kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/kvm_main.o $(KVM)/coalesced_mmio.o $(KVM)/eventfd.o $(KVM)/vfio.o
-kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/arm.o $(KVM)/arm/mmu.o $(KVM)/arm/mmio.o
-kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/psci.o $(KVM)/arm/perf.o
-kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/hypercalls.o
-kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/pvtime.o
+kvm-y := $(KVM)/kvm_main.o $(KVM)/coalesced_mmio.o $(KVM)/eventfd.o \
+ $(KVM)/vfio.o $(KVM)/irqchip.o \
+ arm.o mmu.o mmio.o psci.o perf.o hypercalls.o pvtime.o \
+ inject_fault.o regmap.o va_layout.o hyp.o hyp-init.o handle_exit.o \
+ guest.o debug.o reset.o sys_regs.o sys_regs_generic_v8.o \
+ vgic-sys-reg-v3.o fpsimd.o pmu.o \
+ aarch32.o arch_timer.o \
+ vgic/vgic.o vgic/vgic-init.o \
+ vgic/vgic-irqfd.o vgic/vgic-v2.o \
+ vgic/vgic-v3.o vgic/vgic-v4.o \
+ vgic/vgic-mmio.o vgic/vgic-mmio-v2.o \
+ vgic/vgic-mmio-v3.o vgic/vgic-kvm-device.o \
+ vgic/vgic-its.o vgic/vgic-debug.o
-kvm-$(CONFIG_KVM_ARM_HOST) += inject_fault.o regmap.o va_layout.o
-kvm-$(CONFIG_KVM_ARM_HOST) += hyp.o hyp-init.o handle_exit.o
-kvm-$(CONFIG_KVM_ARM_HOST) += guest.o debug.o reset.o sys_regs.o sys_regs_generic_v8.o
-kvm-$(CONFIG_KVM_ARM_HOST) += vgic-sys-reg-v3.o fpsimd.o pmu.o
-kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/aarch32.o
-
-kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic.o
-kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-init.o
-kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-irqfd.o
-kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-v2.o
-kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-v3.o
-kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-v4.o
-kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-mmio.o
-kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-mmio-v2.o
-kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-mmio-v3.o
-kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-kvm-device.o
-kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-its.o
-kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-debug.o
-kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/irqchip.o
-kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/arch_timer.o
-kvm-$(CONFIG_KVM_ARM_PMU) += $(KVM)/arm/pmu.o
+kvm-$(CONFIG_KVM_ARM_PMU) += pmu-emul.o
diff --git a/arch/arm64/kvm/aarch32.c b/arch/arm64/kvm/aarch32.c
new file mode 100644
index 000000000000..0a356aa91aa1
--- /dev/null
+++ b/arch/arm64/kvm/aarch32.c
@@ -0,0 +1,204 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * (not much of an) Emulation layer for 32bit guests.
+ *
+ * Copyright (C) 2012,2013 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ *
+ * based on arch/arm/kvm/emulate.c
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ */
+
+#include <linux/bits.h>
+#include <linux/kvm_host.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_hyp.h>
+
+#define DFSR_FSC_EXTABT_LPAE 0x10
+#define DFSR_FSC_EXTABT_nLPAE 0x08
+#define DFSR_LPAE BIT(9)
+
+/*
+ * Table taken from ARMv8 ARM DDI0487B-B, table G1-10.
+ */
+static const u8 return_offsets[8][2] = {
+ [0] = { 0, 0 }, /* Reset, unused */
+ [1] = { 4, 2 }, /* Undefined */
+ [2] = { 0, 0 }, /* SVC, unused */
+ [3] = { 4, 4 }, /* Prefetch abort */
+ [4] = { 8, 8 }, /* Data abort */
+ [5] = { 0, 0 }, /* HVC, unused */
+ [6] = { 4, 4 }, /* IRQ, unused */
+ [7] = { 4, 4 }, /* FIQ, unused */
+};
+
+/*
+ * When an exception is taken, most CPSR fields are left unchanged in the
+ * handler. However, some are explicitly overridden (e.g. M[4:0]).
+ *
+ * The SPSR/SPSR_ELx layouts differ, and the below is intended to work with
+ * either format. Note: SPSR.J bit doesn't exist in SPSR_ELx, but this bit was
+ * obsoleted by the ARMv7 virtualization extensions and is RES0.
+ *
+ * For the SPSR layout seen from AArch32, see:
+ * - ARM DDI 0406C.d, page B1-1148
+ * - ARM DDI 0487E.a, page G8-6264
+ *
+ * For the SPSR_ELx layout for AArch32 seen from AArch64, see:
+ * - ARM DDI 0487E.a, page C5-426
+ *
+ * Here we manipulate the fields in order of the AArch32 SPSR_ELx layout, from
+ * MSB to LSB.
+ */
+static unsigned long get_except32_cpsr(struct kvm_vcpu *vcpu, u32 mode)
+{
+ u32 sctlr = vcpu_cp15(vcpu, c1_SCTLR);
+ unsigned long old, new;
+
+ old = *vcpu_cpsr(vcpu);
+ new = 0;
+
+ new |= (old & PSR_AA32_N_BIT);
+ new |= (old & PSR_AA32_Z_BIT);
+ new |= (old & PSR_AA32_C_BIT);
+ new |= (old & PSR_AA32_V_BIT);
+ new |= (old & PSR_AA32_Q_BIT);
+
+ // CPSR.IT[7:0] are set to zero upon any exception
+ // See ARM DDI 0487E.a, section G1.12.3
+ // See ARM DDI 0406C.d, section B1.8.3
+
+ new |= (old & PSR_AA32_DIT_BIT);
+
+ // CPSR.SSBS is set to SCTLR.DSSBS upon any exception
+ // See ARM DDI 0487E.a, page G8-6244
+ if (sctlr & BIT(31))
+ new |= PSR_AA32_SSBS_BIT;
+
+ // CPSR.PAN is unchanged unless SCTLR.SPAN == 0b0
+ // SCTLR.SPAN is RES1 when ARMv8.1-PAN is not implemented
+ // See ARM DDI 0487E.a, page G8-6246
+ new |= (old & PSR_AA32_PAN_BIT);
+ if (!(sctlr & BIT(23)))
+ new |= PSR_AA32_PAN_BIT;
+
+ // SS does not exist in AArch32, so ignore
+
+ // CPSR.IL is set to zero upon any exception
+ // See ARM DDI 0487E.a, page G1-5527
+
+ new |= (old & PSR_AA32_GE_MASK);
+
+ // CPSR.IT[7:0] are set to zero upon any exception
+ // See prior comment above
+
+ // CPSR.E is set to SCTLR.EE upon any exception
+ // See ARM DDI 0487E.a, page G8-6245
+ // See ARM DDI 0406C.d, page B4-1701
+ if (sctlr & BIT(25))
+ new |= PSR_AA32_E_BIT;
+
+ // CPSR.A is unchanged upon an exception to Undefined, Supervisor
+ // CPSR.A is set upon an exception to other modes
+ // See ARM DDI 0487E.a, pages G1-5515 to G1-5516
+ // See ARM DDI 0406C.d, page B1-1182
+ new |= (old & PSR_AA32_A_BIT);
+ if (mode != PSR_AA32_MODE_UND && mode != PSR_AA32_MODE_SVC)
+ new |= PSR_AA32_A_BIT;
+
+ // CPSR.I is set upon any exception
+ // See ARM DDI 0487E.a, pages G1-5515 to G1-5516
+ // See ARM DDI 0406C.d, page B1-1182
+ new |= PSR_AA32_I_BIT;
+
+ // CPSR.F is set upon an exception to FIQ
+ // CPSR.F is unchanged upon an exception to other modes
+ // See ARM DDI 0487E.a, pages G1-5515 to G1-5516
+ // See ARM DDI 0406C.d, page B1-1182
+ new |= (old & PSR_AA32_F_BIT);
+ if (mode == PSR_AA32_MODE_FIQ)
+ new |= PSR_AA32_F_BIT;
+
+ // CPSR.T is set to SCTLR.TE upon any exception
+ // See ARM DDI 0487E.a, page G8-5514
+ // See ARM DDI 0406C.d, page B1-1181
+ if (sctlr & BIT(30))
+ new |= PSR_AA32_T_BIT;
+
+ new |= mode;
+
+ return new;
+}
+
+static void prepare_fault32(struct kvm_vcpu *vcpu, u32 mode, u32 vect_offset)
+{
+ unsigned long spsr = *vcpu_cpsr(vcpu);
+ bool is_thumb = (spsr & PSR_AA32_T_BIT);
+ u32 return_offset = return_offsets[vect_offset >> 2][is_thumb];
+ u32 sctlr = vcpu_cp15(vcpu, c1_SCTLR);
+
+ *vcpu_cpsr(vcpu) = get_except32_cpsr(vcpu, mode);
+
+ /* Note: These now point to the banked copies */
+ vcpu_write_spsr(vcpu, host_spsr_to_spsr32(spsr));
+ *vcpu_reg32(vcpu, 14) = *vcpu_pc(vcpu) + return_offset;
+
+ /* Branch to exception vector */
+ if (sctlr & (1 << 13))
+ vect_offset += 0xffff0000;
+ else /* always have security exceptions */
+ vect_offset += vcpu_cp15(vcpu, c12_VBAR);
+
+ *vcpu_pc(vcpu) = vect_offset;
+}
+
+void kvm_inject_undef32(struct kvm_vcpu *vcpu)
+{
+ prepare_fault32(vcpu, PSR_AA32_MODE_UND, 4);
+}
+
+/*
+ * Modelled after TakeDataAbortException() and TakePrefetchAbortException
+ * pseudocode.
+ */
+static void inject_abt32(struct kvm_vcpu *vcpu, bool is_pabt,
+ unsigned long addr)
+{
+ u32 vect_offset;
+ u32 *far, *fsr;
+ bool is_lpae;
+
+ if (is_pabt) {
+ vect_offset = 12;
+ far = &vcpu_cp15(vcpu, c6_IFAR);
+ fsr = &vcpu_cp15(vcpu, c5_IFSR);
+ } else { /* !iabt */
+ vect_offset = 16;
+ far = &vcpu_cp15(vcpu, c6_DFAR);
+ fsr = &vcpu_cp15(vcpu, c5_DFSR);
+ }
+
+ prepare_fault32(vcpu, PSR_AA32_MODE_ABT, vect_offset);
+
+ *far = addr;
+
+ /* Give the guest an IMPLEMENTATION DEFINED exception */
+ is_lpae = (vcpu_cp15(vcpu, c2_TTBCR) >> 31);
+ if (is_lpae) {
+ *fsr = DFSR_LPAE | DFSR_FSC_EXTABT_LPAE;
+ } else {
+ /* no need to shuffle FS[4] into DFSR[10] as its 0 */
+ *fsr = DFSR_FSC_EXTABT_nLPAE;
+ }
+}
+
+void kvm_inject_dabt32(struct kvm_vcpu *vcpu, unsigned long addr)
+{
+ inject_abt32(vcpu, false, addr);
+}
+
+void kvm_inject_pabt32(struct kvm_vcpu *vcpu, unsigned long addr)
+{
+ inject_abt32(vcpu, true, addr);
+}
diff --git a/arch/arm64/kvm/arch_timer.c b/arch/arm64/kvm/arch_timer.c
new file mode 100644
index 000000000000..a1fe0ea3254e
--- /dev/null
+++ b/arch/arm64/kvm/arch_timer.c
@@ -0,0 +1,1171 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012 ARM Ltd.
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <linux/cpu.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/interrupt.h>
+#include <linux/irq.h>
+#include <linux/uaccess.h>
+
+#include <clocksource/arm_arch_timer.h>
+#include <asm/arch_timer.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_hyp.h>
+
+#include <kvm/arm_vgic.h>
+#include <kvm/arm_arch_timer.h>
+
+#include "trace.h"
+
+static struct timecounter *timecounter;
+static unsigned int host_vtimer_irq;
+static unsigned int host_ptimer_irq;
+static u32 host_vtimer_irq_flags;
+static u32 host_ptimer_irq_flags;
+
+static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
+
+static const struct kvm_irq_level default_ptimer_irq = {
+ .irq = 30,
+ .level = 1,
+};
+
+static const struct kvm_irq_level default_vtimer_irq = {
+ .irq = 27,
+ .level = 1,
+};
+
+static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
+static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
+ struct arch_timer_context *timer_ctx);
+static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
+static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
+ struct arch_timer_context *timer,
+ enum kvm_arch_timer_regs treg,
+ u64 val);
+static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
+ struct arch_timer_context *timer,
+ enum kvm_arch_timer_regs treg);
+
+u64 kvm_phys_timer_read(void)
+{
+ return timecounter->cc->read(timecounter->cc);
+}
+
+static void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
+{
+ if (has_vhe()) {
+ map->direct_vtimer = vcpu_vtimer(vcpu);
+ map->direct_ptimer = vcpu_ptimer(vcpu);
+ map->emul_ptimer = NULL;
+ } else {
+ map->direct_vtimer = vcpu_vtimer(vcpu);
+ map->direct_ptimer = NULL;
+ map->emul_ptimer = vcpu_ptimer(vcpu);
+ }
+
+ trace_kvm_get_timer_map(vcpu->vcpu_id, map);
+}
+
+static inline bool userspace_irqchip(struct kvm *kvm)
+{
+ return static_branch_unlikely(&userspace_irqchip_in_use) &&
+ unlikely(!irqchip_in_kernel(kvm));
+}
+
+static void soft_timer_start(struct hrtimer *hrt, u64 ns)
+{
+ hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
+ HRTIMER_MODE_ABS_HARD);
+}
+
+static void soft_timer_cancel(struct hrtimer *hrt)
+{
+ hrtimer_cancel(hrt);
+}
+
+static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
+{
+ struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
+ struct arch_timer_context *ctx;
+ struct timer_map map;
+
+ /*
+ * We may see a timer interrupt after vcpu_put() has been called which
+ * sets the CPU's vcpu pointer to NULL, because even though the timer
+ * has been disabled in timer_save_state(), the hardware interrupt
+ * signal may not have been retired from the interrupt controller yet.
+ */
+ if (!vcpu)
+ return IRQ_HANDLED;
+
+ get_timer_map(vcpu, &map);
+
+ if (irq == host_vtimer_irq)
+ ctx = map.direct_vtimer;
+ else
+ ctx = map.direct_ptimer;
+
+ if (kvm_timer_should_fire(ctx))
+ kvm_timer_update_irq(vcpu, true, ctx);
+
+ if (userspace_irqchip(vcpu->kvm) &&
+ !static_branch_unlikely(&has_gic_active_state))
+ disable_percpu_irq(host_vtimer_irq);
+
+ return IRQ_HANDLED;
+}
+
+static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
+{
+ u64 cval, now;
+
+ cval = timer_ctx->cnt_cval;
+ now = kvm_phys_timer_read() - timer_ctx->cntvoff;
+
+ if (now < cval) {
+ u64 ns;
+
+ ns = cyclecounter_cyc2ns(timecounter->cc,
+ cval - now,
+ timecounter->mask,
+ &timecounter->frac);
+ return ns;
+ }
+
+ return 0;
+}
+
+static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
+{
+ WARN_ON(timer_ctx && timer_ctx->loaded);
+ return timer_ctx &&
+ !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
+ (timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
+}
+
+/*
+ * Returns the earliest expiration time in ns among guest timers.
+ * Note that it will return 0 if none of timers can fire.
+ */
+static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
+{
+ u64 min_delta = ULLONG_MAX;
+ int i;
+
+ for (i = 0; i < NR_KVM_TIMERS; i++) {
+ struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
+
+ WARN(ctx->loaded, "timer %d loaded\n", i);
+ if (kvm_timer_irq_can_fire(ctx))
+ min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
+ }
+
+ /* If none of timers can fire, then return 0 */
+ if (min_delta == ULLONG_MAX)
+ return 0;
+
+ return min_delta;
+}
+
+static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
+{
+ struct arch_timer_cpu *timer;
+ struct kvm_vcpu *vcpu;
+ u64 ns;
+
+ timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
+ vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
+
+ /*
+ * Check that the timer has really expired from the guest's
+ * PoV (NTP on the host may have forced it to expire
+ * early). If we should have slept longer, restart it.
+ */
+ ns = kvm_timer_earliest_exp(vcpu);
+ if (unlikely(ns)) {
+ hrtimer_forward_now(hrt, ns_to_ktime(ns));
+ return HRTIMER_RESTART;
+ }
+
+ kvm_vcpu_wake_up(vcpu);
+ return HRTIMER_NORESTART;
+}
+
+static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
+{
+ struct arch_timer_context *ctx;
+ struct kvm_vcpu *vcpu;
+ u64 ns;
+
+ ctx = container_of(hrt, struct arch_timer_context, hrtimer);
+ vcpu = ctx->vcpu;
+
+ trace_kvm_timer_hrtimer_expire(ctx);
+
+ /*
+ * Check that the timer has really expired from the guest's
+ * PoV (NTP on the host may have forced it to expire
+ * early). If not ready, schedule for a later time.
+ */
+ ns = kvm_timer_compute_delta(ctx);
+ if (unlikely(ns)) {
+ hrtimer_forward_now(hrt, ns_to_ktime(ns));
+ return HRTIMER_RESTART;
+ }
+
+ kvm_timer_update_irq(vcpu, true, ctx);
+ return HRTIMER_NORESTART;
+}
+
+static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
+{
+ enum kvm_arch_timers index;
+ u64 cval, now;
+
+ if (!timer_ctx)
+ return false;
+
+ index = arch_timer_ctx_index(timer_ctx);
+
+ if (timer_ctx->loaded) {
+ u32 cnt_ctl = 0;
+
+ switch (index) {
+ case TIMER_VTIMER:
+ cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
+ break;
+ case TIMER_PTIMER:
+ cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
+ break;
+ case NR_KVM_TIMERS:
+ /* GCC is braindead */
+ cnt_ctl = 0;
+ break;
+ }
+
+ return (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
+ (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
+ !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
+ }
+
+ if (!kvm_timer_irq_can_fire(timer_ctx))
+ return false;
+
+ cval = timer_ctx->cnt_cval;
+ now = kvm_phys_timer_read() - timer_ctx->cntvoff;
+
+ return cval <= now;
+}
+
+bool kvm_timer_is_pending(struct kvm_vcpu *vcpu)
+{
+ struct timer_map map;
+
+ get_timer_map(vcpu, &map);
+
+ return kvm_timer_should_fire(map.direct_vtimer) ||
+ kvm_timer_should_fire(map.direct_ptimer) ||
+ kvm_timer_should_fire(map.emul_ptimer);
+}
+
+/*
+ * Reflect the timer output level into the kvm_run structure
+ */
+void kvm_timer_update_run(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
+ struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
+ struct kvm_sync_regs *regs = &vcpu->run->s.regs;
+
+ /* Populate the device bitmap with the timer states */
+ regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
+ KVM_ARM_DEV_EL1_PTIMER);
+ if (kvm_timer_should_fire(vtimer))
+ regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
+ if (kvm_timer_should_fire(ptimer))
+ regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
+}
+
+static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
+ struct arch_timer_context *timer_ctx)
+{
+ int ret;
+
+ timer_ctx->irq.level = new_level;
+ trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
+ timer_ctx->irq.level);
+
+ if (!userspace_irqchip(vcpu->kvm)) {
+ ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
+ timer_ctx->irq.irq,
+ timer_ctx->irq.level,
+ timer_ctx);
+ WARN_ON(ret);
+ }
+}
+
+/* Only called for a fully emulated timer */
+static void timer_emulate(struct arch_timer_context *ctx)
+{
+ bool should_fire = kvm_timer_should_fire(ctx);
+
+ trace_kvm_timer_emulate(ctx, should_fire);
+
+ if (should_fire != ctx->irq.level) {
+ kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
+ return;
+ }
+
+ /*
+ * If the timer can fire now, we don't need to have a soft timer
+ * scheduled for the future. If the timer cannot fire at all,
+ * then we also don't need a soft timer.
+ */
+ if (!kvm_timer_irq_can_fire(ctx)) {
+ soft_timer_cancel(&ctx->hrtimer);
+ return;
+ }
+
+ soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
+}
+
+static void timer_save_state(struct arch_timer_context *ctx)
+{
+ struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
+ enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
+ unsigned long flags;
+
+ if (!timer->enabled)
+ return;
+
+ local_irq_save(flags);
+
+ if (!ctx->loaded)
+ goto out;
+
+ switch (index) {
+ case TIMER_VTIMER:
+ ctx->cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
+ ctx->cnt_cval = read_sysreg_el0(SYS_CNTV_CVAL);
+
+ /* Disable the timer */
+ write_sysreg_el0(0, SYS_CNTV_CTL);
+ isb();
+
+ break;
+ case TIMER_PTIMER:
+ ctx->cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
+ ctx->cnt_cval = read_sysreg_el0(SYS_CNTP_CVAL);
+
+ /* Disable the timer */
+ write_sysreg_el0(0, SYS_CNTP_CTL);
+ isb();
+
+ break;
+ case NR_KVM_TIMERS:
+ BUG();
+ }
+
+ trace_kvm_timer_save_state(ctx);
+
+ ctx->loaded = false;
+out:
+ local_irq_restore(flags);
+}
+
+/*
+ * Schedule the background timer before calling kvm_vcpu_block, so that this
+ * thread is removed from its waitqueue and made runnable when there's a timer
+ * interrupt to handle.
+ */
+static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+ struct timer_map map;
+
+ get_timer_map(vcpu, &map);
+
+ /*
+ * If no timers are capable of raising interrupts (disabled or
+ * masked), then there's no more work for us to do.
+ */
+ if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
+ !kvm_timer_irq_can_fire(map.direct_ptimer) &&
+ !kvm_timer_irq_can_fire(map.emul_ptimer))
+ return;
+
+ /*
+ * At least one guest time will expire. Schedule a background timer.
+ * Set the earliest expiration time among the guest timers.
+ */
+ soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
+}
+
+static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+
+ soft_timer_cancel(&timer->bg_timer);
+}
+
+static void timer_restore_state(struct arch_timer_context *ctx)
+{
+ struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
+ enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
+ unsigned long flags;
+
+ if (!timer->enabled)
+ return;
+
+ local_irq_save(flags);
+
+ if (ctx->loaded)
+ goto out;
+
+ switch (index) {
+ case TIMER_VTIMER:
+ write_sysreg_el0(ctx->cnt_cval, SYS_CNTV_CVAL);
+ isb();
+ write_sysreg_el0(ctx->cnt_ctl, SYS_CNTV_CTL);
+ break;
+ case TIMER_PTIMER:
+ write_sysreg_el0(ctx->cnt_cval, SYS_CNTP_CVAL);
+ isb();
+ write_sysreg_el0(ctx->cnt_ctl, SYS_CNTP_CTL);
+ break;
+ case NR_KVM_TIMERS:
+ BUG();
+ }
+
+ trace_kvm_timer_restore_state(ctx);
+
+ ctx->loaded = true;
+out:
+ local_irq_restore(flags);
+}
+
+static void set_cntvoff(u64 cntvoff)
+{
+ kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
+}
+
+static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
+{
+ int r;
+ r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
+ WARN_ON(r);
+}
+
+static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
+{
+ struct kvm_vcpu *vcpu = ctx->vcpu;
+ bool phys_active = false;
+
+ /*
+ * Update the timer output so that it is likely to match the
+ * state we're about to restore. If the timer expires between
+ * this point and the register restoration, we'll take the
+ * interrupt anyway.
+ */
+ kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
+
+ if (irqchip_in_kernel(vcpu->kvm))
+ phys_active = kvm_vgic_map_is_active(vcpu, ctx->irq.irq);
+
+ phys_active |= ctx->irq.level;
+
+ set_timer_irq_phys_active(ctx, phys_active);
+}
+
+static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
+
+ /*
+ * Update the timer output so that it is likely to match the
+ * state we're about to restore. If the timer expires between
+ * this point and the register restoration, we'll take the
+ * interrupt anyway.
+ */
+ kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
+
+ /*
+ * When using a userspace irqchip with the architected timers and a
+ * host interrupt controller that doesn't support an active state, we
+ * must still prevent continuously exiting from the guest, and
+ * therefore mask the physical interrupt by disabling it on the host
+ * interrupt controller when the virtual level is high, such that the
+ * guest can make forward progress. Once we detect the output level
+ * being de-asserted, we unmask the interrupt again so that we exit
+ * from the guest when the timer fires.
+ */
+ if (vtimer->irq.level)
+ disable_percpu_irq(host_vtimer_irq);
+ else
+ enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
+}
+
+void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+ struct timer_map map;
+
+ if (unlikely(!timer->enabled))
+ return;
+
+ get_timer_map(vcpu, &map);
+
+ if (static_branch_likely(&has_gic_active_state)) {
+ kvm_timer_vcpu_load_gic(map.direct_vtimer);
+ if (map.direct_ptimer)
+ kvm_timer_vcpu_load_gic(map.direct_ptimer);
+ } else {
+ kvm_timer_vcpu_load_nogic(vcpu);
+ }
+
+ set_cntvoff(map.direct_vtimer->cntvoff);
+
+ kvm_timer_unblocking(vcpu);
+
+ timer_restore_state(map.direct_vtimer);
+ if (map.direct_ptimer)
+ timer_restore_state(map.direct_ptimer);
+
+ if (map.emul_ptimer)
+ timer_emulate(map.emul_ptimer);
+}
+
+bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
+ struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
+ struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
+ bool vlevel, plevel;
+
+ if (likely(irqchip_in_kernel(vcpu->kvm)))
+ return false;
+
+ vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
+ plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
+
+ return kvm_timer_should_fire(vtimer) != vlevel ||
+ kvm_timer_should_fire(ptimer) != plevel;
+}
+
+void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+ struct timer_map map;
+ struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
+
+ if (unlikely(!timer->enabled))
+ return;
+
+ get_timer_map(vcpu, &map);
+
+ timer_save_state(map.direct_vtimer);
+ if (map.direct_ptimer)
+ timer_save_state(map.direct_ptimer);
+
+ /*
+ * Cancel soft timer emulation, because the only case where we
+ * need it after a vcpu_put is in the context of a sleeping VCPU, and
+ * in that case we already factor in the deadline for the physical
+ * timer when scheduling the bg_timer.
+ *
+ * In any case, we re-schedule the hrtimer for the physical timer when
+ * coming back to the VCPU thread in kvm_timer_vcpu_load().
+ */
+ if (map.emul_ptimer)
+ soft_timer_cancel(&map.emul_ptimer->hrtimer);
+
+ if (rcuwait_active(wait))
+ kvm_timer_blocking(vcpu);
+
+ /*
+ * The kernel may decide to run userspace after calling vcpu_put, so
+ * we reset cntvoff to 0 to ensure a consistent read between user
+ * accesses to the virtual counter and kernel access to the physical
+ * counter of non-VHE case. For VHE, the virtual counter uses a fixed
+ * virtual offset of zero, so no need to zero CNTVOFF_EL2 register.
+ */
+ set_cntvoff(0);
+}
+
+/*
+ * With a userspace irqchip we have to check if the guest de-asserted the
+ * timer and if so, unmask the timer irq signal on the host interrupt
+ * controller to ensure that we see future timer signals.
+ */
+static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
+
+ if (!kvm_timer_should_fire(vtimer)) {
+ kvm_timer_update_irq(vcpu, false, vtimer);
+ if (static_branch_likely(&has_gic_active_state))
+ set_timer_irq_phys_active(vtimer, false);
+ else
+ enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
+ }
+}
+
+void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+
+ if (unlikely(!timer->enabled))
+ return;
+
+ if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
+ unmask_vtimer_irq_user(vcpu);
+}
+
+int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+ struct timer_map map;
+
+ get_timer_map(vcpu, &map);
+
+ /*
+ * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
+ * and to 0 for ARMv7. We provide an implementation that always
+ * resets the timer to be disabled and unmasked and is compliant with
+ * the ARMv7 architecture.
+ */
+ vcpu_vtimer(vcpu)->cnt_ctl = 0;
+ vcpu_ptimer(vcpu)->cnt_ctl = 0;
+
+ if (timer->enabled) {
+ kvm_timer_update_irq(vcpu, false, vcpu_vtimer(vcpu));
+ kvm_timer_update_irq(vcpu, false, vcpu_ptimer(vcpu));
+
+ if (irqchip_in_kernel(vcpu->kvm)) {
+ kvm_vgic_reset_mapped_irq(vcpu, map.direct_vtimer->irq.irq);
+ if (map.direct_ptimer)
+ kvm_vgic_reset_mapped_irq(vcpu, map.direct_ptimer->irq.irq);
+ }
+ }
+
+ if (map.emul_ptimer)
+ soft_timer_cancel(&map.emul_ptimer->hrtimer);
+
+ return 0;
+}
+
+/* Make the updates of cntvoff for all vtimer contexts atomic */
+static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
+{
+ int i;
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_vcpu *tmp;
+
+ mutex_lock(&kvm->lock);
+ kvm_for_each_vcpu(i, tmp, kvm)
+ vcpu_vtimer(tmp)->cntvoff = cntvoff;
+
+ /*
+ * When called from the vcpu create path, the CPU being created is not
+ * included in the loop above, so we just set it here as well.
+ */
+ vcpu_vtimer(vcpu)->cntvoff = cntvoff;
+ mutex_unlock(&kvm->lock);
+}
+
+void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+ struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
+ struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
+
+ /* Synchronize cntvoff across all vtimers of a VM. */
+ update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
+ ptimer->cntvoff = 0;
+
+ hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
+ timer->bg_timer.function = kvm_bg_timer_expire;
+
+ hrtimer_init(&vtimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
+ hrtimer_init(&ptimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
+ vtimer->hrtimer.function = kvm_hrtimer_expire;
+ ptimer->hrtimer.function = kvm_hrtimer_expire;
+
+ vtimer->irq.irq = default_vtimer_irq.irq;
+ ptimer->irq.irq = default_ptimer_irq.irq;
+
+ vtimer->host_timer_irq = host_vtimer_irq;
+ ptimer->host_timer_irq = host_ptimer_irq;
+
+ vtimer->host_timer_irq_flags = host_vtimer_irq_flags;
+ ptimer->host_timer_irq_flags = host_ptimer_irq_flags;
+
+ vtimer->vcpu = vcpu;
+ ptimer->vcpu = vcpu;
+}
+
+static void kvm_timer_init_interrupt(void *info)
+{
+ enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
+ enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
+}
+
+int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
+{
+ struct arch_timer_context *timer;
+
+ switch (regid) {
+ case KVM_REG_ARM_TIMER_CTL:
+ timer = vcpu_vtimer(vcpu);
+ kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
+ break;
+ case KVM_REG_ARM_TIMER_CNT:
+ timer = vcpu_vtimer(vcpu);
+ update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
+ break;
+ case KVM_REG_ARM_TIMER_CVAL:
+ timer = vcpu_vtimer(vcpu);
+ kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
+ break;
+ case KVM_REG_ARM_PTIMER_CTL:
+ timer = vcpu_ptimer(vcpu);
+ kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
+ break;
+ case KVM_REG_ARM_PTIMER_CVAL:
+ timer = vcpu_ptimer(vcpu);
+ kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
+ break;
+
+ default:
+ return -1;
+ }
+
+ return 0;
+}
+
+static u64 read_timer_ctl(struct arch_timer_context *timer)
+{
+ /*
+ * Set ISTATUS bit if it's expired.
+ * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
+ * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
+ * regardless of ENABLE bit for our implementation convenience.
+ */
+ if (!kvm_timer_compute_delta(timer))
+ return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT;
+ else
+ return timer->cnt_ctl;
+}
+
+u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
+{
+ switch (regid) {
+ case KVM_REG_ARM_TIMER_CTL:
+ return kvm_arm_timer_read(vcpu,
+ vcpu_vtimer(vcpu), TIMER_REG_CTL);
+ case KVM_REG_ARM_TIMER_CNT:
+ return kvm_arm_timer_read(vcpu,
+ vcpu_vtimer(vcpu), TIMER_REG_CNT);
+ case KVM_REG_ARM_TIMER_CVAL:
+ return kvm_arm_timer_read(vcpu,
+ vcpu_vtimer(vcpu), TIMER_REG_CVAL);
+ case KVM_REG_ARM_PTIMER_CTL:
+ return kvm_arm_timer_read(vcpu,
+ vcpu_ptimer(vcpu), TIMER_REG_CTL);
+ case KVM_REG_ARM_PTIMER_CNT:
+ return kvm_arm_timer_read(vcpu,
+ vcpu_ptimer(vcpu), TIMER_REG_CNT);
+ case KVM_REG_ARM_PTIMER_CVAL:
+ return kvm_arm_timer_read(vcpu,
+ vcpu_ptimer(vcpu), TIMER_REG_CVAL);
+ }
+ return (u64)-1;
+}
+
+static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
+ struct arch_timer_context *timer,
+ enum kvm_arch_timer_regs treg)
+{
+ u64 val;
+
+ switch (treg) {
+ case TIMER_REG_TVAL:
+ val = timer->cnt_cval - kvm_phys_timer_read() + timer->cntvoff;
+ val &= lower_32_bits(val);
+ break;
+
+ case TIMER_REG_CTL:
+ val = read_timer_ctl(timer);
+ break;
+
+ case TIMER_REG_CVAL:
+ val = timer->cnt_cval;
+ break;
+
+ case TIMER_REG_CNT:
+ val = kvm_phys_timer_read() - timer->cntvoff;
+ break;
+
+ default:
+ BUG();
+ }
+
+ return val;
+}
+
+u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
+ enum kvm_arch_timers tmr,
+ enum kvm_arch_timer_regs treg)
+{
+ u64 val;
+
+ preempt_disable();
+ kvm_timer_vcpu_put(vcpu);
+
+ val = kvm_arm_timer_read(vcpu, vcpu_get_timer(vcpu, tmr), treg);
+
+ kvm_timer_vcpu_load(vcpu);
+ preempt_enable();
+
+ return val;
+}
+
+static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
+ struct arch_timer_context *timer,
+ enum kvm_arch_timer_regs treg,
+ u64 val)
+{
+ switch (treg) {
+ case TIMER_REG_TVAL:
+ timer->cnt_cval = kvm_phys_timer_read() - timer->cntvoff + (s32)val;
+ break;
+
+ case TIMER_REG_CTL:
+ timer->cnt_ctl = val & ~ARCH_TIMER_CTRL_IT_STAT;
+ break;
+
+ case TIMER_REG_CVAL:
+ timer->cnt_cval = val;
+ break;
+
+ default:
+ BUG();
+ }
+}
+
+void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
+ enum kvm_arch_timers tmr,
+ enum kvm_arch_timer_regs treg,
+ u64 val)
+{
+ preempt_disable();
+ kvm_timer_vcpu_put(vcpu);
+
+ kvm_arm_timer_write(vcpu, vcpu_get_timer(vcpu, tmr), treg, val);
+
+ kvm_timer_vcpu_load(vcpu);
+ preempt_enable();
+}
+
+static int kvm_timer_starting_cpu(unsigned int cpu)
+{
+ kvm_timer_init_interrupt(NULL);
+ return 0;
+}
+
+static int kvm_timer_dying_cpu(unsigned int cpu)
+{
+ disable_percpu_irq(host_vtimer_irq);
+ return 0;
+}
+
+int kvm_timer_hyp_init(bool has_gic)
+{
+ struct arch_timer_kvm_info *info;
+ int err;
+
+ info = arch_timer_get_kvm_info();
+ timecounter = &info->timecounter;
+
+ if (!timecounter->cc) {
+ kvm_err("kvm_arch_timer: uninitialized timecounter\n");
+ return -ENODEV;
+ }
+
+ /* First, do the virtual EL1 timer irq */
+
+ if (info->virtual_irq <= 0) {
+ kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
+ info->virtual_irq);
+ return -ENODEV;
+ }
+ host_vtimer_irq = info->virtual_irq;
+
+ host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
+ if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
+ host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
+ kvm_err("Invalid trigger for vtimer IRQ%d, assuming level low\n",
+ host_vtimer_irq);
+ host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
+ }
+
+ err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
+ "kvm guest vtimer", kvm_get_running_vcpus());
+ if (err) {
+ kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
+ host_vtimer_irq, err);
+ return err;
+ }
+
+ if (has_gic) {
+ err = irq_set_vcpu_affinity(host_vtimer_irq,
+ kvm_get_running_vcpus());
+ if (err) {
+ kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
+ goto out_free_irq;
+ }
+
+ static_branch_enable(&has_gic_active_state);
+ }
+
+ kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
+
+ /* Now let's do the physical EL1 timer irq */
+
+ if (info->physical_irq > 0) {
+ host_ptimer_irq = info->physical_irq;
+ host_ptimer_irq_flags = irq_get_trigger_type(host_ptimer_irq);
+ if (host_ptimer_irq_flags != IRQF_TRIGGER_HIGH &&
+ host_ptimer_irq_flags != IRQF_TRIGGER_LOW) {
+ kvm_err("Invalid trigger for ptimer IRQ%d, assuming level low\n",
+ host_ptimer_irq);
+ host_ptimer_irq_flags = IRQF_TRIGGER_LOW;
+ }
+
+ err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
+ "kvm guest ptimer", kvm_get_running_vcpus());
+ if (err) {
+ kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
+ host_ptimer_irq, err);
+ return err;
+ }
+
+ if (has_gic) {
+ err = irq_set_vcpu_affinity(host_ptimer_irq,
+ kvm_get_running_vcpus());
+ if (err) {
+ kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
+ goto out_free_irq;
+ }
+ }
+
+ kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
+ } else if (has_vhe()) {
+ kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
+ info->physical_irq);
+ err = -ENODEV;
+ goto out_free_irq;
+ }
+
+ cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
+ "kvm/arm/timer:starting", kvm_timer_starting_cpu,
+ kvm_timer_dying_cpu);
+ return 0;
+out_free_irq:
+ free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
+ return err;
+}
+
+void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+
+ soft_timer_cancel(&timer->bg_timer);
+}
+
+static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
+{
+ int vtimer_irq, ptimer_irq;
+ int i, ret;
+
+ vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
+ ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
+ if (ret)
+ return false;
+
+ ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
+ ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
+ if (ret)
+ return false;
+
+ kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
+ if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
+ vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
+ return false;
+ }
+
+ return true;
+}
+
+bool kvm_arch_timer_get_input_level(int vintid)
+{
+ struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
+ struct arch_timer_context *timer;
+
+ if (vintid == vcpu_vtimer(vcpu)->irq.irq)
+ timer = vcpu_vtimer(vcpu);
+ else if (vintid == vcpu_ptimer(vcpu)->irq.irq)
+ timer = vcpu_ptimer(vcpu);
+ else
+ BUG();
+
+ return kvm_timer_should_fire(timer);
+}
+
+int kvm_timer_enable(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+ struct timer_map map;
+ int ret;
+
+ if (timer->enabled)
+ return 0;
+
+ /* Without a VGIC we do not map virtual IRQs to physical IRQs */
+ if (!irqchip_in_kernel(vcpu->kvm))
+ goto no_vgic;
+
+ if (!vgic_initialized(vcpu->kvm))
+ return -ENODEV;
+
+ if (!timer_irqs_are_valid(vcpu)) {
+ kvm_debug("incorrectly configured timer irqs\n");
+ return -EINVAL;
+ }
+
+ get_timer_map(vcpu, &map);
+
+ ret = kvm_vgic_map_phys_irq(vcpu,
+ map.direct_vtimer->host_timer_irq,
+ map.direct_vtimer->irq.irq,
+ kvm_arch_timer_get_input_level);
+ if (ret)
+ return ret;
+
+ if (map.direct_ptimer) {
+ ret = kvm_vgic_map_phys_irq(vcpu,
+ map.direct_ptimer->host_timer_irq,
+ map.direct_ptimer->irq.irq,
+ kvm_arch_timer_get_input_level);
+ }
+
+ if (ret)
+ return ret;
+
+no_vgic:
+ timer->enabled = 1;
+ return 0;
+}
+
+/*
+ * On VHE system, we only need to configure the EL2 timer trap register once,
+ * not for every world switch.
+ * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
+ * and this makes those bits have no effect for the host kernel execution.
+ */
+void kvm_timer_init_vhe(void)
+{
+ /* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
+ u32 cnthctl_shift = 10;
+ u64 val;
+
+ /*
+ * VHE systems allow the guest direct access to the EL1 physical
+ * timer/counter.
+ */
+ val = read_sysreg(cnthctl_el2);
+ val |= (CNTHCTL_EL1PCEN << cnthctl_shift);
+ val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
+ write_sysreg(val, cnthctl_el2);
+}
+
+static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
+{
+ struct kvm_vcpu *vcpu;
+ int i;
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
+ vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
+ }
+}
+
+int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
+{
+ int __user *uaddr = (int __user *)(long)attr->addr;
+ struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
+ struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
+ int irq;
+
+ if (!irqchip_in_kernel(vcpu->kvm))
+ return -EINVAL;
+
+ if (get_user(irq, uaddr))
+ return -EFAULT;
+
+ if (!(irq_is_ppi(irq)))
+ return -EINVAL;
+
+ if (vcpu->arch.timer_cpu.enabled)
+ return -EBUSY;
+
+ switch (attr->attr) {
+ case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
+ set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
+ break;
+ case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
+ set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
+ break;
+ default:
+ return -ENXIO;
+ }
+
+ return 0;
+}
+
+int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
+{
+ int __user *uaddr = (int __user *)(long)attr->addr;
+ struct arch_timer_context *timer;
+ int irq;
+
+ switch (attr->attr) {
+ case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
+ timer = vcpu_vtimer(vcpu);
+ break;
+ case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
+ timer = vcpu_ptimer(vcpu);
+ break;
+ default:
+ return -ENXIO;
+ }
+
+ irq = timer->irq.irq;
+ return put_user(irq, uaddr);
+}
+
+int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
+{
+ switch (attr->attr) {
+ case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
+ case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
+ return 0;
+ }
+
+ return -ENXIO;
+}
diff --git a/arch/arm64/kvm/arm.c b/arch/arm64/kvm/arm.c
new file mode 100644
index 000000000000..7a57381c05e8
--- /dev/null
+++ b/arch/arm64/kvm/arm.c
@@ -0,0 +1,1710 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ */
+
+#include <linux/bug.h>
+#include <linux/cpu_pm.h>
+#include <linux/errno.h>
+#include <linux/err.h>
+#include <linux/kvm_host.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/vmalloc.h>
+#include <linux/fs.h>
+#include <linux/mman.h>
+#include <linux/sched.h>
+#include <linux/kvm.h>
+#include <linux/kvm_irqfd.h>
+#include <linux/irqbypass.h>
+#include <linux/sched/stat.h>
+#include <trace/events/kvm.h>
+
+#define CREATE_TRACE_POINTS
+#include "trace_arm.h"
+
+#include <linux/uaccess.h>
+#include <asm/ptrace.h>
+#include <asm/mman.h>
+#include <asm/tlbflush.h>
+#include <asm/cacheflush.h>
+#include <asm/cpufeature.h>
+#include <asm/virt.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_coproc.h>
+#include <asm/sections.h>
+
+#include <kvm/arm_hypercalls.h>
+#include <kvm/arm_pmu.h>
+#include <kvm/arm_psci.h>
+
+#ifdef REQUIRES_VIRT
+__asm__(".arch_extension virt");
+#endif
+
+DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
+static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
+
+/* The VMID used in the VTTBR */
+static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
+static u32 kvm_next_vmid;
+static DEFINE_SPINLOCK(kvm_vmid_lock);
+
+static bool vgic_present;
+
+static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
+DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
+
+int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
+{
+ return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
+}
+
+int kvm_arch_hardware_setup(void *opaque)
+{
+ return 0;
+}
+
+int kvm_arch_check_processor_compat(void *opaque)
+{
+ return 0;
+}
+
+int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
+ struct kvm_enable_cap *cap)
+{
+ int r;
+
+ if (cap->flags)
+ return -EINVAL;
+
+ switch (cap->cap) {
+ case KVM_CAP_ARM_NISV_TO_USER:
+ r = 0;
+ kvm->arch.return_nisv_io_abort_to_user = true;
+ break;
+ default:
+ r = -EINVAL;
+ break;
+ }
+
+ return r;
+}
+
+static int kvm_arm_default_max_vcpus(void)
+{
+ return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
+}
+
+/**
+ * kvm_arch_init_vm - initializes a VM data structure
+ * @kvm: pointer to the KVM struct
+ */
+int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
+{
+ int ret, cpu;
+
+ ret = kvm_arm_setup_stage2(kvm, type);
+ if (ret)
+ return ret;
+
+ kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
+ if (!kvm->arch.last_vcpu_ran)
+ return -ENOMEM;
+
+ for_each_possible_cpu(cpu)
+ *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
+
+ ret = kvm_alloc_stage2_pgd(kvm);
+ if (ret)
+ goto out_fail_alloc;
+
+ ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
+ if (ret)
+ goto out_free_stage2_pgd;
+
+ kvm_vgic_early_init(kvm);
+
+ /* Mark the initial VMID generation invalid */
+ kvm->arch.vmid.vmid_gen = 0;
+
+ /* The maximum number of VCPUs is limited by the host's GIC model */
+ kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
+
+ return ret;
+out_free_stage2_pgd:
+ kvm_free_stage2_pgd(kvm);
+out_fail_alloc:
+ free_percpu(kvm->arch.last_vcpu_ran);
+ kvm->arch.last_vcpu_ran = NULL;
+ return ret;
+}
+
+int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
+{
+ return 0;
+}
+
+vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
+{
+ return VM_FAULT_SIGBUS;
+}
+
+
+/**
+ * kvm_arch_destroy_vm - destroy the VM data structure
+ * @kvm: pointer to the KVM struct
+ */
+void kvm_arch_destroy_vm(struct kvm *kvm)
+{
+ int i;
+
+ kvm_vgic_destroy(kvm);
+
+ free_percpu(kvm->arch.last_vcpu_ran);
+ kvm->arch.last_vcpu_ran = NULL;
+
+ for (i = 0; i < KVM_MAX_VCPUS; ++i) {
+ if (kvm->vcpus[i]) {
+ kvm_vcpu_destroy(kvm->vcpus[i]);
+ kvm->vcpus[i] = NULL;
+ }
+ }
+ atomic_set(&kvm->online_vcpus, 0);
+}
+
+int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
+{
+ int r;
+ switch (ext) {
+ case KVM_CAP_IRQCHIP:
+ r = vgic_present;
+ break;
+ case KVM_CAP_IOEVENTFD:
+ case KVM_CAP_DEVICE_CTRL:
+ case KVM_CAP_USER_MEMORY:
+ case KVM_CAP_SYNC_MMU:
+ case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
+ case KVM_CAP_ONE_REG:
+ case KVM_CAP_ARM_PSCI:
+ case KVM_CAP_ARM_PSCI_0_2:
+ case KVM_CAP_READONLY_MEM:
+ case KVM_CAP_MP_STATE:
+ case KVM_CAP_IMMEDIATE_EXIT:
+ case KVM_CAP_VCPU_EVENTS:
+ case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
+ case KVM_CAP_ARM_NISV_TO_USER:
+ case KVM_CAP_ARM_INJECT_EXT_DABT:
+ r = 1;
+ break;
+ case KVM_CAP_ARM_SET_DEVICE_ADDR:
+ r = 1;
+ break;
+ case KVM_CAP_NR_VCPUS:
+ r = num_online_cpus();
+ break;
+ case KVM_CAP_MAX_VCPUS:
+ case KVM_CAP_MAX_VCPU_ID:
+ if (kvm)
+ r = kvm->arch.max_vcpus;
+ else
+ r = kvm_arm_default_max_vcpus();
+ break;
+ case KVM_CAP_MSI_DEVID:
+ if (!kvm)
+ r = -EINVAL;
+ else
+ r = kvm->arch.vgic.msis_require_devid;
+ break;
+ case KVM_CAP_ARM_USER_IRQ:
+ /*
+ * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
+ * (bump this number if adding more devices)
+ */
+ r = 1;
+ break;
+ default:
+ r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
+ break;
+ }
+ return r;
+}
+
+long kvm_arch_dev_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ return -EINVAL;
+}
+
+struct kvm *kvm_arch_alloc_vm(void)
+{
+ if (!has_vhe())
+ return kzalloc(sizeof(struct kvm), GFP_KERNEL);
+
+ return vzalloc(sizeof(struct kvm));
+}
+
+void kvm_arch_free_vm(struct kvm *kvm)
+{
+ if (!has_vhe())
+ kfree(kvm);
+ else
+ vfree(kvm);
+}
+
+int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
+{
+ if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
+ return -EBUSY;
+
+ if (id >= kvm->arch.max_vcpus)
+ return -EINVAL;
+
+ return 0;
+}
+
+int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
+{
+ int err;
+
+ /* Force users to call KVM_ARM_VCPU_INIT */
+ vcpu->arch.target = -1;
+ bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
+
+ /* Set up the timer */
+ kvm_timer_vcpu_init(vcpu);
+
+ kvm_pmu_vcpu_init(vcpu);
+
+ kvm_arm_reset_debug_ptr(vcpu);
+
+ kvm_arm_pvtime_vcpu_init(&vcpu->arch);
+
+ err = kvm_vgic_vcpu_init(vcpu);
+ if (err)
+ return err;
+
+ return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
+}
+
+void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
+{
+}
+
+void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
+{
+ if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
+ static_branch_dec(&userspace_irqchip_in_use);
+
+ kvm_mmu_free_memory_caches(vcpu);
+ kvm_timer_vcpu_terminate(vcpu);
+ kvm_pmu_vcpu_destroy(vcpu);
+
+ kvm_arm_vcpu_destroy(vcpu);
+}
+
+int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
+{
+ return kvm_timer_is_pending(vcpu);
+}
+
+void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
+{
+ /*
+ * If we're about to block (most likely because we've just hit a
+ * WFI), we need to sync back the state of the GIC CPU interface
+ * so that we have the latest PMR and group enables. This ensures
+ * that kvm_arch_vcpu_runnable has up-to-date data to decide
+ * whether we have pending interrupts.
+ *
+ * For the same reason, we want to tell GICv4 that we need
+ * doorbells to be signalled, should an interrupt become pending.
+ */
+ preempt_disable();
+ kvm_vgic_vmcr_sync(vcpu);
+ vgic_v4_put(vcpu, true);
+ preempt_enable();
+}
+
+void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
+{
+ preempt_disable();
+ vgic_v4_load(vcpu);
+ preempt_enable();
+}
+
+void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+ int *last_ran;
+ kvm_host_data_t *cpu_data;
+
+ last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
+ cpu_data = this_cpu_ptr(&kvm_host_data);
+
+ /*
+ * We might get preempted before the vCPU actually runs, but
+ * over-invalidation doesn't affect correctness.
+ */
+ if (*last_ran != vcpu->vcpu_id) {
+ kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
+ *last_ran = vcpu->vcpu_id;
+ }
+
+ vcpu->cpu = cpu;
+ vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
+
+ kvm_vgic_load(vcpu);
+ kvm_timer_vcpu_load(vcpu);
+ kvm_vcpu_load_sysregs(vcpu);
+ kvm_arch_vcpu_load_fp(vcpu);
+ kvm_vcpu_pmu_restore_guest(vcpu);
+ if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
+ kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
+
+ if (single_task_running())
+ vcpu_clear_wfx_traps(vcpu);
+ else
+ vcpu_set_wfx_traps(vcpu);
+
+ vcpu_ptrauth_setup_lazy(vcpu);
+}
+
+void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
+{
+ kvm_arch_vcpu_put_fp(vcpu);
+ kvm_vcpu_put_sysregs(vcpu);
+ kvm_timer_vcpu_put(vcpu);
+ kvm_vgic_put(vcpu);
+ kvm_vcpu_pmu_restore_host(vcpu);
+
+ vcpu->cpu = -1;
+}
+
+static void vcpu_power_off(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.power_off = true;
+ kvm_make_request(KVM_REQ_SLEEP, vcpu);
+ kvm_vcpu_kick(vcpu);
+}
+
+int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
+ struct kvm_mp_state *mp_state)
+{
+ if (vcpu->arch.power_off)
+ mp_state->mp_state = KVM_MP_STATE_STOPPED;
+ else
+ mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
+
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
+ struct kvm_mp_state *mp_state)
+{
+ int ret = 0;
+
+ switch (mp_state->mp_state) {
+ case KVM_MP_STATE_RUNNABLE:
+ vcpu->arch.power_off = false;
+ break;
+ case KVM_MP_STATE_STOPPED:
+ vcpu_power_off(vcpu);
+ break;
+ default:
+ ret = -EINVAL;
+ }
+
+ return ret;
+}
+
+/**
+ * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
+ * @v: The VCPU pointer
+ *
+ * If the guest CPU is not waiting for interrupts or an interrupt line is
+ * asserted, the CPU is by definition runnable.
+ */
+int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
+{
+ bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
+ return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
+ && !v->arch.power_off && !v->arch.pause);
+}
+
+bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
+{
+ return vcpu_mode_priv(vcpu);
+}
+
+/* Just ensure a guest exit from a particular CPU */
+static void exit_vm_noop(void *info)
+{
+}
+
+void force_vm_exit(const cpumask_t *mask)
+{
+ preempt_disable();
+ smp_call_function_many(mask, exit_vm_noop, NULL, true);
+ preempt_enable();
+}
+
+/**
+ * need_new_vmid_gen - check that the VMID is still valid
+ * @vmid: The VMID to check
+ *
+ * return true if there is a new generation of VMIDs being used
+ *
+ * The hardware supports a limited set of values with the value zero reserved
+ * for the host, so we check if an assigned value belongs to a previous
+ * generation, which requires us to assign a new value. If we're the first to
+ * use a VMID for the new generation, we must flush necessary caches and TLBs
+ * on all CPUs.
+ */
+static bool need_new_vmid_gen(struct kvm_vmid *vmid)
+{
+ u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
+ smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
+ return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
+}
+
+/**
+ * update_vmid - Update the vmid with a valid VMID for the current generation
+ * @kvm: The guest that struct vmid belongs to
+ * @vmid: The stage-2 VMID information struct
+ */
+static void update_vmid(struct kvm_vmid *vmid)
+{
+ if (!need_new_vmid_gen(vmid))
+ return;
+
+ spin_lock(&kvm_vmid_lock);
+
+ /*
+ * We need to re-check the vmid_gen here to ensure that if another vcpu
+ * already allocated a valid vmid for this vm, then this vcpu should
+ * use the same vmid.
+ */
+ if (!need_new_vmid_gen(vmid)) {
+ spin_unlock(&kvm_vmid_lock);
+ return;
+ }
+
+ /* First user of a new VMID generation? */
+ if (unlikely(kvm_next_vmid == 0)) {
+ atomic64_inc(&kvm_vmid_gen);
+ kvm_next_vmid = 1;
+
+ /*
+ * On SMP we know no other CPUs can use this CPU's or each
+ * other's VMID after force_vm_exit returns since the
+ * kvm_vmid_lock blocks them from reentry to the guest.
+ */
+ force_vm_exit(cpu_all_mask);
+ /*
+ * Now broadcast TLB + ICACHE invalidation over the inner
+ * shareable domain to make sure all data structures are
+ * clean.
+ */
+ kvm_call_hyp(__kvm_flush_vm_context);
+ }
+
+ vmid->vmid = kvm_next_vmid;
+ kvm_next_vmid++;
+ kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
+
+ smp_wmb();
+ WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
+
+ spin_unlock(&kvm_vmid_lock);
+}
+
+static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ int ret = 0;
+
+ if (likely(vcpu->arch.has_run_once))
+ return 0;
+
+ if (!kvm_arm_vcpu_is_finalized(vcpu))
+ return -EPERM;
+
+ vcpu->arch.has_run_once = true;
+
+ if (likely(irqchip_in_kernel(kvm))) {
+ /*
+ * Map the VGIC hardware resources before running a vcpu the
+ * first time on this VM.
+ */
+ if (unlikely(!vgic_ready(kvm))) {
+ ret = kvm_vgic_map_resources(kvm);
+ if (ret)
+ return ret;
+ }
+ } else {
+ /*
+ * Tell the rest of the code that there are userspace irqchip
+ * VMs in the wild.
+ */
+ static_branch_inc(&userspace_irqchip_in_use);
+ }
+
+ ret = kvm_timer_enable(vcpu);
+ if (ret)
+ return ret;
+
+ ret = kvm_arm_pmu_v3_enable(vcpu);
+
+ return ret;
+}
+
+bool kvm_arch_intc_initialized(struct kvm *kvm)
+{
+ return vgic_initialized(kvm);
+}
+
+void kvm_arm_halt_guest(struct kvm *kvm)
+{
+ int i;
+ struct kvm_vcpu *vcpu;
+
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ vcpu->arch.pause = true;
+ kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
+}
+
+void kvm_arm_resume_guest(struct kvm *kvm)
+{
+ int i;
+ struct kvm_vcpu *vcpu;
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ vcpu->arch.pause = false;
+ rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
+ }
+}
+
+static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
+{
+ struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
+
+ rcuwait_wait_event(wait,
+ (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
+ TASK_INTERRUPTIBLE);
+
+ if (vcpu->arch.power_off || vcpu->arch.pause) {
+ /* Awaken to handle a signal, request we sleep again later. */
+ kvm_make_request(KVM_REQ_SLEEP, vcpu);
+ }
+
+ /*
+ * Make sure we will observe a potential reset request if we've
+ * observed a change to the power state. Pairs with the smp_wmb() in
+ * kvm_psci_vcpu_on().
+ */
+ smp_rmb();
+}
+
+static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.target >= 0;
+}
+
+static void check_vcpu_requests(struct kvm_vcpu *vcpu)
+{
+ if (kvm_request_pending(vcpu)) {
+ if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
+ vcpu_req_sleep(vcpu);
+
+ if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
+ kvm_reset_vcpu(vcpu);
+
+ /*
+ * Clear IRQ_PENDING requests that were made to guarantee
+ * that a VCPU sees new virtual interrupts.
+ */
+ kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
+
+ if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
+ kvm_update_stolen_time(vcpu);
+
+ if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
+ /* The distributor enable bits were changed */
+ preempt_disable();
+ vgic_v4_put(vcpu, false);
+ vgic_v4_load(vcpu);
+ preempt_enable();
+ }
+ }
+}
+
+/**
+ * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
+ * @vcpu: The VCPU pointer
+ *
+ * This function is called through the VCPU_RUN ioctl called from user space. It
+ * will execute VM code in a loop until the time slice for the process is used
+ * or some emulation is needed from user space in which case the function will
+ * return with return value 0 and with the kvm_run structure filled in with the
+ * required data for the requested emulation.
+ */
+int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *run = vcpu->run;
+ int ret;
+
+ if (unlikely(!kvm_vcpu_initialized(vcpu)))
+ return -ENOEXEC;
+
+ ret = kvm_vcpu_first_run_init(vcpu);
+ if (ret)
+ return ret;
+
+ if (run->exit_reason == KVM_EXIT_MMIO) {
+ ret = kvm_handle_mmio_return(vcpu, run);
+ if (ret)
+ return ret;
+ }
+
+ if (run->immediate_exit)
+ return -EINTR;
+
+ vcpu_load(vcpu);
+
+ kvm_sigset_activate(vcpu);
+
+ ret = 1;
+ run->exit_reason = KVM_EXIT_UNKNOWN;
+ while (ret > 0) {
+ /*
+ * Check conditions before entering the guest
+ */
+ cond_resched();
+
+ update_vmid(&vcpu->kvm->arch.vmid);
+
+ check_vcpu_requests(vcpu);
+
+ /*
+ * Preparing the interrupts to be injected also
+ * involves poking the GIC, which must be done in a
+ * non-preemptible context.
+ */
+ preempt_disable();
+
+ kvm_pmu_flush_hwstate(vcpu);
+
+ local_irq_disable();
+
+ kvm_vgic_flush_hwstate(vcpu);
+
+ /*
+ * Exit if we have a signal pending so that we can deliver the
+ * signal to user space.
+ */
+ if (signal_pending(current)) {
+ ret = -EINTR;
+ run->exit_reason = KVM_EXIT_INTR;
+ }
+
+ /*
+ * If we're using a userspace irqchip, then check if we need
+ * to tell a userspace irqchip about timer or PMU level
+ * changes and if so, exit to userspace (the actual level
+ * state gets updated in kvm_timer_update_run and
+ * kvm_pmu_update_run below).
+ */
+ if (static_branch_unlikely(&userspace_irqchip_in_use)) {
+ if (kvm_timer_should_notify_user(vcpu) ||
+ kvm_pmu_should_notify_user(vcpu)) {
+ ret = -EINTR;
+ run->exit_reason = KVM_EXIT_INTR;
+ }
+ }
+
+ /*
+ * Ensure we set mode to IN_GUEST_MODE after we disable
+ * interrupts and before the final VCPU requests check.
+ * See the comment in kvm_vcpu_exiting_guest_mode() and
+ * Documentation/virt/kvm/vcpu-requests.rst
+ */
+ smp_store_mb(vcpu->mode, IN_GUEST_MODE);
+
+ if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
+ kvm_request_pending(vcpu)) {
+ vcpu->mode = OUTSIDE_GUEST_MODE;
+ isb(); /* Ensure work in x_flush_hwstate is committed */
+ kvm_pmu_sync_hwstate(vcpu);
+ if (static_branch_unlikely(&userspace_irqchip_in_use))
+ kvm_timer_sync_hwstate(vcpu);
+ kvm_vgic_sync_hwstate(vcpu);
+ local_irq_enable();
+ preempt_enable();
+ continue;
+ }
+
+ kvm_arm_setup_debug(vcpu);
+
+ /**************************************************************
+ * Enter the guest
+ */
+ trace_kvm_entry(*vcpu_pc(vcpu));
+ guest_enter_irqoff();
+
+ if (has_vhe()) {
+ ret = kvm_vcpu_run_vhe(vcpu);
+ } else {
+ ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
+ }
+
+ vcpu->mode = OUTSIDE_GUEST_MODE;
+ vcpu->stat.exits++;
+ /*
+ * Back from guest
+ *************************************************************/
+
+ kvm_arm_clear_debug(vcpu);
+
+ /*
+ * We must sync the PMU state before the vgic state so
+ * that the vgic can properly sample the updated state of the
+ * interrupt line.
+ */
+ kvm_pmu_sync_hwstate(vcpu);
+
+ /*
+ * Sync the vgic state before syncing the timer state because
+ * the timer code needs to know if the virtual timer
+ * interrupts are active.
+ */
+ kvm_vgic_sync_hwstate(vcpu);
+
+ /*
+ * Sync the timer hardware state before enabling interrupts as
+ * we don't want vtimer interrupts to race with syncing the
+ * timer virtual interrupt state.
+ */
+ if (static_branch_unlikely(&userspace_irqchip_in_use))
+ kvm_timer_sync_hwstate(vcpu);
+
+ kvm_arch_vcpu_ctxsync_fp(vcpu);
+
+ /*
+ * We may have taken a host interrupt in HYP mode (ie
+ * while executing the guest). This interrupt is still
+ * pending, as we haven't serviced it yet!
+ *
+ * We're now back in SVC mode, with interrupts
+ * disabled. Enabling the interrupts now will have
+ * the effect of taking the interrupt again, in SVC
+ * mode this time.
+ */
+ local_irq_enable();
+
+ /*
+ * We do local_irq_enable() before calling guest_exit() so
+ * that if a timer interrupt hits while running the guest we
+ * account that tick as being spent in the guest. We enable
+ * preemption after calling guest_exit() so that if we get
+ * preempted we make sure ticks after that is not counted as
+ * guest time.
+ */
+ guest_exit();
+ trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
+
+ /* Exit types that need handling before we can be preempted */
+ handle_exit_early(vcpu, run, ret);
+
+ preempt_enable();
+
+ ret = handle_exit(vcpu, run, ret);
+ }
+
+ /* Tell userspace about in-kernel device output levels */
+ if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
+ kvm_timer_update_run(vcpu);
+ kvm_pmu_update_run(vcpu);
+ }
+
+ kvm_sigset_deactivate(vcpu);
+
+ vcpu_put(vcpu);
+ return ret;
+}
+
+static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
+{
+ int bit_index;
+ bool set;
+ unsigned long *hcr;
+
+ if (number == KVM_ARM_IRQ_CPU_IRQ)
+ bit_index = __ffs(HCR_VI);
+ else /* KVM_ARM_IRQ_CPU_FIQ */
+ bit_index = __ffs(HCR_VF);
+
+ hcr = vcpu_hcr(vcpu);
+ if (level)
+ set = test_and_set_bit(bit_index, hcr);
+ else
+ set = test_and_clear_bit(bit_index, hcr);
+
+ /*
+ * If we didn't change anything, no need to wake up or kick other CPUs
+ */
+ if (set == level)
+ return 0;
+
+ /*
+ * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
+ * trigger a world-switch round on the running physical CPU to set the
+ * virtual IRQ/FIQ fields in the HCR appropriately.
+ */
+ kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
+ kvm_vcpu_kick(vcpu);
+
+ return 0;
+}
+
+int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
+ bool line_status)
+{
+ u32 irq = irq_level->irq;
+ unsigned int irq_type, vcpu_idx, irq_num;
+ int nrcpus = atomic_read(&kvm->online_vcpus);
+ struct kvm_vcpu *vcpu = NULL;
+ bool level = irq_level->level;
+
+ irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
+ vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
+ vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
+ irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
+
+ trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
+
+ switch (irq_type) {
+ case KVM_ARM_IRQ_TYPE_CPU:
+ if (irqchip_in_kernel(kvm))
+ return -ENXIO;
+
+ if (vcpu_idx >= nrcpus)
+ return -EINVAL;
+
+ vcpu = kvm_get_vcpu(kvm, vcpu_idx);
+ if (!vcpu)
+ return -EINVAL;
+
+ if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
+ return -EINVAL;
+
+ return vcpu_interrupt_line(vcpu, irq_num, level);
+ case KVM_ARM_IRQ_TYPE_PPI:
+ if (!irqchip_in_kernel(kvm))
+ return -ENXIO;
+
+ if (vcpu_idx >= nrcpus)
+ return -EINVAL;
+
+ vcpu = kvm_get_vcpu(kvm, vcpu_idx);
+ if (!vcpu)
+ return -EINVAL;
+
+ if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
+ return -EINVAL;
+
+ return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
+ case KVM_ARM_IRQ_TYPE_SPI:
+ if (!irqchip_in_kernel(kvm))
+ return -ENXIO;
+
+ if (irq_num < VGIC_NR_PRIVATE_IRQS)
+ return -EINVAL;
+
+ return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
+ }
+
+ return -EINVAL;
+}
+
+static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
+ const struct kvm_vcpu_init *init)
+{
+ unsigned int i, ret;
+ int phys_target = kvm_target_cpu();
+
+ if (init->target != phys_target)
+ return -EINVAL;
+
+ /*
+ * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
+ * use the same target.
+ */
+ if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
+ return -EINVAL;
+
+ /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
+ for (i = 0; i < sizeof(init->features) * 8; i++) {
+ bool set = (init->features[i / 32] & (1 << (i % 32)));
+
+ if (set && i >= KVM_VCPU_MAX_FEATURES)
+ return -ENOENT;
+
+ /*
+ * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
+ * use the same feature set.
+ */
+ if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
+ test_bit(i, vcpu->arch.features) != set)
+ return -EINVAL;
+
+ if (set)
+ set_bit(i, vcpu->arch.features);
+ }
+
+ vcpu->arch.target = phys_target;
+
+ /* Now we know what it is, we can reset it. */
+ ret = kvm_reset_vcpu(vcpu);
+ if (ret) {
+ vcpu->arch.target = -1;
+ bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
+ }
+
+ return ret;
+}
+
+static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
+ struct kvm_vcpu_init *init)
+{
+ int ret;
+
+ ret = kvm_vcpu_set_target(vcpu, init);
+ if (ret)
+ return ret;
+
+ /*
+ * Ensure a rebooted VM will fault in RAM pages and detect if the
+ * guest MMU is turned off and flush the caches as needed.
+ *
+ * S2FWB enforces all memory accesses to RAM being cacheable, we
+ * ensure that the cache is always coherent.
+ */
+ if (vcpu->arch.has_run_once && !cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
+ stage2_unmap_vm(vcpu->kvm);
+
+ vcpu_reset_hcr(vcpu);
+
+ /*
+ * Handle the "start in power-off" case.
+ */
+ if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
+ vcpu_power_off(vcpu);
+ else
+ vcpu->arch.power_off = false;
+
+ return 0;
+}
+
+static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr)
+{
+ int ret = -ENXIO;
+
+ switch (attr->group) {
+ default:
+ ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
+ break;
+ }
+
+ return ret;
+}
+
+static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr)
+{
+ int ret = -ENXIO;
+
+ switch (attr->group) {
+ default:
+ ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
+ break;
+ }
+
+ return ret;
+}
+
+static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr)
+{
+ int ret = -ENXIO;
+
+ switch (attr->group) {
+ default:
+ ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
+ break;
+ }
+
+ return ret;
+}
+
+static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
+ struct kvm_vcpu_events *events)
+{
+ memset(events, 0, sizeof(*events));
+
+ return __kvm_arm_vcpu_get_events(vcpu, events);
+}
+
+static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
+ struct kvm_vcpu_events *events)
+{
+ int i;
+
+ /* check whether the reserved field is zero */
+ for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
+ if (events->reserved[i])
+ return -EINVAL;
+
+ /* check whether the pad field is zero */
+ for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
+ if (events->exception.pad[i])
+ return -EINVAL;
+
+ return __kvm_arm_vcpu_set_events(vcpu, events);
+}
+
+long kvm_arch_vcpu_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ struct kvm_vcpu *vcpu = filp->private_data;
+ void __user *argp = (void __user *)arg;
+ struct kvm_device_attr attr;
+ long r;
+
+ switch (ioctl) {
+ case KVM_ARM_VCPU_INIT: {
+ struct kvm_vcpu_init init;
+
+ r = -EFAULT;
+ if (copy_from_user(&init, argp, sizeof(init)))
+ break;
+
+ r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
+ break;
+ }
+ case KVM_SET_ONE_REG:
+ case KVM_GET_ONE_REG: {
+ struct kvm_one_reg reg;
+
+ r = -ENOEXEC;
+ if (unlikely(!kvm_vcpu_initialized(vcpu)))
+ break;
+
+ r = -EFAULT;
+ if (copy_from_user(&reg, argp, sizeof(reg)))
+ break;
+
+ if (ioctl == KVM_SET_ONE_REG)
+ r = kvm_arm_set_reg(vcpu, &reg);
+ else
+ r = kvm_arm_get_reg(vcpu, &reg);
+ break;
+ }
+ case KVM_GET_REG_LIST: {
+ struct kvm_reg_list __user *user_list = argp;
+ struct kvm_reg_list reg_list;
+ unsigned n;
+
+ r = -ENOEXEC;
+ if (unlikely(!kvm_vcpu_initialized(vcpu)))
+ break;
+
+ r = -EPERM;
+ if (!kvm_arm_vcpu_is_finalized(vcpu))
+ break;
+
+ r = -EFAULT;
+ if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
+ break;
+ n = reg_list.n;
+ reg_list.n = kvm_arm_num_regs(vcpu);
+ if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
+ break;
+ r = -E2BIG;
+ if (n < reg_list.n)
+ break;
+ r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
+ break;
+ }
+ case KVM_SET_DEVICE_ATTR: {
+ r = -EFAULT;
+ if (copy_from_user(&attr, argp, sizeof(attr)))
+ break;
+ r = kvm_arm_vcpu_set_attr(vcpu, &attr);
+ break;
+ }
+ case KVM_GET_DEVICE_ATTR: {
+ r = -EFAULT;
+ if (copy_from_user(&attr, argp, sizeof(attr)))
+ break;
+ r = kvm_arm_vcpu_get_attr(vcpu, &attr);
+ break;
+ }
+ case KVM_HAS_DEVICE_ATTR: {
+ r = -EFAULT;
+ if (copy_from_user(&attr, argp, sizeof(attr)))
+ break;
+ r = kvm_arm_vcpu_has_attr(vcpu, &attr);
+ break;
+ }
+ case KVM_GET_VCPU_EVENTS: {
+ struct kvm_vcpu_events events;
+
+ if (kvm_arm_vcpu_get_events(vcpu, &events))
+ return -EINVAL;
+
+ if (copy_to_user(argp, &events, sizeof(events)))
+ return -EFAULT;
+
+ return 0;
+ }
+ case KVM_SET_VCPU_EVENTS: {
+ struct kvm_vcpu_events events;
+
+ if (copy_from_user(&events, argp, sizeof(events)))
+ return -EFAULT;
+
+ return kvm_arm_vcpu_set_events(vcpu, &events);
+ }
+ case KVM_ARM_VCPU_FINALIZE: {
+ int what;
+
+ if (!kvm_vcpu_initialized(vcpu))
+ return -ENOEXEC;
+
+ if (get_user(what, (const int __user *)argp))
+ return -EFAULT;
+
+ return kvm_arm_vcpu_finalize(vcpu, what);
+ }
+ default:
+ r = -EINVAL;
+ }
+
+ return r;
+}
+
+void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
+{
+
+}
+
+void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *memslot)
+{
+ kvm_flush_remote_tlbs(kvm);
+}
+
+static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
+ struct kvm_arm_device_addr *dev_addr)
+{
+ unsigned long dev_id, type;
+
+ dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
+ KVM_ARM_DEVICE_ID_SHIFT;
+ type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
+ KVM_ARM_DEVICE_TYPE_SHIFT;
+
+ switch (dev_id) {
+ case KVM_ARM_DEVICE_VGIC_V2:
+ if (!vgic_present)
+ return -ENXIO;
+ return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
+ default:
+ return -ENODEV;
+ }
+}
+
+long kvm_arch_vm_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ struct kvm *kvm = filp->private_data;
+ void __user *argp = (void __user *)arg;
+
+ switch (ioctl) {
+ case KVM_CREATE_IRQCHIP: {
+ int ret;
+ if (!vgic_present)
+ return -ENXIO;
+ mutex_lock(&kvm->lock);
+ ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
+ mutex_unlock(&kvm->lock);
+ return ret;
+ }
+ case KVM_ARM_SET_DEVICE_ADDR: {
+ struct kvm_arm_device_addr dev_addr;
+
+ if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
+ return -EFAULT;
+ return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
+ }
+ case KVM_ARM_PREFERRED_TARGET: {
+ int err;
+ struct kvm_vcpu_init init;
+
+ err = kvm_vcpu_preferred_target(&init);
+ if (err)
+ return err;
+
+ if (copy_to_user(argp, &init, sizeof(init)))
+ return -EFAULT;
+
+ return 0;
+ }
+ default:
+ return -EINVAL;
+ }
+}
+
+static void cpu_init_hyp_mode(void)
+{
+ phys_addr_t pgd_ptr;
+ unsigned long hyp_stack_ptr;
+ unsigned long vector_ptr;
+ unsigned long tpidr_el2;
+
+ /* Switch from the HYP stub to our own HYP init vector */
+ __hyp_set_vectors(kvm_get_idmap_vector());
+
+ /*
+ * Calculate the raw per-cpu offset without a translation from the
+ * kernel's mapping to the linear mapping, and store it in tpidr_el2
+ * so that we can use adr_l to access per-cpu variables in EL2.
+ */
+ tpidr_el2 = ((unsigned long)this_cpu_ptr(&kvm_host_data) -
+ (unsigned long)kvm_ksym_ref(kvm_host_data));
+
+ pgd_ptr = kvm_mmu_get_httbr();
+ hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE;
+ vector_ptr = (unsigned long)kvm_get_hyp_vector();
+
+ /*
+ * Call initialization code, and switch to the full blown HYP code.
+ * If the cpucaps haven't been finalized yet, something has gone very
+ * wrong, and hyp will crash and burn when it uses any
+ * cpus_have_const_cap() wrapper.
+ */
+ BUG_ON(!system_capabilities_finalized());
+ __kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);
+
+ /*
+ * Disabling SSBD on a non-VHE system requires us to enable SSBS
+ * at EL2.
+ */
+ if (this_cpu_has_cap(ARM64_SSBS) &&
+ arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
+ kvm_call_hyp(__kvm_enable_ssbs);
+ }
+}
+
+static void cpu_hyp_reset(void)
+{
+ if (!is_kernel_in_hyp_mode())
+ __hyp_reset_vectors();
+}
+
+static void cpu_hyp_reinit(void)
+{
+ kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);
+
+ cpu_hyp_reset();
+
+ if (is_kernel_in_hyp_mode())
+ kvm_timer_init_vhe();
+ else
+ cpu_init_hyp_mode();
+
+ kvm_arm_init_debug();
+
+ if (vgic_present)
+ kvm_vgic_init_cpu_hardware();
+}
+
+static void _kvm_arch_hardware_enable(void *discard)
+{
+ if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
+ cpu_hyp_reinit();
+ __this_cpu_write(kvm_arm_hardware_enabled, 1);
+ }
+}
+
+int kvm_arch_hardware_enable(void)
+{
+ _kvm_arch_hardware_enable(NULL);
+ return 0;
+}
+
+static void _kvm_arch_hardware_disable(void *discard)
+{
+ if (__this_cpu_read(kvm_arm_hardware_enabled)) {
+ cpu_hyp_reset();
+ __this_cpu_write(kvm_arm_hardware_enabled, 0);
+ }
+}
+
+void kvm_arch_hardware_disable(void)
+{
+ _kvm_arch_hardware_disable(NULL);
+}
+
+#ifdef CONFIG_CPU_PM
+static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
+ unsigned long cmd,
+ void *v)
+{
+ /*
+ * kvm_arm_hardware_enabled is left with its old value over
+ * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
+ * re-enable hyp.
+ */
+ switch (cmd) {
+ case CPU_PM_ENTER:
+ if (__this_cpu_read(kvm_arm_hardware_enabled))
+ /*
+ * don't update kvm_arm_hardware_enabled here
+ * so that the hardware will be re-enabled
+ * when we resume. See below.
+ */
+ cpu_hyp_reset();
+
+ return NOTIFY_OK;
+ case CPU_PM_ENTER_FAILED:
+ case CPU_PM_EXIT:
+ if (__this_cpu_read(kvm_arm_hardware_enabled))
+ /* The hardware was enabled before suspend. */
+ cpu_hyp_reinit();
+
+ return NOTIFY_OK;
+
+ default:
+ return NOTIFY_DONE;
+ }
+}
+
+static struct notifier_block hyp_init_cpu_pm_nb = {
+ .notifier_call = hyp_init_cpu_pm_notifier,
+};
+
+static void __init hyp_cpu_pm_init(void)
+{
+ cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
+}
+static void __init hyp_cpu_pm_exit(void)
+{
+ cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
+}
+#else
+static inline void hyp_cpu_pm_init(void)
+{
+}
+static inline void hyp_cpu_pm_exit(void)
+{
+}
+#endif
+
+static int init_common_resources(void)
+{
+ return kvm_set_ipa_limit();
+}
+
+static int init_subsystems(void)
+{
+ int err = 0;
+
+ /*
+ * Enable hardware so that subsystem initialisation can access EL2.
+ */
+ on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
+
+ /*
+ * Register CPU lower-power notifier
+ */
+ hyp_cpu_pm_init();
+
+ /*
+ * Init HYP view of VGIC
+ */
+ err = kvm_vgic_hyp_init();
+ switch (err) {
+ case 0:
+ vgic_present = true;
+ break;
+ case -ENODEV:
+ case -ENXIO:
+ vgic_present = false;
+ err = 0;
+ break;
+ default:
+ goto out;
+ }
+
+ /*
+ * Init HYP architected timer support
+ */
+ err = kvm_timer_hyp_init(vgic_present);
+ if (err)
+ goto out;
+
+ kvm_perf_init();
+ kvm_coproc_table_init();
+
+out:
+ on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
+
+ return err;
+}
+
+static void teardown_hyp_mode(void)
+{
+ int cpu;
+
+ free_hyp_pgds();
+ for_each_possible_cpu(cpu)
+ free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
+}
+
+/**
+ * Inits Hyp-mode on all online CPUs
+ */
+static int init_hyp_mode(void)
+{
+ int cpu;
+ int err = 0;
+
+ /*
+ * Allocate Hyp PGD and setup Hyp identity mapping
+ */
+ err = kvm_mmu_init();
+ if (err)
+ goto out_err;
+
+ /*
+ * Allocate stack pages for Hypervisor-mode
+ */
+ for_each_possible_cpu(cpu) {
+ unsigned long stack_page;
+
+ stack_page = __get_free_page(GFP_KERNEL);
+ if (!stack_page) {
+ err = -ENOMEM;
+ goto out_err;
+ }
+
+ per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
+ }
+
+ /*
+ * Map the Hyp-code called directly from the host
+ */
+ err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
+ kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
+ if (err) {
+ kvm_err("Cannot map world-switch code\n");
+ goto out_err;
+ }
+
+ err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
+ kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
+ if (err) {
+ kvm_err("Cannot map rodata section\n");
+ goto out_err;
+ }
+
+ err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
+ kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
+ if (err) {
+ kvm_err("Cannot map bss section\n");
+ goto out_err;
+ }
+
+ err = kvm_map_vectors();
+ if (err) {
+ kvm_err("Cannot map vectors\n");
+ goto out_err;
+ }
+
+ /*
+ * Map the Hyp stack pages
+ */
+ for_each_possible_cpu(cpu) {
+ char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
+ err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
+ PAGE_HYP);
+
+ if (err) {
+ kvm_err("Cannot map hyp stack\n");
+ goto out_err;
+ }
+ }
+
+ for_each_possible_cpu(cpu) {
+ kvm_host_data_t *cpu_data;
+
+ cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
+ err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
+
+ if (err) {
+ kvm_err("Cannot map host CPU state: %d\n", err);
+ goto out_err;
+ }
+ }
+
+ err = hyp_map_aux_data();
+ if (err)
+ kvm_err("Cannot map host auxiliary data: %d\n", err);
+
+ return 0;
+
+out_err:
+ teardown_hyp_mode();
+ kvm_err("error initializing Hyp mode: %d\n", err);
+ return err;
+}
+
+static void check_kvm_target_cpu(void *ret)
+{
+ *(int *)ret = kvm_target_cpu();
+}
+
+struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
+{
+ struct kvm_vcpu *vcpu;
+ int i;
+
+ mpidr &= MPIDR_HWID_BITMASK;
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
+ return vcpu;
+ }
+ return NULL;
+}
+
+bool kvm_arch_has_irq_bypass(void)
+{
+ return true;
+}
+
+int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
+ struct irq_bypass_producer *prod)
+{
+ struct kvm_kernel_irqfd *irqfd =
+ container_of(cons, struct kvm_kernel_irqfd, consumer);
+
+ return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
+ &irqfd->irq_entry);
+}
+void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
+ struct irq_bypass_producer *prod)
+{
+ struct kvm_kernel_irqfd *irqfd =
+ container_of(cons, struct kvm_kernel_irqfd, consumer);
+
+ kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
+ &irqfd->irq_entry);
+}
+
+void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
+{
+ struct kvm_kernel_irqfd *irqfd =
+ container_of(cons, struct kvm_kernel_irqfd, consumer);
+
+ kvm_arm_halt_guest(irqfd->kvm);
+}
+
+void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
+{
+ struct kvm_kernel_irqfd *irqfd =
+ container_of(cons, struct kvm_kernel_irqfd, consumer);
+
+ kvm_arm_resume_guest(irqfd->kvm);
+}
+
+/**
+ * Initialize Hyp-mode and memory mappings on all CPUs.
+ */
+int kvm_arch_init(void *opaque)
+{
+ int err;
+ int ret, cpu;
+ bool in_hyp_mode;
+
+ if (!is_hyp_mode_available()) {
+ kvm_info("HYP mode not available\n");
+ return -ENODEV;
+ }
+
+ in_hyp_mode = is_kernel_in_hyp_mode();
+
+ if (!in_hyp_mode && kvm_arch_requires_vhe()) {
+ kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
+ return -ENODEV;
+ }
+
+ for_each_online_cpu(cpu) {
+ smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
+ if (ret < 0) {
+ kvm_err("Error, CPU %d not supported!\n", cpu);
+ return -ENODEV;
+ }
+ }
+
+ err = init_common_resources();
+ if (err)
+ return err;
+
+ err = kvm_arm_init_sve();
+ if (err)
+ return err;
+
+ if (!in_hyp_mode) {
+ err = init_hyp_mode();
+ if (err)
+ goto out_err;
+ }
+
+ err = init_subsystems();
+ if (err)
+ goto out_hyp;
+
+ if (in_hyp_mode)
+ kvm_info("VHE mode initialized successfully\n");
+ else
+ kvm_info("Hyp mode initialized successfully\n");
+
+ return 0;
+
+out_hyp:
+ hyp_cpu_pm_exit();
+ if (!in_hyp_mode)
+ teardown_hyp_mode();
+out_err:
+ return err;
+}
+
+/* NOP: Compiling as a module not supported */
+void kvm_arch_exit(void)
+{
+ kvm_perf_teardown();
+}
+
+static int arm_init(void)
+{
+ int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
+ return rc;
+}
+
+module_init(arm_init);
diff --git a/arch/arm64/kvm/guest.c b/arch/arm64/kvm/guest.c
index 50a279d3ddd7..aea43ec60f37 100644
--- a/arch/arm64/kvm/guest.c
+++ b/arch/arm64/kvm/guest.c
@@ -29,20 +29,19 @@
#include "trace.h"
-#define VM_STAT(x) { #x, offsetof(struct kvm, stat.x), KVM_STAT_VM }
-#define VCPU_STAT(x) { #x, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU }
-
struct kvm_stats_debugfs_item debugfs_entries[] = {
- VCPU_STAT(halt_successful_poll),
- VCPU_STAT(halt_attempted_poll),
- VCPU_STAT(halt_poll_invalid),
- VCPU_STAT(halt_wakeup),
- VCPU_STAT(hvc_exit_stat),
- VCPU_STAT(wfe_exit_stat),
- VCPU_STAT(wfi_exit_stat),
- VCPU_STAT(mmio_exit_user),
- VCPU_STAT(mmio_exit_kernel),
- VCPU_STAT(exits),
+ VCPU_STAT("halt_successful_poll", halt_successful_poll),
+ VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
+ VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
+ VCPU_STAT("halt_wakeup", halt_wakeup),
+ VCPU_STAT("hvc_exit_stat", hvc_exit_stat),
+ VCPU_STAT("wfe_exit_stat", wfe_exit_stat),
+ VCPU_STAT("wfi_exit_stat", wfi_exit_stat),
+ VCPU_STAT("mmio_exit_user", mmio_exit_user),
+ VCPU_STAT("mmio_exit_kernel", mmio_exit_kernel),
+ VCPU_STAT("exits", exits),
+ VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
+ VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
{ NULL }
};
@@ -267,7 +266,7 @@ static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
/*
* Vector lengths supported by the host can't currently be
* hidden from the guest individually: instead we can only set a
- * maxmium via ZCR_EL2.LEN. So, make sure the available vector
+ * maximum via ZCR_EL2.LEN. So, make sure the available vector
* lengths match the set requested exactly up to the requested
* maximum:
*/
@@ -337,7 +336,7 @@ static int sve_reg_to_region(struct sve_state_reg_region *region,
unsigned int reg_num;
unsigned int reqoffset, reqlen; /* User-requested offset and length */
- unsigned int maxlen; /* Maxmimum permitted length */
+ unsigned int maxlen; /* Maximum permitted length */
size_t sve_state_size;
diff --git a/arch/arm64/kvm/handle_exit.c b/arch/arm64/kvm/handle_exit.c
index aacfc55de44c..eb194696ef62 100644
--- a/arch/arm64/kvm/handle_exit.c
+++ b/arch/arm64/kvm/handle_exit.c
@@ -23,7 +23,7 @@
#include <kvm/arm_hypercalls.h>
#define CREATE_TRACE_POINTS
-#include "trace.h"
+#include "trace_handle_exit.h"
typedef int (*exit_handle_fn)(struct kvm_vcpu *, struct kvm_run *);
diff --git a/arch/arm64/kvm/hyp/Makefile b/arch/arm64/kvm/hyp/Makefile
index ea710f674cb6..8c9880783839 100644
--- a/arch/arm64/kvm/hyp/Makefile
+++ b/arch/arm64/kvm/hyp/Makefile
@@ -6,20 +6,10 @@
ccflags-y += -fno-stack-protector -DDISABLE_BRANCH_PROFILING \
$(DISABLE_STACKLEAK_PLUGIN)
-KVM=../../../../virt/kvm
+obj-$(CONFIG_KVM) += hyp.o
-obj-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/hyp/vgic-v3-sr.o
-obj-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/hyp/timer-sr.o
-obj-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/hyp/aarch32.o
-
-obj-$(CONFIG_KVM_ARM_HOST) += vgic-v2-cpuif-proxy.o
-obj-$(CONFIG_KVM_ARM_HOST) += sysreg-sr.o
-obj-$(CONFIG_KVM_ARM_HOST) += debug-sr.o
-obj-$(CONFIG_KVM_ARM_HOST) += entry.o
-obj-$(CONFIG_KVM_ARM_HOST) += switch.o
-obj-$(CONFIG_KVM_ARM_HOST) += fpsimd.o
-obj-$(CONFIG_KVM_ARM_HOST) += tlb.o
-obj-$(CONFIG_KVM_ARM_HOST) += hyp-entry.o
+hyp-y := vgic-v3-sr.o timer-sr.o aarch32.o vgic-v2-cpuif-proxy.o sysreg-sr.o \
+ debug-sr.o entry.o switch.o fpsimd.o tlb.o hyp-entry.o
# KVM code is run at a different exception code with a different map, so
# compiler instrumentation that inserts callbacks or checks into the code may
diff --git a/arch/arm64/kvm/hyp/aarch32.c b/arch/arm64/kvm/hyp/aarch32.c
new file mode 100644
index 000000000000..25c0e47d57cb
--- /dev/null
+++ b/arch/arm64/kvm/hyp/aarch32.c
@@ -0,0 +1,140 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Hyp portion of the (not much of an) Emulation layer for 32bit guests.
+ *
+ * Copyright (C) 2012,2013 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ *
+ * based on arch/arm/kvm/emulate.c
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ */
+
+#include <linux/kvm_host.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_hyp.h>
+
+/*
+ * stolen from arch/arm/kernel/opcodes.c
+ *
+ * condition code lookup table
+ * index into the table is test code: EQ, NE, ... LT, GT, AL, NV
+ *
+ * bit position in short is condition code: NZCV
+ */
+static const unsigned short cc_map[16] = {
+ 0xF0F0, /* EQ == Z set */
+ 0x0F0F, /* NE */
+ 0xCCCC, /* CS == C set */
+ 0x3333, /* CC */
+ 0xFF00, /* MI == N set */
+ 0x00FF, /* PL */
+ 0xAAAA, /* VS == V set */
+ 0x5555, /* VC */
+ 0x0C0C, /* HI == C set && Z clear */
+ 0xF3F3, /* LS == C clear || Z set */
+ 0xAA55, /* GE == (N==V) */
+ 0x55AA, /* LT == (N!=V) */
+ 0x0A05, /* GT == (!Z && (N==V)) */
+ 0xF5FA, /* LE == (Z || (N!=V)) */
+ 0xFFFF, /* AL always */
+ 0 /* NV */
+};
+
+/*
+ * Check if a trapped instruction should have been executed or not.
+ */
+bool __hyp_text kvm_condition_valid32(const struct kvm_vcpu *vcpu)
+{
+ unsigned long cpsr;
+ u32 cpsr_cond;
+ int cond;
+
+ /* Top two bits non-zero? Unconditional. */
+ if (kvm_vcpu_get_hsr(vcpu) >> 30)
+ return true;
+
+ /* Is condition field valid? */
+ cond = kvm_vcpu_get_condition(vcpu);
+ if (cond == 0xE)
+ return true;
+
+ cpsr = *vcpu_cpsr(vcpu);
+
+ if (cond < 0) {
+ /* This can happen in Thumb mode: examine IT state. */
+ unsigned long it;
+
+ it = ((cpsr >> 8) & 0xFC) | ((cpsr >> 25) & 0x3);
+
+ /* it == 0 => unconditional. */
+ if (it == 0)
+ return true;
+
+ /* The cond for this insn works out as the top 4 bits. */
+ cond = (it >> 4);
+ }
+
+ cpsr_cond = cpsr >> 28;
+
+ if (!((cc_map[cond] >> cpsr_cond) & 1))
+ return false;
+
+ return true;
+}
+
+/**
+ * adjust_itstate - adjust ITSTATE when emulating instructions in IT-block
+ * @vcpu: The VCPU pointer
+ *
+ * When exceptions occur while instructions are executed in Thumb IF-THEN
+ * blocks, the ITSTATE field of the CPSR is not advanced (updated), so we have
+ * to do this little bit of work manually. The fields map like this:
+ *
+ * IT[7:0] -> CPSR[26:25],CPSR[15:10]
+ */
+static void __hyp_text kvm_adjust_itstate(struct kvm_vcpu *vcpu)
+{
+ unsigned long itbits, cond;
+ unsigned long cpsr = *vcpu_cpsr(vcpu);
+ bool is_arm = !(cpsr & PSR_AA32_T_BIT);
+
+ if (is_arm || !(cpsr & PSR_AA32_IT_MASK))
+ return;
+
+ cond = (cpsr & 0xe000) >> 13;
+ itbits = (cpsr & 0x1c00) >> (10 - 2);
+ itbits |= (cpsr & (0x3 << 25)) >> 25;
+
+ /* Perform ITAdvance (see page A2-52 in ARM DDI 0406C) */
+ if ((itbits & 0x7) == 0)
+ itbits = cond = 0;
+ else
+ itbits = (itbits << 1) & 0x1f;
+
+ cpsr &= ~PSR_AA32_IT_MASK;
+ cpsr |= cond << 13;
+ cpsr |= (itbits & 0x1c) << (10 - 2);
+ cpsr |= (itbits & 0x3) << 25;
+ *vcpu_cpsr(vcpu) = cpsr;
+}
+
+/**
+ * kvm_skip_instr - skip a trapped instruction and proceed to the next
+ * @vcpu: The vcpu pointer
+ */
+void __hyp_text kvm_skip_instr32(struct kvm_vcpu *vcpu, bool is_wide_instr)
+{
+ u32 pc = *vcpu_pc(vcpu);
+ bool is_thumb;
+
+ is_thumb = !!(*vcpu_cpsr(vcpu) & PSR_AA32_T_BIT);
+ if (is_thumb && !is_wide_instr)
+ pc += 2;
+ else
+ pc += 4;
+
+ *vcpu_pc(vcpu) = pc;
+
+ kvm_adjust_itstate(vcpu);
+}
diff --git a/arch/arm64/kvm/hyp/switch.c b/arch/arm64/kvm/hyp/switch.c
index 1336e6f0acdf..676b6585e5ae 100644
--- a/arch/arm64/kvm/hyp/switch.c
+++ b/arch/arm64/kvm/hyp/switch.c
@@ -270,8 +270,8 @@ static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
{
if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
- __vgic_v3_save_state(vcpu);
- __vgic_v3_deactivate_traps(vcpu);
+ __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
+ __vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
}
}
@@ -279,8 +279,8 @@ static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
{
if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
- __vgic_v3_activate_traps(vcpu);
- __vgic_v3_restore_state(vcpu);
+ __vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
+ __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
}
}
diff --git a/arch/arm64/kvm/hyp/timer-sr.c b/arch/arm64/kvm/hyp/timer-sr.c
new file mode 100644
index 000000000000..fb5c0be33223
--- /dev/null
+++ b/arch/arm64/kvm/hyp/timer-sr.c
@@ -0,0 +1,48 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012-2015 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <clocksource/arm_arch_timer.h>
+#include <linux/compiler.h>
+#include <linux/kvm_host.h>
+
+#include <asm/kvm_hyp.h>
+
+void __hyp_text __kvm_timer_set_cntvoff(u64 cntvoff)
+{
+ write_sysreg(cntvoff, cntvoff_el2);
+}
+
+/*
+ * Should only be called on non-VHE systems.
+ * VHE systems use EL2 timers and configure EL1 timers in kvm_timer_init_vhe().
+ */
+void __hyp_text __timer_disable_traps(struct kvm_vcpu *vcpu)
+{
+ u64 val;
+
+ /* Allow physical timer/counter access for the host */
+ val = read_sysreg(cnthctl_el2);
+ val |= CNTHCTL_EL1PCTEN | CNTHCTL_EL1PCEN;
+ write_sysreg(val, cnthctl_el2);
+}
+
+/*
+ * Should only be called on non-VHE systems.
+ * VHE systems use EL2 timers and configure EL1 timers in kvm_timer_init_vhe().
+ */
+void __hyp_text __timer_enable_traps(struct kvm_vcpu *vcpu)
+{
+ u64 val;
+
+ /*
+ * Disallow physical timer access for the guest
+ * Physical counter access is allowed
+ */
+ val = read_sysreg(cnthctl_el2);
+ val &= ~CNTHCTL_EL1PCEN;
+ val |= CNTHCTL_EL1PCTEN;
+ write_sysreg(val, cnthctl_el2);
+}
diff --git a/arch/arm64/kvm/hyp/vgic-v3-sr.c b/arch/arm64/kvm/hyp/vgic-v3-sr.c
new file mode 100644
index 000000000000..10ed539835c1
--- /dev/null
+++ b/arch/arm64/kvm/hyp/vgic-v3-sr.c
@@ -0,0 +1,1113 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012-2015 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <linux/compiler.h>
+#include <linux/irqchip/arm-gic-v3.h>
+#include <linux/kvm_host.h>
+
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+
+#define vtr_to_max_lr_idx(v) ((v) & 0xf)
+#define vtr_to_nr_pre_bits(v) ((((u32)(v) >> 26) & 7) + 1)
+#define vtr_to_nr_apr_regs(v) (1 << (vtr_to_nr_pre_bits(v) - 5))
+
+static u64 __hyp_text __gic_v3_get_lr(unsigned int lr)
+{
+ switch (lr & 0xf) {
+ case 0:
+ return read_gicreg(ICH_LR0_EL2);
+ case 1:
+ return read_gicreg(ICH_LR1_EL2);
+ case 2:
+ return read_gicreg(ICH_LR2_EL2);
+ case 3:
+ return read_gicreg(ICH_LR3_EL2);
+ case 4:
+ return read_gicreg(ICH_LR4_EL2);
+ case 5:
+ return read_gicreg(ICH_LR5_EL2);
+ case 6:
+ return read_gicreg(ICH_LR6_EL2);
+ case 7:
+ return read_gicreg(ICH_LR7_EL2);
+ case 8:
+ return read_gicreg(ICH_LR8_EL2);
+ case 9:
+ return read_gicreg(ICH_LR9_EL2);
+ case 10:
+ return read_gicreg(ICH_LR10_EL2);
+ case 11:
+ return read_gicreg(ICH_LR11_EL2);
+ case 12:
+ return read_gicreg(ICH_LR12_EL2);
+ case 13:
+ return read_gicreg(ICH_LR13_EL2);
+ case 14:
+ return read_gicreg(ICH_LR14_EL2);
+ case 15:
+ return read_gicreg(ICH_LR15_EL2);
+ }
+
+ unreachable();
+}
+
+static void __hyp_text __gic_v3_set_lr(u64 val, int lr)
+{
+ switch (lr & 0xf) {
+ case 0:
+ write_gicreg(val, ICH_LR0_EL2);
+ break;
+ case 1:
+ write_gicreg(val, ICH_LR1_EL2);
+ break;
+ case 2:
+ write_gicreg(val, ICH_LR2_EL2);
+ break;
+ case 3:
+ write_gicreg(val, ICH_LR3_EL2);
+ break;
+ case 4:
+ write_gicreg(val, ICH_LR4_EL2);
+ break;
+ case 5:
+ write_gicreg(val, ICH_LR5_EL2);
+ break;
+ case 6:
+ write_gicreg(val, ICH_LR6_EL2);
+ break;
+ case 7:
+ write_gicreg(val, ICH_LR7_EL2);
+ break;
+ case 8:
+ write_gicreg(val, ICH_LR8_EL2);
+ break;
+ case 9:
+ write_gicreg(val, ICH_LR9_EL2);
+ break;
+ case 10:
+ write_gicreg(val, ICH_LR10_EL2);
+ break;
+ case 11:
+ write_gicreg(val, ICH_LR11_EL2);
+ break;
+ case 12:
+ write_gicreg(val, ICH_LR12_EL2);
+ break;
+ case 13:
+ write_gicreg(val, ICH_LR13_EL2);
+ break;
+ case 14:
+ write_gicreg(val, ICH_LR14_EL2);
+ break;
+ case 15:
+ write_gicreg(val, ICH_LR15_EL2);
+ break;
+ }
+}
+
+static void __hyp_text __vgic_v3_write_ap0rn(u32 val, int n)
+{
+ switch (n) {
+ case 0:
+ write_gicreg(val, ICH_AP0R0_EL2);
+ break;
+ case 1:
+ write_gicreg(val, ICH_AP0R1_EL2);
+ break;
+ case 2:
+ write_gicreg(val, ICH_AP0R2_EL2);
+ break;
+ case 3:
+ write_gicreg(val, ICH_AP0R3_EL2);
+ break;
+ }
+}
+
+static void __hyp_text __vgic_v3_write_ap1rn(u32 val, int n)
+{
+ switch (n) {
+ case 0:
+ write_gicreg(val, ICH_AP1R0_EL2);
+ break;
+ case 1:
+ write_gicreg(val, ICH_AP1R1_EL2);
+ break;
+ case 2:
+ write_gicreg(val, ICH_AP1R2_EL2);
+ break;
+ case 3:
+ write_gicreg(val, ICH_AP1R3_EL2);
+ break;
+ }
+}
+
+static u32 __hyp_text __vgic_v3_read_ap0rn(int n)
+{
+ u32 val;
+
+ switch (n) {
+ case 0:
+ val = read_gicreg(ICH_AP0R0_EL2);
+ break;
+ case 1:
+ val = read_gicreg(ICH_AP0R1_EL2);
+ break;
+ case 2:
+ val = read_gicreg(ICH_AP0R2_EL2);
+ break;
+ case 3:
+ val = read_gicreg(ICH_AP0R3_EL2);
+ break;
+ default:
+ unreachable();
+ }
+
+ return val;
+}
+
+static u32 __hyp_text __vgic_v3_read_ap1rn(int n)
+{
+ u32 val;
+
+ switch (n) {
+ case 0:
+ val = read_gicreg(ICH_AP1R0_EL2);
+ break;
+ case 1:
+ val = read_gicreg(ICH_AP1R1_EL2);
+ break;
+ case 2:
+ val = read_gicreg(ICH_AP1R2_EL2);
+ break;
+ case 3:
+ val = read_gicreg(ICH_AP1R3_EL2);
+ break;
+ default:
+ unreachable();
+ }
+
+ return val;
+}
+
+void __hyp_text __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if)
+{
+ u64 used_lrs = cpu_if->used_lrs;
+
+ /*
+ * Make sure stores to the GIC via the memory mapped interface
+ * are now visible to the system register interface when reading the
+ * LRs, and when reading back the VMCR on non-VHE systems.
+ */
+ if (used_lrs || !has_vhe()) {
+ if (!cpu_if->vgic_sre) {
+ dsb(sy);
+ isb();
+ }
+ }
+
+ if (used_lrs || cpu_if->its_vpe.its_vm) {
+ int i;
+ u32 elrsr;
+
+ elrsr = read_gicreg(ICH_ELRSR_EL2);
+
+ write_gicreg(cpu_if->vgic_hcr & ~ICH_HCR_EN, ICH_HCR_EL2);
+
+ for (i = 0; i < used_lrs; i++) {
+ if (elrsr & (1 << i))
+ cpu_if->vgic_lr[i] &= ~ICH_LR_STATE;
+ else
+ cpu_if->vgic_lr[i] = __gic_v3_get_lr(i);
+
+ __gic_v3_set_lr(0, i);
+ }
+ }
+}
+
+void __hyp_text __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if)
+{
+ u64 used_lrs = cpu_if->used_lrs;
+ int i;
+
+ if (used_lrs || cpu_if->its_vpe.its_vm) {
+ write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
+
+ for (i = 0; i < used_lrs; i++)
+ __gic_v3_set_lr(cpu_if->vgic_lr[i], i);
+ }
+
+ /*
+ * Ensure that writes to the LRs, and on non-VHE systems ensure that
+ * the write to the VMCR in __vgic_v3_activate_traps(), will have
+ * reached the (re)distributors. This ensure the guest will read the
+ * correct values from the memory-mapped interface.
+ */
+ if (used_lrs || !has_vhe()) {
+ if (!cpu_if->vgic_sre) {
+ isb();
+ dsb(sy);
+ }
+ }
+}
+
+void __hyp_text __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if)
+{
+ /*
+ * VFIQEn is RES1 if ICC_SRE_EL1.SRE is 1. This causes a
+ * Group0 interrupt (as generated in GICv2 mode) to be
+ * delivered as a FIQ to the guest, with potentially fatal
+ * consequences. So we must make sure that ICC_SRE_EL1 has
+ * been actually programmed with the value we want before
+ * starting to mess with the rest of the GIC, and VMCR_EL2 in
+ * particular. This logic must be called before
+ * __vgic_v3_restore_state().
+ */
+ if (!cpu_if->vgic_sre) {
+ write_gicreg(0, ICC_SRE_EL1);
+ isb();
+ write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2);
+
+
+ if (has_vhe()) {
+ /*
+ * Ensure that the write to the VMCR will have reached
+ * the (re)distributors. This ensure the guest will
+ * read the correct values from the memory-mapped
+ * interface.
+ */
+ isb();
+ dsb(sy);
+ }
+ }
+
+ /*
+ * Prevent the guest from touching the GIC system registers if
+ * SRE isn't enabled for GICv3 emulation.
+ */
+ write_gicreg(read_gicreg(ICC_SRE_EL2) & ~ICC_SRE_EL2_ENABLE,
+ ICC_SRE_EL2);
+
+ /*
+ * If we need to trap system registers, we must write
+ * ICH_HCR_EL2 anyway, even if no interrupts are being
+ * injected,
+ */
+ if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
+ cpu_if->its_vpe.its_vm)
+ write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
+}
+
+void __hyp_text __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if)
+{
+ u64 val;
+
+ if (!cpu_if->vgic_sre) {
+ cpu_if->vgic_vmcr = read_gicreg(ICH_VMCR_EL2);
+ }
+
+ val = read_gicreg(ICC_SRE_EL2);
+ write_gicreg(val | ICC_SRE_EL2_ENABLE, ICC_SRE_EL2);
+
+ if (!cpu_if->vgic_sre) {
+ /* Make sure ENABLE is set at EL2 before setting SRE at EL1 */
+ isb();
+ write_gicreg(1, ICC_SRE_EL1);
+ }
+
+ /*
+ * If we were trapping system registers, we enabled the VGIC even if
+ * no interrupts were being injected, and we disable it again here.
+ */
+ if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
+ cpu_if->its_vpe.its_vm)
+ write_gicreg(0, ICH_HCR_EL2);
+}
+
+void __hyp_text __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if)
+{
+ u64 val;
+ u32 nr_pre_bits;
+
+ val = read_gicreg(ICH_VTR_EL2);
+ nr_pre_bits = vtr_to_nr_pre_bits(val);
+
+ switch (nr_pre_bits) {
+ case 7:
+ cpu_if->vgic_ap0r[3] = __vgic_v3_read_ap0rn(3);
+ cpu_if->vgic_ap0r[2] = __vgic_v3_read_ap0rn(2);
+ /* Fall through */
+ case 6:
+ cpu_if->vgic_ap0r[1] = __vgic_v3_read_ap0rn(1);
+ /* Fall through */
+ default:
+ cpu_if->vgic_ap0r[0] = __vgic_v3_read_ap0rn(0);
+ }
+
+ switch (nr_pre_bits) {
+ case 7:
+ cpu_if->vgic_ap1r[3] = __vgic_v3_read_ap1rn(3);
+ cpu_if->vgic_ap1r[2] = __vgic_v3_read_ap1rn(2);
+ /* Fall through */
+ case 6:
+ cpu_if->vgic_ap1r[1] = __vgic_v3_read_ap1rn(1);
+ /* Fall through */
+ default:
+ cpu_if->vgic_ap1r[0] = __vgic_v3_read_ap1rn(0);
+ }
+}
+
+void __hyp_text __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if)
+{
+ u64 val;
+ u32 nr_pre_bits;
+
+ val = read_gicreg(ICH_VTR_EL2);
+ nr_pre_bits = vtr_to_nr_pre_bits(val);
+
+ switch (nr_pre_bits) {
+ case 7:
+ __vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[3], 3);
+ __vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[2], 2);
+ /* Fall through */
+ case 6:
+ __vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[1], 1);
+ /* Fall through */
+ default:
+ __vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[0], 0);
+ }
+
+ switch (nr_pre_bits) {
+ case 7:
+ __vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[3], 3);
+ __vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[2], 2);
+ /* Fall through */
+ case 6:
+ __vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[1], 1);
+ /* Fall through */
+ default:
+ __vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[0], 0);
+ }
+}
+
+void __hyp_text __vgic_v3_init_lrs(void)
+{
+ int max_lr_idx = vtr_to_max_lr_idx(read_gicreg(ICH_VTR_EL2));
+ int i;
+
+ for (i = 0; i <= max_lr_idx; i++)
+ __gic_v3_set_lr(0, i);
+}
+
+u64 __hyp_text __vgic_v3_get_ich_vtr_el2(void)
+{
+ return read_gicreg(ICH_VTR_EL2);
+}
+
+u64 __hyp_text __vgic_v3_read_vmcr(void)
+{
+ return read_gicreg(ICH_VMCR_EL2);
+}
+
+void __hyp_text __vgic_v3_write_vmcr(u32 vmcr)
+{
+ write_gicreg(vmcr, ICH_VMCR_EL2);
+}
+
+static int __hyp_text __vgic_v3_bpr_min(void)
+{
+ /* See Pseudocode for VPriorityGroup */
+ return 8 - vtr_to_nr_pre_bits(read_gicreg(ICH_VTR_EL2));
+}
+
+static int __hyp_text __vgic_v3_get_group(struct kvm_vcpu *vcpu)
+{
+ u32 esr = kvm_vcpu_get_hsr(vcpu);
+ u8 crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
+
+ return crm != 8;
+}
+
+#define GICv3_IDLE_PRIORITY 0xff
+
+static int __hyp_text __vgic_v3_highest_priority_lr(struct kvm_vcpu *vcpu,
+ u32 vmcr,
+ u64 *lr_val)
+{
+ unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
+ u8 priority = GICv3_IDLE_PRIORITY;
+ int i, lr = -1;
+
+ for (i = 0; i < used_lrs; i++) {
+ u64 val = __gic_v3_get_lr(i);
+ u8 lr_prio = (val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
+
+ /* Not pending in the state? */
+ if ((val & ICH_LR_STATE) != ICH_LR_PENDING_BIT)
+ continue;
+
+ /* Group-0 interrupt, but Group-0 disabled? */
+ if (!(val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG0_MASK))
+ continue;
+
+ /* Group-1 interrupt, but Group-1 disabled? */
+ if ((val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG1_MASK))
+ continue;
+
+ /* Not the highest priority? */
+ if (lr_prio >= priority)
+ continue;
+
+ /* This is a candidate */
+ priority = lr_prio;
+ *lr_val = val;
+ lr = i;
+ }
+
+ if (lr == -1)
+ *lr_val = ICC_IAR1_EL1_SPURIOUS;
+
+ return lr;
+}
+
+static int __hyp_text __vgic_v3_find_active_lr(struct kvm_vcpu *vcpu,
+ int intid, u64 *lr_val)
+{
+ unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
+ int i;
+
+ for (i = 0; i < used_lrs; i++) {
+ u64 val = __gic_v3_get_lr(i);
+
+ if ((val & ICH_LR_VIRTUAL_ID_MASK) == intid &&
+ (val & ICH_LR_ACTIVE_BIT)) {
+ *lr_val = val;
+ return i;
+ }
+ }
+
+ *lr_val = ICC_IAR1_EL1_SPURIOUS;
+ return -1;
+}
+
+static int __hyp_text __vgic_v3_get_highest_active_priority(void)
+{
+ u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
+ u32 hap = 0;
+ int i;
+
+ for (i = 0; i < nr_apr_regs; i++) {
+ u32 val;
+
+ /*
+ * The ICH_AP0Rn_EL2 and ICH_AP1Rn_EL2 registers
+ * contain the active priority levels for this VCPU
+ * for the maximum number of supported priority
+ * levels, and we return the full priority level only
+ * if the BPR is programmed to its minimum, otherwise
+ * we return a combination of the priority level and
+ * subpriority, as determined by the setting of the
+ * BPR, but without the full subpriority.
+ */
+ val = __vgic_v3_read_ap0rn(i);
+ val |= __vgic_v3_read_ap1rn(i);
+ if (!val) {
+ hap += 32;
+ continue;
+ }
+
+ return (hap + __ffs(val)) << __vgic_v3_bpr_min();
+ }
+
+ return GICv3_IDLE_PRIORITY;
+}
+
+static unsigned int __hyp_text __vgic_v3_get_bpr0(u32 vmcr)
+{
+ return (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
+}
+
+static unsigned int __hyp_text __vgic_v3_get_bpr1(u32 vmcr)
+{
+ unsigned int bpr;
+
+ if (vmcr & ICH_VMCR_CBPR_MASK) {
+ bpr = __vgic_v3_get_bpr0(vmcr);
+ if (bpr < 7)
+ bpr++;
+ } else {
+ bpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
+ }
+
+ return bpr;
+}
+
+/*
+ * Convert a priority to a preemption level, taking the relevant BPR
+ * into account by zeroing the sub-priority bits.
+ */
+static u8 __hyp_text __vgic_v3_pri_to_pre(u8 pri, u32 vmcr, int grp)
+{
+ unsigned int bpr;
+
+ if (!grp)
+ bpr = __vgic_v3_get_bpr0(vmcr) + 1;
+ else
+ bpr = __vgic_v3_get_bpr1(vmcr);
+
+ return pri & (GENMASK(7, 0) << bpr);
+}
+
+/*
+ * The priority value is independent of any of the BPR values, so we
+ * normalize it using the minimal BPR value. This guarantees that no
+ * matter what the guest does with its BPR, we can always set/get the
+ * same value of a priority.
+ */
+static void __hyp_text __vgic_v3_set_active_priority(u8 pri, u32 vmcr, int grp)
+{
+ u8 pre, ap;
+ u32 val;
+ int apr;
+
+ pre = __vgic_v3_pri_to_pre(pri, vmcr, grp);
+ ap = pre >> __vgic_v3_bpr_min();
+ apr = ap / 32;
+
+ if (!grp) {
+ val = __vgic_v3_read_ap0rn(apr);
+ __vgic_v3_write_ap0rn(val | BIT(ap % 32), apr);
+ } else {
+ val = __vgic_v3_read_ap1rn(apr);
+ __vgic_v3_write_ap1rn(val | BIT(ap % 32), apr);
+ }
+}
+
+static int __hyp_text __vgic_v3_clear_highest_active_priority(void)
+{
+ u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
+ u32 hap = 0;
+ int i;
+
+ for (i = 0; i < nr_apr_regs; i++) {
+ u32 ap0, ap1;
+ int c0, c1;
+
+ ap0 = __vgic_v3_read_ap0rn(i);
+ ap1 = __vgic_v3_read_ap1rn(i);
+ if (!ap0 && !ap1) {
+ hap += 32;
+ continue;
+ }
+
+ c0 = ap0 ? __ffs(ap0) : 32;
+ c1 = ap1 ? __ffs(ap1) : 32;
+
+ /* Always clear the LSB, which is the highest priority */
+ if (c0 < c1) {
+ ap0 &= ~BIT(c0);
+ __vgic_v3_write_ap0rn(ap0, i);
+ hap += c0;
+ } else {
+ ap1 &= ~BIT(c1);
+ __vgic_v3_write_ap1rn(ap1, i);
+ hap += c1;
+ }
+
+ /* Rescale to 8 bits of priority */
+ return hap << __vgic_v3_bpr_min();
+ }
+
+ return GICv3_IDLE_PRIORITY;
+}
+
+static void __hyp_text __vgic_v3_read_iar(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ u64 lr_val;
+ u8 lr_prio, pmr;
+ int lr, grp;
+
+ grp = __vgic_v3_get_group(vcpu);
+
+ lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
+ if (lr < 0)
+ goto spurious;
+
+ if (grp != !!(lr_val & ICH_LR_GROUP))
+ goto spurious;
+
+ pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
+ lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
+ if (pmr <= lr_prio)
+ goto spurious;
+
+ if (__vgic_v3_get_highest_active_priority() <= __vgic_v3_pri_to_pre(lr_prio, vmcr, grp))
+ goto spurious;
+
+ lr_val &= ~ICH_LR_STATE;
+ /* No active state for LPIs */
+ if ((lr_val & ICH_LR_VIRTUAL_ID_MASK) <= VGIC_MAX_SPI)
+ lr_val |= ICH_LR_ACTIVE_BIT;
+ __gic_v3_set_lr(lr_val, lr);
+ __vgic_v3_set_active_priority(lr_prio, vmcr, grp);
+ vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
+ return;
+
+spurious:
+ vcpu_set_reg(vcpu, rt, ICC_IAR1_EL1_SPURIOUS);
+}
+
+static void __hyp_text __vgic_v3_clear_active_lr(int lr, u64 lr_val)
+{
+ lr_val &= ~ICH_LR_ACTIVE_BIT;
+ if (lr_val & ICH_LR_HW) {
+ u32 pid;
+
+ pid = (lr_val & ICH_LR_PHYS_ID_MASK) >> ICH_LR_PHYS_ID_SHIFT;
+ gic_write_dir(pid);
+ }
+
+ __gic_v3_set_lr(lr_val, lr);
+}
+
+static void __hyp_text __vgic_v3_bump_eoicount(void)
+{
+ u32 hcr;
+
+ hcr = read_gicreg(ICH_HCR_EL2);
+ hcr += 1 << ICH_HCR_EOIcount_SHIFT;
+ write_gicreg(hcr, ICH_HCR_EL2);
+}
+
+static void __hyp_text __vgic_v3_write_dir(struct kvm_vcpu *vcpu,
+ u32 vmcr, int rt)
+{
+ u32 vid = vcpu_get_reg(vcpu, rt);
+ u64 lr_val;
+ int lr;
+
+ /* EOImode == 0, nothing to be done here */
+ if (!(vmcr & ICH_VMCR_EOIM_MASK))
+ return;
+
+ /* No deactivate to be performed on an LPI */
+ if (vid >= VGIC_MIN_LPI)
+ return;
+
+ lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
+ if (lr == -1) {
+ __vgic_v3_bump_eoicount();
+ return;
+ }
+
+ __vgic_v3_clear_active_lr(lr, lr_val);
+}
+
+static void __hyp_text __vgic_v3_write_eoir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ u32 vid = vcpu_get_reg(vcpu, rt);
+ u64 lr_val;
+ u8 lr_prio, act_prio;
+ int lr, grp;
+
+ grp = __vgic_v3_get_group(vcpu);
+
+ /* Drop priority in any case */
+ act_prio = __vgic_v3_clear_highest_active_priority();
+
+ /* If EOIing an LPI, no deactivate to be performed */
+ if (vid >= VGIC_MIN_LPI)
+ return;
+
+ /* EOImode == 1, nothing to be done here */
+ if (vmcr & ICH_VMCR_EOIM_MASK)
+ return;
+
+ lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
+ if (lr == -1) {
+ __vgic_v3_bump_eoicount();
+ return;
+ }
+
+ lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
+
+ /* If priorities or group do not match, the guest has fscked-up. */
+ if (grp != !!(lr_val & ICH_LR_GROUP) ||
+ __vgic_v3_pri_to_pre(lr_prio, vmcr, grp) != act_prio)
+ return;
+
+ /* Let's now perform the deactivation */
+ __vgic_v3_clear_active_lr(lr, lr_val);
+}
+
+static void __hyp_text __vgic_v3_read_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG0_MASK));
+}
+
+static void __hyp_text __vgic_v3_read_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG1_MASK));
+}
+
+static void __hyp_text __vgic_v3_write_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ u64 val = vcpu_get_reg(vcpu, rt);
+
+ if (val & 1)
+ vmcr |= ICH_VMCR_ENG0_MASK;
+ else
+ vmcr &= ~ICH_VMCR_ENG0_MASK;
+
+ __vgic_v3_write_vmcr(vmcr);
+}
+
+static void __hyp_text __vgic_v3_write_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ u64 val = vcpu_get_reg(vcpu, rt);
+
+ if (val & 1)
+ vmcr |= ICH_VMCR_ENG1_MASK;
+ else
+ vmcr &= ~ICH_VMCR_ENG1_MASK;
+
+ __vgic_v3_write_vmcr(vmcr);
+}
+
+static void __hyp_text __vgic_v3_read_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr0(vmcr));
+}
+
+static void __hyp_text __vgic_v3_read_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr1(vmcr));
+}
+
+static void __hyp_text __vgic_v3_write_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ u64 val = vcpu_get_reg(vcpu, rt);
+ u8 bpr_min = __vgic_v3_bpr_min() - 1;
+
+ /* Enforce BPR limiting */
+ if (val < bpr_min)
+ val = bpr_min;
+
+ val <<= ICH_VMCR_BPR0_SHIFT;
+ val &= ICH_VMCR_BPR0_MASK;
+ vmcr &= ~ICH_VMCR_BPR0_MASK;
+ vmcr |= val;
+
+ __vgic_v3_write_vmcr(vmcr);
+}
+
+static void __hyp_text __vgic_v3_write_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ u64 val = vcpu_get_reg(vcpu, rt);
+ u8 bpr_min = __vgic_v3_bpr_min();
+
+ if (vmcr & ICH_VMCR_CBPR_MASK)
+ return;
+
+ /* Enforce BPR limiting */
+ if (val < bpr_min)
+ val = bpr_min;
+
+ val <<= ICH_VMCR_BPR1_SHIFT;
+ val &= ICH_VMCR_BPR1_MASK;
+ vmcr &= ~ICH_VMCR_BPR1_MASK;
+ vmcr |= val;
+
+ __vgic_v3_write_vmcr(vmcr);
+}
+
+static void __hyp_text __vgic_v3_read_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
+{
+ u32 val;
+
+ if (!__vgic_v3_get_group(vcpu))
+ val = __vgic_v3_read_ap0rn(n);
+ else
+ val = __vgic_v3_read_ap1rn(n);
+
+ vcpu_set_reg(vcpu, rt, val);
+}
+
+static void __hyp_text __vgic_v3_write_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
+{
+ u32 val = vcpu_get_reg(vcpu, rt);
+
+ if (!__vgic_v3_get_group(vcpu))
+ __vgic_v3_write_ap0rn(val, n);
+ else
+ __vgic_v3_write_ap1rn(val, n);
+}
+
+static void __hyp_text __vgic_v3_read_apxr0(struct kvm_vcpu *vcpu,
+ u32 vmcr, int rt)
+{
+ __vgic_v3_read_apxrn(vcpu, rt, 0);
+}
+
+static void __hyp_text __vgic_v3_read_apxr1(struct kvm_vcpu *vcpu,
+ u32 vmcr, int rt)
+{
+ __vgic_v3_read_apxrn(vcpu, rt, 1);
+}
+
+static void __hyp_text __vgic_v3_read_apxr2(struct kvm_vcpu *vcpu,
+ u32 vmcr, int rt)
+{
+ __vgic_v3_read_apxrn(vcpu, rt, 2);
+}
+
+static void __hyp_text __vgic_v3_read_apxr3(struct kvm_vcpu *vcpu,
+ u32 vmcr, int rt)
+{
+ __vgic_v3_read_apxrn(vcpu, rt, 3);
+}
+
+static void __hyp_text __vgic_v3_write_apxr0(struct kvm_vcpu *vcpu,
+ u32 vmcr, int rt)
+{
+ __vgic_v3_write_apxrn(vcpu, rt, 0);
+}
+
+static void __hyp_text __vgic_v3_write_apxr1(struct kvm_vcpu *vcpu,
+ u32 vmcr, int rt)
+{
+ __vgic_v3_write_apxrn(vcpu, rt, 1);
+}
+
+static void __hyp_text __vgic_v3_write_apxr2(struct kvm_vcpu *vcpu,
+ u32 vmcr, int rt)
+{
+ __vgic_v3_write_apxrn(vcpu, rt, 2);
+}
+
+static void __hyp_text __vgic_v3_write_apxr3(struct kvm_vcpu *vcpu,
+ u32 vmcr, int rt)
+{
+ __vgic_v3_write_apxrn(vcpu, rt, 3);
+}
+
+static void __hyp_text __vgic_v3_read_hppir(struct kvm_vcpu *vcpu,
+ u32 vmcr, int rt)
+{
+ u64 lr_val;
+ int lr, lr_grp, grp;
+
+ grp = __vgic_v3_get_group(vcpu);
+
+ lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
+ if (lr == -1)
+ goto spurious;
+
+ lr_grp = !!(lr_val & ICH_LR_GROUP);
+ if (lr_grp != grp)
+ lr_val = ICC_IAR1_EL1_SPURIOUS;
+
+spurious:
+ vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
+}
+
+static void __hyp_text __vgic_v3_read_pmr(struct kvm_vcpu *vcpu,
+ u32 vmcr, int rt)
+{
+ vmcr &= ICH_VMCR_PMR_MASK;
+ vmcr >>= ICH_VMCR_PMR_SHIFT;
+ vcpu_set_reg(vcpu, rt, vmcr);
+}
+
+static void __hyp_text __vgic_v3_write_pmr(struct kvm_vcpu *vcpu,
+ u32 vmcr, int rt)
+{
+ u32 val = vcpu_get_reg(vcpu, rt);
+
+ val <<= ICH_VMCR_PMR_SHIFT;
+ val &= ICH_VMCR_PMR_MASK;
+ vmcr &= ~ICH_VMCR_PMR_MASK;
+ vmcr |= val;
+
+ write_gicreg(vmcr, ICH_VMCR_EL2);
+}
+
+static void __hyp_text __vgic_v3_read_rpr(struct kvm_vcpu *vcpu,
+ u32 vmcr, int rt)
+{
+ u32 val = __vgic_v3_get_highest_active_priority();
+ vcpu_set_reg(vcpu, rt, val);
+}
+
+static void __hyp_text __vgic_v3_read_ctlr(struct kvm_vcpu *vcpu,
+ u32 vmcr, int rt)
+{
+ u32 vtr, val;
+
+ vtr = read_gicreg(ICH_VTR_EL2);
+ /* PRIbits */
+ val = ((vtr >> 29) & 7) << ICC_CTLR_EL1_PRI_BITS_SHIFT;
+ /* IDbits */
+ val |= ((vtr >> 23) & 7) << ICC_CTLR_EL1_ID_BITS_SHIFT;
+ /* SEIS */
+ val |= ((vtr >> 22) & 1) << ICC_CTLR_EL1_SEIS_SHIFT;
+ /* A3V */
+ val |= ((vtr >> 21) & 1) << ICC_CTLR_EL1_A3V_SHIFT;
+ /* EOImode */
+ val |= ((vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT) << ICC_CTLR_EL1_EOImode_SHIFT;
+ /* CBPR */
+ val |= (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
+
+ vcpu_set_reg(vcpu, rt, val);
+}
+
+static void __hyp_text __vgic_v3_write_ctlr(struct kvm_vcpu *vcpu,
+ u32 vmcr, int rt)
+{
+ u32 val = vcpu_get_reg(vcpu, rt);
+
+ if (val & ICC_CTLR_EL1_CBPR_MASK)
+ vmcr |= ICH_VMCR_CBPR_MASK;
+ else
+ vmcr &= ~ICH_VMCR_CBPR_MASK;
+
+ if (val & ICC_CTLR_EL1_EOImode_MASK)
+ vmcr |= ICH_VMCR_EOIM_MASK;
+ else
+ vmcr &= ~ICH_VMCR_EOIM_MASK;
+
+ write_gicreg(vmcr, ICH_VMCR_EL2);
+}
+
+int __hyp_text __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu)
+{
+ int rt;
+ u32 esr;
+ u32 vmcr;
+ void (*fn)(struct kvm_vcpu *, u32, int);
+ bool is_read;
+ u32 sysreg;
+
+ esr = kvm_vcpu_get_hsr(vcpu);
+ if (vcpu_mode_is_32bit(vcpu)) {
+ if (!kvm_condition_valid(vcpu)) {
+ __kvm_skip_instr(vcpu);
+ return 1;
+ }
+
+ sysreg = esr_cp15_to_sysreg(esr);
+ } else {
+ sysreg = esr_sys64_to_sysreg(esr);
+ }
+
+ is_read = (esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ;
+
+ switch (sysreg) {
+ case SYS_ICC_IAR0_EL1:
+ case SYS_ICC_IAR1_EL1:
+ if (unlikely(!is_read))
+ return 0;
+ fn = __vgic_v3_read_iar;
+ break;
+ case SYS_ICC_EOIR0_EL1:
+ case SYS_ICC_EOIR1_EL1:
+ if (unlikely(is_read))
+ return 0;
+ fn = __vgic_v3_write_eoir;
+ break;
+ case SYS_ICC_IGRPEN1_EL1:
+ if (is_read)
+ fn = __vgic_v3_read_igrpen1;
+ else
+ fn = __vgic_v3_write_igrpen1;
+ break;
+ case SYS_ICC_BPR1_EL1:
+ if (is_read)
+ fn = __vgic_v3_read_bpr1;
+ else
+ fn = __vgic_v3_write_bpr1;
+ break;
+ case SYS_ICC_AP0Rn_EL1(0):
+ case SYS_ICC_AP1Rn_EL1(0):
+ if (is_read)
+ fn = __vgic_v3_read_apxr0;
+ else
+ fn = __vgic_v3_write_apxr0;
+ break;
+ case SYS_ICC_AP0Rn_EL1(1):
+ case SYS_ICC_AP1Rn_EL1(1):
+ if (is_read)
+ fn = __vgic_v3_read_apxr1;
+ else
+ fn = __vgic_v3_write_apxr1;
+ break;
+ case SYS_ICC_AP0Rn_EL1(2):
+ case SYS_ICC_AP1Rn_EL1(2):
+ if (is_read)
+ fn = __vgic_v3_read_apxr2;
+ else
+ fn = __vgic_v3_write_apxr2;
+ break;
+ case SYS_ICC_AP0Rn_EL1(3):
+ case SYS_ICC_AP1Rn_EL1(3):
+ if (is_read)
+ fn = __vgic_v3_read_apxr3;
+ else
+ fn = __vgic_v3_write_apxr3;
+ break;
+ case SYS_ICC_HPPIR0_EL1:
+ case SYS_ICC_HPPIR1_EL1:
+ if (unlikely(!is_read))
+ return 0;
+ fn = __vgic_v3_read_hppir;
+ break;
+ case SYS_ICC_IGRPEN0_EL1:
+ if (is_read)
+ fn = __vgic_v3_read_igrpen0;
+ else
+ fn = __vgic_v3_write_igrpen0;
+ break;
+ case SYS_ICC_BPR0_EL1:
+ if (is_read)
+ fn = __vgic_v3_read_bpr0;
+ else
+ fn = __vgic_v3_write_bpr0;
+ break;
+ case SYS_ICC_DIR_EL1:
+ if (unlikely(is_read))
+ return 0;
+ fn = __vgic_v3_write_dir;
+ break;
+ case SYS_ICC_RPR_EL1:
+ if (unlikely(!is_read))
+ return 0;
+ fn = __vgic_v3_read_rpr;
+ break;
+ case SYS_ICC_CTLR_EL1:
+ if (is_read)
+ fn = __vgic_v3_read_ctlr;
+ else
+ fn = __vgic_v3_write_ctlr;
+ break;
+ case SYS_ICC_PMR_EL1:
+ if (is_read)
+ fn = __vgic_v3_read_pmr;
+ else
+ fn = __vgic_v3_write_pmr;
+ break;
+ default:
+ return 0;
+ }
+
+ vmcr = __vgic_v3_read_vmcr();
+ rt = kvm_vcpu_sys_get_rt(vcpu);
+ fn(vcpu, vmcr, rt);
+
+ __kvm_skip_instr(vcpu);
+
+ return 1;
+}
diff --git a/arch/arm64/kvm/hypercalls.c b/arch/arm64/kvm/hypercalls.c
new file mode 100644
index 000000000000..550dfa3e53cd
--- /dev/null
+++ b/arch/arm64/kvm/hypercalls.c
@@ -0,0 +1,71 @@
+// SPDX-License-Identifier: GPL-2.0
+// Copyright (C) 2019 Arm Ltd.
+
+#include <linux/arm-smccc.h>
+#include <linux/kvm_host.h>
+
+#include <asm/kvm_emulate.h>
+
+#include <kvm/arm_hypercalls.h>
+#include <kvm/arm_psci.h>
+
+int kvm_hvc_call_handler(struct kvm_vcpu *vcpu)
+{
+ u32 func_id = smccc_get_function(vcpu);
+ long val = SMCCC_RET_NOT_SUPPORTED;
+ u32 feature;
+ gpa_t gpa;
+
+ switch (func_id) {
+ case ARM_SMCCC_VERSION_FUNC_ID:
+ val = ARM_SMCCC_VERSION_1_1;
+ break;
+ case ARM_SMCCC_ARCH_FEATURES_FUNC_ID:
+ feature = smccc_get_arg1(vcpu);
+ switch (feature) {
+ case ARM_SMCCC_ARCH_WORKAROUND_1:
+ switch (kvm_arm_harden_branch_predictor()) {
+ case KVM_BP_HARDEN_UNKNOWN:
+ break;
+ case KVM_BP_HARDEN_WA_NEEDED:
+ val = SMCCC_RET_SUCCESS;
+ break;
+ case KVM_BP_HARDEN_NOT_REQUIRED:
+ val = SMCCC_RET_NOT_REQUIRED;
+ break;
+ }
+ break;
+ case ARM_SMCCC_ARCH_WORKAROUND_2:
+ switch (kvm_arm_have_ssbd()) {
+ case KVM_SSBD_FORCE_DISABLE:
+ case KVM_SSBD_UNKNOWN:
+ break;
+ case KVM_SSBD_KERNEL:
+ val = SMCCC_RET_SUCCESS;
+ break;
+ case KVM_SSBD_FORCE_ENABLE:
+ case KVM_SSBD_MITIGATED:
+ val = SMCCC_RET_NOT_REQUIRED;
+ break;
+ }
+ break;
+ case ARM_SMCCC_HV_PV_TIME_FEATURES:
+ val = SMCCC_RET_SUCCESS;
+ break;
+ }
+ break;
+ case ARM_SMCCC_HV_PV_TIME_FEATURES:
+ val = kvm_hypercall_pv_features(vcpu);
+ break;
+ case ARM_SMCCC_HV_PV_TIME_ST:
+ gpa = kvm_init_stolen_time(vcpu);
+ if (gpa != GPA_INVALID)
+ val = gpa;
+ break;
+ default:
+ return kvm_psci_call(vcpu);
+ }
+
+ smccc_set_retval(vcpu, val, 0, 0, 0);
+ return 1;
+}
diff --git a/arch/arm64/kvm/inject_fault.c b/arch/arm64/kvm/inject_fault.c
index 6aafc2825c1c..e21fdd93027a 100644
--- a/arch/arm64/kvm/inject_fault.c
+++ b/arch/arm64/kvm/inject_fault.c
@@ -26,28 +26,12 @@ enum exception_type {
except_type_serror = 0x180,
};
-static u64 get_except_vector(struct kvm_vcpu *vcpu, enum exception_type type)
-{
- u64 exc_offset;
-
- switch (*vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT)) {
- case PSR_MODE_EL1t:
- exc_offset = CURRENT_EL_SP_EL0_VECTOR;
- break;
- case PSR_MODE_EL1h:
- exc_offset = CURRENT_EL_SP_ELx_VECTOR;
- break;
- case PSR_MODE_EL0t:
- exc_offset = LOWER_EL_AArch64_VECTOR;
- break;
- default:
- exc_offset = LOWER_EL_AArch32_VECTOR;
- }
-
- return vcpu_read_sys_reg(vcpu, VBAR_EL1) + exc_offset + type;
-}
-
/*
+ * This performs the exception entry at a given EL (@target_mode), stashing PC
+ * and PSTATE into ELR and SPSR respectively, and compute the new PC/PSTATE.
+ * The EL passed to this function *must* be a non-secure, privileged mode with
+ * bit 0 being set (PSTATE.SP == 1).
+ *
* When an exception is taken, most PSTATE fields are left unchanged in the
* handler. However, some are explicitly overridden (e.g. M[4:0]). Luckily all
* of the inherited bits have the same position in the AArch64/AArch32 SPSR_ELx
@@ -59,10 +43,35 @@ static u64 get_except_vector(struct kvm_vcpu *vcpu, enum exception_type type)
* Here we manipulate the fields in order of the AArch64 SPSR_ELx layout, from
* MSB to LSB.
*/
-static unsigned long get_except64_pstate(struct kvm_vcpu *vcpu)
+static void enter_exception64(struct kvm_vcpu *vcpu, unsigned long target_mode,
+ enum exception_type type)
{
- unsigned long sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1);
- unsigned long old, new;
+ unsigned long sctlr, vbar, old, new, mode;
+ u64 exc_offset;
+
+ mode = *vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT);
+
+ if (mode == target_mode)
+ exc_offset = CURRENT_EL_SP_ELx_VECTOR;
+ else if ((mode | PSR_MODE_THREAD_BIT) == target_mode)
+ exc_offset = CURRENT_EL_SP_EL0_VECTOR;
+ else if (!(mode & PSR_MODE32_BIT))
+ exc_offset = LOWER_EL_AArch64_VECTOR;
+ else
+ exc_offset = LOWER_EL_AArch32_VECTOR;
+
+ switch (target_mode) {
+ case PSR_MODE_EL1h:
+ vbar = vcpu_read_sys_reg(vcpu, VBAR_EL1);
+ sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1);
+ vcpu_write_elr_el1(vcpu, *vcpu_pc(vcpu));
+ break;
+ default:
+ /* Don't do that */
+ BUG();
+ }
+
+ *vcpu_pc(vcpu) = vbar + exc_offset + type;
old = *vcpu_cpsr(vcpu);
new = 0;
@@ -105,9 +114,10 @@ static unsigned long get_except64_pstate(struct kvm_vcpu *vcpu)
new |= PSR_I_BIT;
new |= PSR_F_BIT;
- new |= PSR_MODE_EL1h;
+ new |= target_mode;
- return new;
+ *vcpu_cpsr(vcpu) = new;
+ vcpu_write_spsr(vcpu, old);
}
static void inject_abt64(struct kvm_vcpu *vcpu, bool is_iabt, unsigned long addr)
@@ -116,11 +126,7 @@ static void inject_abt64(struct kvm_vcpu *vcpu, bool is_iabt, unsigned long addr
bool is_aarch32 = vcpu_mode_is_32bit(vcpu);
u32 esr = 0;
- vcpu_write_elr_el1(vcpu, *vcpu_pc(vcpu));
- *vcpu_pc(vcpu) = get_except_vector(vcpu, except_type_sync);
-
- *vcpu_cpsr(vcpu) = get_except64_pstate(vcpu);
- vcpu_write_spsr(vcpu, cpsr);
+ enter_exception64(vcpu, PSR_MODE_EL1h, except_type_sync);
vcpu_write_sys_reg(vcpu, addr, FAR_EL1);
@@ -148,14 +154,9 @@ static void inject_abt64(struct kvm_vcpu *vcpu, bool is_iabt, unsigned long addr
static void inject_undef64(struct kvm_vcpu *vcpu)
{
- unsigned long cpsr = *vcpu_cpsr(vcpu);
u32 esr = (ESR_ELx_EC_UNKNOWN << ESR_ELx_EC_SHIFT);
- vcpu_write_elr_el1(vcpu, *vcpu_pc(vcpu));
- *vcpu_pc(vcpu) = get_except_vector(vcpu, except_type_sync);
-
- *vcpu_cpsr(vcpu) = get_except64_pstate(vcpu);
- vcpu_write_spsr(vcpu, cpsr);
+ enter_exception64(vcpu, PSR_MODE_EL1h, except_type_sync);
/*
* Build an unknown exception, depending on the instruction
diff --git a/arch/arm64/kvm/mmio.c b/arch/arm64/kvm/mmio.c
new file mode 100644
index 000000000000..4e0366759726
--- /dev/null
+++ b/arch/arm64/kvm/mmio.c
@@ -0,0 +1,200 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ */
+
+#include <linux/kvm_host.h>
+#include <asm/kvm_emulate.h>
+#include <trace/events/kvm.h>
+
+#include "trace.h"
+
+void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data)
+{
+ void *datap = NULL;
+ union {
+ u8 byte;
+ u16 hword;
+ u32 word;
+ u64 dword;
+ } tmp;
+
+ switch (len) {
+ case 1:
+ tmp.byte = data;
+ datap = &tmp.byte;
+ break;
+ case 2:
+ tmp.hword = data;
+ datap = &tmp.hword;
+ break;
+ case 4:
+ tmp.word = data;
+ datap = &tmp.word;
+ break;
+ case 8:
+ tmp.dword = data;
+ datap = &tmp.dword;
+ break;
+ }
+
+ memcpy(buf, datap, len);
+}
+
+unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len)
+{
+ unsigned long data = 0;
+ union {
+ u16 hword;
+ u32 word;
+ u64 dword;
+ } tmp;
+
+ switch (len) {
+ case 1:
+ data = *(u8 *)buf;
+ break;
+ case 2:
+ memcpy(&tmp.hword, buf, len);
+ data = tmp.hword;
+ break;
+ case 4:
+ memcpy(&tmp.word, buf, len);
+ data = tmp.word;
+ break;
+ case 8:
+ memcpy(&tmp.dword, buf, len);
+ data = tmp.dword;
+ break;
+ }
+
+ return data;
+}
+
+/**
+ * kvm_handle_mmio_return -- Handle MMIO loads after user space emulation
+ * or in-kernel IO emulation
+ *
+ * @vcpu: The VCPU pointer
+ * @run: The VCPU run struct containing the mmio data
+ */
+int kvm_handle_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ unsigned long data;
+ unsigned int len;
+ int mask;
+
+ /* Detect an already handled MMIO return */
+ if (unlikely(!vcpu->mmio_needed))
+ return 0;
+
+ vcpu->mmio_needed = 0;
+
+ if (!kvm_vcpu_dabt_iswrite(vcpu)) {
+ len = kvm_vcpu_dabt_get_as(vcpu);
+ data = kvm_mmio_read_buf(run->mmio.data, len);
+
+ if (kvm_vcpu_dabt_issext(vcpu) &&
+ len < sizeof(unsigned long)) {
+ mask = 1U << ((len * 8) - 1);
+ data = (data ^ mask) - mask;
+ }
+
+ if (!kvm_vcpu_dabt_issf(vcpu))
+ data = data & 0xffffffff;
+
+ trace_kvm_mmio(KVM_TRACE_MMIO_READ, len, run->mmio.phys_addr,
+ &data);
+ data = vcpu_data_host_to_guest(vcpu, data, len);
+ vcpu_set_reg(vcpu, kvm_vcpu_dabt_get_rd(vcpu), data);
+ }
+
+ /*
+ * The MMIO instruction is emulated and should not be re-executed
+ * in the guest.
+ */
+ kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
+
+ return 0;
+}
+
+int io_mem_abort(struct kvm_vcpu *vcpu, struct kvm_run *run,
+ phys_addr_t fault_ipa)
+{
+ unsigned long data;
+ unsigned long rt;
+ int ret;
+ bool is_write;
+ int len;
+ u8 data_buf[8];
+
+ /*
+ * No valid syndrome? Ask userspace for help if it has
+ * volunteered to do so, and bail out otherwise.
+ */
+ if (!kvm_vcpu_dabt_isvalid(vcpu)) {
+ if (vcpu->kvm->arch.return_nisv_io_abort_to_user) {
+ run->exit_reason = KVM_EXIT_ARM_NISV;
+ run->arm_nisv.esr_iss = kvm_vcpu_dabt_iss_nisv_sanitized(vcpu);
+ run->arm_nisv.fault_ipa = fault_ipa;
+ return 0;
+ }
+
+ kvm_pr_unimpl("Data abort outside memslots with no valid syndrome info\n");
+ return -ENOSYS;
+ }
+
+ /* Page table accesses IO mem: tell guest to fix its TTBR */
+ if (kvm_vcpu_dabt_iss1tw(vcpu)) {
+ kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
+ return 1;
+ }
+
+ /*
+ * Prepare MMIO operation. First decode the syndrome data we get
+ * from the CPU. Then try if some in-kernel emulation feels
+ * responsible, otherwise let user space do its magic.
+ */
+ is_write = kvm_vcpu_dabt_iswrite(vcpu);
+ len = kvm_vcpu_dabt_get_as(vcpu);
+ rt = kvm_vcpu_dabt_get_rd(vcpu);
+
+ if (is_write) {
+ data = vcpu_data_guest_to_host(vcpu, vcpu_get_reg(vcpu, rt),
+ len);
+
+ trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, len, fault_ipa, &data);
+ kvm_mmio_write_buf(data_buf, len, data);
+
+ ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, fault_ipa, len,
+ data_buf);
+ } else {
+ trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, len,
+ fault_ipa, NULL);
+
+ ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_ipa, len,
+ data_buf);
+ }
+
+ /* Now prepare kvm_run for the potential return to userland. */
+ run->mmio.is_write = is_write;
+ run->mmio.phys_addr = fault_ipa;
+ run->mmio.len = len;
+ vcpu->mmio_needed = 1;
+
+ if (!ret) {
+ /* We handled the access successfully in the kernel. */
+ if (!is_write)
+ memcpy(run->mmio.data, data_buf, len);
+ vcpu->stat.mmio_exit_kernel++;
+ kvm_handle_mmio_return(vcpu, run);
+ return 1;
+ }
+
+ if (is_write)
+ memcpy(run->mmio.data, data_buf, len);
+ vcpu->stat.mmio_exit_user++;
+ run->exit_reason = KVM_EXIT_MMIO;
+ return 0;
+}
diff --git a/arch/arm64/kvm/mmu.c b/arch/arm64/kvm/mmu.c
new file mode 100644
index 000000000000..a1f6bc70c4e4
--- /dev/null
+++ b/arch/arm64/kvm/mmu.c
@@ -0,0 +1,2467 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ */
+
+#include <linux/mman.h>
+#include <linux/kvm_host.h>
+#include <linux/io.h>
+#include <linux/hugetlb.h>
+#include <linux/sched/signal.h>
+#include <trace/events/kvm.h>
+#include <asm/pgalloc.h>
+#include <asm/cacheflush.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_ras.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_emulate.h>
+#include <asm/virt.h>
+
+#include "trace.h"
+
+static pgd_t *boot_hyp_pgd;
+static pgd_t *hyp_pgd;
+static pgd_t *merged_hyp_pgd;
+static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
+
+static unsigned long hyp_idmap_start;
+static unsigned long hyp_idmap_end;
+static phys_addr_t hyp_idmap_vector;
+
+static unsigned long io_map_base;
+
+#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
+
+#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
+#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
+
+static bool is_iomap(unsigned long flags)
+{
+ return flags & KVM_S2PTE_FLAG_IS_IOMAP;
+}
+
+static bool memslot_is_logging(struct kvm_memory_slot *memslot)
+{
+ return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
+}
+
+/**
+ * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
+ * @kvm: pointer to kvm structure.
+ *
+ * Interface to HYP function to flush all VM TLB entries
+ */
+void kvm_flush_remote_tlbs(struct kvm *kvm)
+{
+ kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
+}
+
+static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
+{
+ kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
+}
+
+/*
+ * D-Cache management functions. They take the page table entries by
+ * value, as they are flushing the cache using the kernel mapping (or
+ * kmap on 32bit).
+ */
+static void kvm_flush_dcache_pte(pte_t pte)
+{
+ __kvm_flush_dcache_pte(pte);
+}
+
+static void kvm_flush_dcache_pmd(pmd_t pmd)
+{
+ __kvm_flush_dcache_pmd(pmd);
+}
+
+static void kvm_flush_dcache_pud(pud_t pud)
+{
+ __kvm_flush_dcache_pud(pud);
+}
+
+static bool kvm_is_device_pfn(unsigned long pfn)
+{
+ return !pfn_valid(pfn);
+}
+
+/**
+ * stage2_dissolve_pmd() - clear and flush huge PMD entry
+ * @kvm: pointer to kvm structure.
+ * @addr: IPA
+ * @pmd: pmd pointer for IPA
+ *
+ * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
+ */
+static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
+{
+ if (!pmd_thp_or_huge(*pmd))
+ return;
+
+ pmd_clear(pmd);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ put_page(virt_to_page(pmd));
+}
+
+/**
+ * stage2_dissolve_pud() - clear and flush huge PUD entry
+ * @kvm: pointer to kvm structure.
+ * @addr: IPA
+ * @pud: pud pointer for IPA
+ *
+ * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
+ */
+static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp)
+{
+ if (!stage2_pud_huge(kvm, *pudp))
+ return;
+
+ stage2_pud_clear(kvm, pudp);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ put_page(virt_to_page(pudp));
+}
+
+static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
+ int min, int max)
+{
+ void *page;
+
+ BUG_ON(max > KVM_NR_MEM_OBJS);
+ if (cache->nobjs >= min)
+ return 0;
+ while (cache->nobjs < max) {
+ page = (void *)__get_free_page(GFP_PGTABLE_USER);
+ if (!page)
+ return -ENOMEM;
+ cache->objects[cache->nobjs++] = page;
+ }
+ return 0;
+}
+
+static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
+{
+ while (mc->nobjs)
+ free_page((unsigned long)mc->objects[--mc->nobjs]);
+}
+
+static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
+{
+ void *p;
+
+ BUG_ON(!mc || !mc->nobjs);
+ p = mc->objects[--mc->nobjs];
+ return p;
+}
+
+static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
+{
+ pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, pgd, 0UL);
+ stage2_pgd_clear(kvm, pgd);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ stage2_pud_free(kvm, pud_table);
+ put_page(virt_to_page(pgd));
+}
+
+static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
+{
+ pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
+ VM_BUG_ON(stage2_pud_huge(kvm, *pud));
+ stage2_pud_clear(kvm, pud);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ stage2_pmd_free(kvm, pmd_table);
+ put_page(virt_to_page(pud));
+}
+
+static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
+{
+ pte_t *pte_table = pte_offset_kernel(pmd, 0);
+ VM_BUG_ON(pmd_thp_or_huge(*pmd));
+ pmd_clear(pmd);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ free_page((unsigned long)pte_table);
+ put_page(virt_to_page(pmd));
+}
+
+static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
+{
+ WRITE_ONCE(*ptep, new_pte);
+ dsb(ishst);
+}
+
+static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
+{
+ WRITE_ONCE(*pmdp, new_pmd);
+ dsb(ishst);
+}
+
+static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
+{
+ kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
+}
+
+static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
+{
+ WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
+ dsb(ishst);
+}
+
+static inline void kvm_pgd_populate(pgd_t *pgdp, pud_t *pudp)
+{
+ WRITE_ONCE(*pgdp, kvm_mk_pgd(pudp));
+ dsb(ishst);
+}
+
+/*
+ * Unmapping vs dcache management:
+ *
+ * If a guest maps certain memory pages as uncached, all writes will
+ * bypass the data cache and go directly to RAM. However, the CPUs
+ * can still speculate reads (not writes) and fill cache lines with
+ * data.
+ *
+ * Those cache lines will be *clean* cache lines though, so a
+ * clean+invalidate operation is equivalent to an invalidate
+ * operation, because no cache lines are marked dirty.
+ *
+ * Those clean cache lines could be filled prior to an uncached write
+ * by the guest, and the cache coherent IO subsystem would therefore
+ * end up writing old data to disk.
+ *
+ * This is why right after unmapping a page/section and invalidating
+ * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
+ * the IO subsystem will never hit in the cache.
+ *
+ * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
+ * we then fully enforce cacheability of RAM, no matter what the guest
+ * does.
+ */
+static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
+ phys_addr_t addr, phys_addr_t end)
+{
+ phys_addr_t start_addr = addr;
+ pte_t *pte, *start_pte;
+
+ start_pte = pte = pte_offset_kernel(pmd, addr);
+ do {
+ if (!pte_none(*pte)) {
+ pte_t old_pte = *pte;
+
+ kvm_set_pte(pte, __pte(0));
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+
+ /* No need to invalidate the cache for device mappings */
+ if (!kvm_is_device_pfn(pte_pfn(old_pte)))
+ kvm_flush_dcache_pte(old_pte);
+
+ put_page(virt_to_page(pte));
+ }
+ } while (pte++, addr += PAGE_SIZE, addr != end);
+
+ if (stage2_pte_table_empty(kvm, start_pte))
+ clear_stage2_pmd_entry(kvm, pmd, start_addr);
+}
+
+static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
+ phys_addr_t addr, phys_addr_t end)
+{
+ phys_addr_t next, start_addr = addr;
+ pmd_t *pmd, *start_pmd;
+
+ start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
+ do {
+ next = stage2_pmd_addr_end(kvm, addr, end);
+ if (!pmd_none(*pmd)) {
+ if (pmd_thp_or_huge(*pmd)) {
+ pmd_t old_pmd = *pmd;
+
+ pmd_clear(pmd);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+
+ kvm_flush_dcache_pmd(old_pmd);
+
+ put_page(virt_to_page(pmd));
+ } else {
+ unmap_stage2_ptes(kvm, pmd, addr, next);
+ }
+ }
+ } while (pmd++, addr = next, addr != end);
+
+ if (stage2_pmd_table_empty(kvm, start_pmd))
+ clear_stage2_pud_entry(kvm, pud, start_addr);
+}
+
+static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
+ phys_addr_t addr, phys_addr_t end)
+{
+ phys_addr_t next, start_addr = addr;
+ pud_t *pud, *start_pud;
+
+ start_pud = pud = stage2_pud_offset(kvm, pgd, addr);
+ do {
+ next = stage2_pud_addr_end(kvm, addr, end);
+ if (!stage2_pud_none(kvm, *pud)) {
+ if (stage2_pud_huge(kvm, *pud)) {
+ pud_t old_pud = *pud;
+
+ stage2_pud_clear(kvm, pud);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ kvm_flush_dcache_pud(old_pud);
+ put_page(virt_to_page(pud));
+ } else {
+ unmap_stage2_pmds(kvm, pud, addr, next);
+ }
+ }
+ } while (pud++, addr = next, addr != end);
+
+ if (stage2_pud_table_empty(kvm, start_pud))
+ clear_stage2_pgd_entry(kvm, pgd, start_addr);
+}
+
+/**
+ * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
+ * @kvm: The VM pointer
+ * @start: The intermediate physical base address of the range to unmap
+ * @size: The size of the area to unmap
+ *
+ * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
+ * be called while holding mmu_lock (unless for freeing the stage2 pgd before
+ * destroying the VM), otherwise another faulting VCPU may come in and mess
+ * with things behind our backs.
+ */
+static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
+{
+ pgd_t *pgd;
+ phys_addr_t addr = start, end = start + size;
+ phys_addr_t next;
+
+ assert_spin_locked(&kvm->mmu_lock);
+ WARN_ON(size & ~PAGE_MASK);
+
+ pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
+ do {
+ /*
+ * Make sure the page table is still active, as another thread
+ * could have possibly freed the page table, while we released
+ * the lock.
+ */
+ if (!READ_ONCE(kvm->arch.pgd))
+ break;
+ next = stage2_pgd_addr_end(kvm, addr, end);
+ if (!stage2_pgd_none(kvm, *pgd))
+ unmap_stage2_puds(kvm, pgd, addr, next);
+ /*
+ * If the range is too large, release the kvm->mmu_lock
+ * to prevent starvation and lockup detector warnings.
+ */
+ if (next != end)
+ cond_resched_lock(&kvm->mmu_lock);
+ } while (pgd++, addr = next, addr != end);
+}
+
+static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
+ phys_addr_t addr, phys_addr_t end)
+{
+ pte_t *pte;
+
+ pte = pte_offset_kernel(pmd, addr);
+ do {
+ if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
+ kvm_flush_dcache_pte(*pte);
+ } while (pte++, addr += PAGE_SIZE, addr != end);
+}
+
+static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
+ phys_addr_t addr, phys_addr_t end)
+{
+ pmd_t *pmd;
+ phys_addr_t next;
+
+ pmd = stage2_pmd_offset(kvm, pud, addr);
+ do {
+ next = stage2_pmd_addr_end(kvm, addr, end);
+ if (!pmd_none(*pmd)) {
+ if (pmd_thp_or_huge(*pmd))
+ kvm_flush_dcache_pmd(*pmd);
+ else
+ stage2_flush_ptes(kvm, pmd, addr, next);
+ }
+ } while (pmd++, addr = next, addr != end);
+}
+
+static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
+ phys_addr_t addr, phys_addr_t end)
+{
+ pud_t *pud;
+ phys_addr_t next;
+
+ pud = stage2_pud_offset(kvm, pgd, addr);
+ do {
+ next = stage2_pud_addr_end(kvm, addr, end);
+ if (!stage2_pud_none(kvm, *pud)) {
+ if (stage2_pud_huge(kvm, *pud))
+ kvm_flush_dcache_pud(*pud);
+ else
+ stage2_flush_pmds(kvm, pud, addr, next);
+ }
+ } while (pud++, addr = next, addr != end);
+}
+
+static void stage2_flush_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *memslot)
+{
+ phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
+ phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
+ phys_addr_t next;
+ pgd_t *pgd;
+
+ pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
+ do {
+ next = stage2_pgd_addr_end(kvm, addr, end);
+ if (!stage2_pgd_none(kvm, *pgd))
+ stage2_flush_puds(kvm, pgd, addr, next);
+
+ if (next != end)
+ cond_resched_lock(&kvm->mmu_lock);
+ } while (pgd++, addr = next, addr != end);
+}
+
+/**
+ * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
+ * @kvm: The struct kvm pointer
+ *
+ * Go through the stage 2 page tables and invalidate any cache lines
+ * backing memory already mapped to the VM.
+ */
+static void stage2_flush_vm(struct kvm *kvm)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+ int idx;
+
+ idx = srcu_read_lock(&kvm->srcu);
+ spin_lock(&kvm->mmu_lock);
+
+ slots = kvm_memslots(kvm);
+ kvm_for_each_memslot(memslot, slots)
+ stage2_flush_memslot(kvm, memslot);
+
+ spin_unlock(&kvm->mmu_lock);
+ srcu_read_unlock(&kvm->srcu, idx);
+}
+
+static void clear_hyp_pgd_entry(pgd_t *pgd)
+{
+ pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
+ pgd_clear(pgd);
+ pud_free(NULL, pud_table);
+ put_page(virt_to_page(pgd));
+}
+
+static void clear_hyp_pud_entry(pud_t *pud)
+{
+ pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
+ VM_BUG_ON(pud_huge(*pud));
+ pud_clear(pud);
+ pmd_free(NULL, pmd_table);
+ put_page(virt_to_page(pud));
+}
+
+static void clear_hyp_pmd_entry(pmd_t *pmd)
+{
+ pte_t *pte_table = pte_offset_kernel(pmd, 0);
+ VM_BUG_ON(pmd_thp_or_huge(*pmd));
+ pmd_clear(pmd);
+ pte_free_kernel(NULL, pte_table);
+ put_page(virt_to_page(pmd));
+}
+
+static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
+{
+ pte_t *pte, *start_pte;
+
+ start_pte = pte = pte_offset_kernel(pmd, addr);
+ do {
+ if (!pte_none(*pte)) {
+ kvm_set_pte(pte, __pte(0));
+ put_page(virt_to_page(pte));
+ }
+ } while (pte++, addr += PAGE_SIZE, addr != end);
+
+ if (hyp_pte_table_empty(start_pte))
+ clear_hyp_pmd_entry(pmd);
+}
+
+static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
+{
+ phys_addr_t next;
+ pmd_t *pmd, *start_pmd;
+
+ start_pmd = pmd = pmd_offset(pud, addr);
+ do {
+ next = pmd_addr_end(addr, end);
+ /* Hyp doesn't use huge pmds */
+ if (!pmd_none(*pmd))
+ unmap_hyp_ptes(pmd, addr, next);
+ } while (pmd++, addr = next, addr != end);
+
+ if (hyp_pmd_table_empty(start_pmd))
+ clear_hyp_pud_entry(pud);
+}
+
+static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
+{
+ phys_addr_t next;
+ pud_t *pud, *start_pud;
+
+ start_pud = pud = pud_offset(pgd, addr);
+ do {
+ next = pud_addr_end(addr, end);
+ /* Hyp doesn't use huge puds */
+ if (!pud_none(*pud))
+ unmap_hyp_pmds(pud, addr, next);
+ } while (pud++, addr = next, addr != end);
+
+ if (hyp_pud_table_empty(start_pud))
+ clear_hyp_pgd_entry(pgd);
+}
+
+static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
+{
+ return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
+}
+
+static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
+ phys_addr_t start, u64 size)
+{
+ pgd_t *pgd;
+ phys_addr_t addr = start, end = start + size;
+ phys_addr_t next;
+
+ /*
+ * We don't unmap anything from HYP, except at the hyp tear down.
+ * Hence, we don't have to invalidate the TLBs here.
+ */
+ pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
+ do {
+ next = pgd_addr_end(addr, end);
+ if (!pgd_none(*pgd))
+ unmap_hyp_puds(pgd, addr, next);
+ } while (pgd++, addr = next, addr != end);
+}
+
+static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
+{
+ __unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
+}
+
+static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
+{
+ __unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
+}
+
+/**
+ * free_hyp_pgds - free Hyp-mode page tables
+ *
+ * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
+ * therefore contains either mappings in the kernel memory area (above
+ * PAGE_OFFSET), or device mappings in the idmap range.
+ *
+ * boot_hyp_pgd should only map the idmap range, and is only used in
+ * the extended idmap case.
+ */
+void free_hyp_pgds(void)
+{
+ pgd_t *id_pgd;
+
+ mutex_lock(&kvm_hyp_pgd_mutex);
+
+ id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
+
+ if (id_pgd) {
+ /* In case we never called hyp_mmu_init() */
+ if (!io_map_base)
+ io_map_base = hyp_idmap_start;
+ unmap_hyp_idmap_range(id_pgd, io_map_base,
+ hyp_idmap_start + PAGE_SIZE - io_map_base);
+ }
+
+ if (boot_hyp_pgd) {
+ free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
+ boot_hyp_pgd = NULL;
+ }
+
+ if (hyp_pgd) {
+ unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
+ (uintptr_t)high_memory - PAGE_OFFSET);
+
+ free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
+ hyp_pgd = NULL;
+ }
+ if (merged_hyp_pgd) {
+ clear_page(merged_hyp_pgd);
+ free_page((unsigned long)merged_hyp_pgd);
+ merged_hyp_pgd = NULL;
+ }
+
+ mutex_unlock(&kvm_hyp_pgd_mutex);
+}
+
+static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
+ unsigned long end, unsigned long pfn,
+ pgprot_t prot)
+{
+ pte_t *pte;
+ unsigned long addr;
+
+ addr = start;
+ do {
+ pte = pte_offset_kernel(pmd, addr);
+ kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
+ get_page(virt_to_page(pte));
+ pfn++;
+ } while (addr += PAGE_SIZE, addr != end);
+}
+
+static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
+ unsigned long end, unsigned long pfn,
+ pgprot_t prot)
+{
+ pmd_t *pmd;
+ pte_t *pte;
+ unsigned long addr, next;
+
+ addr = start;
+ do {
+ pmd = pmd_offset(pud, addr);
+
+ BUG_ON(pmd_sect(*pmd));
+
+ if (pmd_none(*pmd)) {
+ pte = pte_alloc_one_kernel(NULL);
+ if (!pte) {
+ kvm_err("Cannot allocate Hyp pte\n");
+ return -ENOMEM;
+ }
+ kvm_pmd_populate(pmd, pte);
+ get_page(virt_to_page(pmd));
+ }
+
+ next = pmd_addr_end(addr, end);
+
+ create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
+ pfn += (next - addr) >> PAGE_SHIFT;
+ } while (addr = next, addr != end);
+
+ return 0;
+}
+
+static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
+ unsigned long end, unsigned long pfn,
+ pgprot_t prot)
+{
+ pud_t *pud;
+ pmd_t *pmd;
+ unsigned long addr, next;
+ int ret;
+
+ addr = start;
+ do {
+ pud = pud_offset(pgd, addr);
+
+ if (pud_none_or_clear_bad(pud)) {
+ pmd = pmd_alloc_one(NULL, addr);
+ if (!pmd) {
+ kvm_err("Cannot allocate Hyp pmd\n");
+ return -ENOMEM;
+ }
+ kvm_pud_populate(pud, pmd);
+ get_page(virt_to_page(pud));
+ }
+
+ next = pud_addr_end(addr, end);
+ ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
+ if (ret)
+ return ret;
+ pfn += (next - addr) >> PAGE_SHIFT;
+ } while (addr = next, addr != end);
+
+ return 0;
+}
+
+static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
+ unsigned long start, unsigned long end,
+ unsigned long pfn, pgprot_t prot)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ unsigned long addr, next;
+ int err = 0;
+
+ mutex_lock(&kvm_hyp_pgd_mutex);
+ addr = start & PAGE_MASK;
+ end = PAGE_ALIGN(end);
+ do {
+ pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
+
+ if (pgd_none(*pgd)) {
+ pud = pud_alloc_one(NULL, addr);
+ if (!pud) {
+ kvm_err("Cannot allocate Hyp pud\n");
+ err = -ENOMEM;
+ goto out;
+ }
+ kvm_pgd_populate(pgd, pud);
+ get_page(virt_to_page(pgd));
+ }
+
+ next = pgd_addr_end(addr, end);
+ err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
+ if (err)
+ goto out;
+ pfn += (next - addr) >> PAGE_SHIFT;
+ } while (addr = next, addr != end);
+out:
+ mutex_unlock(&kvm_hyp_pgd_mutex);
+ return err;
+}
+
+static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
+{
+ if (!is_vmalloc_addr(kaddr)) {
+ BUG_ON(!virt_addr_valid(kaddr));
+ return __pa(kaddr);
+ } else {
+ return page_to_phys(vmalloc_to_page(kaddr)) +
+ offset_in_page(kaddr);
+ }
+}
+
+/**
+ * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
+ * @from: The virtual kernel start address of the range
+ * @to: The virtual kernel end address of the range (exclusive)
+ * @prot: The protection to be applied to this range
+ *
+ * The same virtual address as the kernel virtual address is also used
+ * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
+ * physical pages.
+ */
+int create_hyp_mappings(void *from, void *to, pgprot_t prot)
+{
+ phys_addr_t phys_addr;
+ unsigned long virt_addr;
+ unsigned long start = kern_hyp_va((unsigned long)from);
+ unsigned long end = kern_hyp_va((unsigned long)to);
+
+ if (is_kernel_in_hyp_mode())
+ return 0;
+
+ start = start & PAGE_MASK;
+ end = PAGE_ALIGN(end);
+
+ for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
+ int err;
+
+ phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
+ err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
+ virt_addr, virt_addr + PAGE_SIZE,
+ __phys_to_pfn(phys_addr),
+ prot);
+ if (err)
+ return err;
+ }
+
+ return 0;
+}
+
+static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
+ unsigned long *haddr, pgprot_t prot)
+{
+ pgd_t *pgd = hyp_pgd;
+ unsigned long base;
+ int ret = 0;
+
+ mutex_lock(&kvm_hyp_pgd_mutex);
+
+ /*
+ * This assumes that we have enough space below the idmap
+ * page to allocate our VAs. If not, the check below will
+ * kick. A potential alternative would be to detect that
+ * overflow and switch to an allocation above the idmap.
+ *
+ * The allocated size is always a multiple of PAGE_SIZE.
+ */
+ size = PAGE_ALIGN(size + offset_in_page(phys_addr));
+ base = io_map_base - size;
+
+ /*
+ * Verify that BIT(VA_BITS - 1) hasn't been flipped by
+ * allocating the new area, as it would indicate we've
+ * overflowed the idmap/IO address range.
+ */
+ if ((base ^ io_map_base) & BIT(VA_BITS - 1))
+ ret = -ENOMEM;
+ else
+ io_map_base = base;
+
+ mutex_unlock(&kvm_hyp_pgd_mutex);
+
+ if (ret)
+ goto out;
+
+ if (__kvm_cpu_uses_extended_idmap())
+ pgd = boot_hyp_pgd;
+
+ ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
+ base, base + size,
+ __phys_to_pfn(phys_addr), prot);
+ if (ret)
+ goto out;
+
+ *haddr = base + offset_in_page(phys_addr);
+
+out:
+ return ret;
+}
+
+/**
+ * create_hyp_io_mappings - Map IO into both kernel and HYP
+ * @phys_addr: The physical start address which gets mapped
+ * @size: Size of the region being mapped
+ * @kaddr: Kernel VA for this mapping
+ * @haddr: HYP VA for this mapping
+ */
+int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
+ void __iomem **kaddr,
+ void __iomem **haddr)
+{
+ unsigned long addr;
+ int ret;
+
+ *kaddr = ioremap(phys_addr, size);
+ if (!*kaddr)
+ return -ENOMEM;
+
+ if (is_kernel_in_hyp_mode()) {
+ *haddr = *kaddr;
+ return 0;
+ }
+
+ ret = __create_hyp_private_mapping(phys_addr, size,
+ &addr, PAGE_HYP_DEVICE);
+ if (ret) {
+ iounmap(*kaddr);
+ *kaddr = NULL;
+ *haddr = NULL;
+ return ret;
+ }
+
+ *haddr = (void __iomem *)addr;
+ return 0;
+}
+
+/**
+ * create_hyp_exec_mappings - Map an executable range into HYP
+ * @phys_addr: The physical start address which gets mapped
+ * @size: Size of the region being mapped
+ * @haddr: HYP VA for this mapping
+ */
+int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
+ void **haddr)
+{
+ unsigned long addr;
+ int ret;
+
+ BUG_ON(is_kernel_in_hyp_mode());
+
+ ret = __create_hyp_private_mapping(phys_addr, size,
+ &addr, PAGE_HYP_EXEC);
+ if (ret) {
+ *haddr = NULL;
+ return ret;
+ }
+
+ *haddr = (void *)addr;
+ return 0;
+}
+
+/**
+ * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
+ * @kvm: The KVM struct pointer for the VM.
+ *
+ * Allocates only the stage-2 HW PGD level table(s) of size defined by
+ * stage2_pgd_size(kvm).
+ *
+ * Note we don't need locking here as this is only called when the VM is
+ * created, which can only be done once.
+ */
+int kvm_alloc_stage2_pgd(struct kvm *kvm)
+{
+ phys_addr_t pgd_phys;
+ pgd_t *pgd;
+
+ if (kvm->arch.pgd != NULL) {
+ kvm_err("kvm_arch already initialized?\n");
+ return -EINVAL;
+ }
+
+ /* Allocate the HW PGD, making sure that each page gets its own refcount */
+ pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
+ if (!pgd)
+ return -ENOMEM;
+
+ pgd_phys = virt_to_phys(pgd);
+ if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
+ return -EINVAL;
+
+ kvm->arch.pgd = pgd;
+ kvm->arch.pgd_phys = pgd_phys;
+ return 0;
+}
+
+static void stage2_unmap_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *memslot)
+{
+ hva_t hva = memslot->userspace_addr;
+ phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
+ phys_addr_t size = PAGE_SIZE * memslot->npages;
+ hva_t reg_end = hva + size;
+
+ /*
+ * A memory region could potentially cover multiple VMAs, and any holes
+ * between them, so iterate over all of them to find out if we should
+ * unmap any of them.
+ *
+ * +--------------------------------------------+
+ * +---------------+----------------+ +----------------+
+ * | : VMA 1 | VMA 2 | | VMA 3 : |
+ * +---------------+----------------+ +----------------+
+ * | memory region |
+ * +--------------------------------------------+
+ */
+ do {
+ struct vm_area_struct *vma = find_vma(current->mm, hva);
+ hva_t vm_start, vm_end;
+
+ if (!vma || vma->vm_start >= reg_end)
+ break;
+
+ /*
+ * Take the intersection of this VMA with the memory region
+ */
+ vm_start = max(hva, vma->vm_start);
+ vm_end = min(reg_end, vma->vm_end);
+
+ if (!(vma->vm_flags & VM_PFNMAP)) {
+ gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
+ unmap_stage2_range(kvm, gpa, vm_end - vm_start);
+ }
+ hva = vm_end;
+ } while (hva < reg_end);
+}
+
+/**
+ * stage2_unmap_vm - Unmap Stage-2 RAM mappings
+ * @kvm: The struct kvm pointer
+ *
+ * Go through the memregions and unmap any regular RAM
+ * backing memory already mapped to the VM.
+ */
+void stage2_unmap_vm(struct kvm *kvm)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+ int idx;
+
+ idx = srcu_read_lock(&kvm->srcu);
+ down_read(&current->mm->mmap_sem);
+ spin_lock(&kvm->mmu_lock);
+
+ slots = kvm_memslots(kvm);
+ kvm_for_each_memslot(memslot, slots)
+ stage2_unmap_memslot(kvm, memslot);
+
+ spin_unlock(&kvm->mmu_lock);
+ up_read(&current->mm->mmap_sem);
+ srcu_read_unlock(&kvm->srcu, idx);
+}
+
+/**
+ * kvm_free_stage2_pgd - free all stage-2 tables
+ * @kvm: The KVM struct pointer for the VM.
+ *
+ * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
+ * underlying level-2 and level-3 tables before freeing the actual level-1 table
+ * and setting the struct pointer to NULL.
+ */
+void kvm_free_stage2_pgd(struct kvm *kvm)
+{
+ void *pgd = NULL;
+
+ spin_lock(&kvm->mmu_lock);
+ if (kvm->arch.pgd) {
+ unmap_stage2_range(kvm, 0, kvm_phys_size(kvm));
+ pgd = READ_ONCE(kvm->arch.pgd);
+ kvm->arch.pgd = NULL;
+ kvm->arch.pgd_phys = 0;
+ }
+ spin_unlock(&kvm->mmu_lock);
+
+ /* Free the HW pgd, one page at a time */
+ if (pgd)
+ free_pages_exact(pgd, stage2_pgd_size(kvm));
+}
+
+static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
+ phys_addr_t addr)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+
+ pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
+ if (stage2_pgd_none(kvm, *pgd)) {
+ if (!cache)
+ return NULL;
+ pud = mmu_memory_cache_alloc(cache);
+ stage2_pgd_populate(kvm, pgd, pud);
+ get_page(virt_to_page(pgd));
+ }
+
+ return stage2_pud_offset(kvm, pgd, addr);
+}
+
+static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
+ phys_addr_t addr)
+{
+ pud_t *pud;
+ pmd_t *pmd;
+
+ pud = stage2_get_pud(kvm, cache, addr);
+ if (!pud || stage2_pud_huge(kvm, *pud))
+ return NULL;
+
+ if (stage2_pud_none(kvm, *pud)) {
+ if (!cache)
+ return NULL;
+ pmd = mmu_memory_cache_alloc(cache);
+ stage2_pud_populate(kvm, pud, pmd);
+ get_page(virt_to_page(pud));
+ }
+
+ return stage2_pmd_offset(kvm, pud, addr);
+}
+
+static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
+ *cache, phys_addr_t addr, const pmd_t *new_pmd)
+{
+ pmd_t *pmd, old_pmd;
+
+retry:
+ pmd = stage2_get_pmd(kvm, cache, addr);
+ VM_BUG_ON(!pmd);
+
+ old_pmd = *pmd;
+ /*
+ * Multiple vcpus faulting on the same PMD entry, can
+ * lead to them sequentially updating the PMD with the
+ * same value. Following the break-before-make
+ * (pmd_clear() followed by tlb_flush()) process can
+ * hinder forward progress due to refaults generated
+ * on missing translations.
+ *
+ * Skip updating the page table if the entry is
+ * unchanged.
+ */
+ if (pmd_val(old_pmd) == pmd_val(*new_pmd))
+ return 0;
+
+ if (pmd_present(old_pmd)) {
+ /*
+ * If we already have PTE level mapping for this block,
+ * we must unmap it to avoid inconsistent TLB state and
+ * leaking the table page. We could end up in this situation
+ * if the memory slot was marked for dirty logging and was
+ * reverted, leaving PTE level mappings for the pages accessed
+ * during the period. So, unmap the PTE level mapping for this
+ * block and retry, as we could have released the upper level
+ * table in the process.
+ *
+ * Normal THP split/merge follows mmu_notifier callbacks and do
+ * get handled accordingly.
+ */
+ if (!pmd_thp_or_huge(old_pmd)) {
+ unmap_stage2_range(kvm, addr & S2_PMD_MASK, S2_PMD_SIZE);
+ goto retry;
+ }
+ /*
+ * Mapping in huge pages should only happen through a
+ * fault. If a page is merged into a transparent huge
+ * page, the individual subpages of that huge page
+ * should be unmapped through MMU notifiers before we
+ * get here.
+ *
+ * Merging of CompoundPages is not supported; they
+ * should become splitting first, unmapped, merged,
+ * and mapped back in on-demand.
+ */
+ WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
+ pmd_clear(pmd);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ } else {
+ get_page(virt_to_page(pmd));
+ }
+
+ kvm_set_pmd(pmd, *new_pmd);
+ return 0;
+}
+
+static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
+ phys_addr_t addr, const pud_t *new_pudp)
+{
+ pud_t *pudp, old_pud;
+
+retry:
+ pudp = stage2_get_pud(kvm, cache, addr);
+ VM_BUG_ON(!pudp);
+
+ old_pud = *pudp;
+
+ /*
+ * A large number of vcpus faulting on the same stage 2 entry,
+ * can lead to a refault due to the stage2_pud_clear()/tlb_flush().
+ * Skip updating the page tables if there is no change.
+ */
+ if (pud_val(old_pud) == pud_val(*new_pudp))
+ return 0;
+
+ if (stage2_pud_present(kvm, old_pud)) {
+ /*
+ * If we already have table level mapping for this block, unmap
+ * the range for this block and retry.
+ */
+ if (!stage2_pud_huge(kvm, old_pud)) {
+ unmap_stage2_range(kvm, addr & S2_PUD_MASK, S2_PUD_SIZE);
+ goto retry;
+ }
+
+ WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
+ stage2_pud_clear(kvm, pudp);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ } else {
+ get_page(virt_to_page(pudp));
+ }
+
+ kvm_set_pud(pudp, *new_pudp);
+ return 0;
+}
+
+/*
+ * stage2_get_leaf_entry - walk the stage2 VM page tables and return
+ * true if a valid and present leaf-entry is found. A pointer to the
+ * leaf-entry is returned in the appropriate level variable - pudpp,
+ * pmdpp, ptepp.
+ */
+static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
+ pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
+{
+ pud_t *pudp;
+ pmd_t *pmdp;
+ pte_t *ptep;
+
+ *pudpp = NULL;
+ *pmdpp = NULL;
+ *ptepp = NULL;
+
+ pudp = stage2_get_pud(kvm, NULL, addr);
+ if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
+ return false;
+
+ if (stage2_pud_huge(kvm, *pudp)) {
+ *pudpp = pudp;
+ return true;
+ }
+
+ pmdp = stage2_pmd_offset(kvm, pudp, addr);
+ if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
+ return false;
+
+ if (pmd_thp_or_huge(*pmdp)) {
+ *pmdpp = pmdp;
+ return true;
+ }
+
+ ptep = pte_offset_kernel(pmdp, addr);
+ if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
+ return false;
+
+ *ptepp = ptep;
+ return true;
+}
+
+static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
+{
+ pud_t *pudp;
+ pmd_t *pmdp;
+ pte_t *ptep;
+ bool found;
+
+ found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep);
+ if (!found)
+ return false;
+
+ if (pudp)
+ return kvm_s2pud_exec(pudp);
+ else if (pmdp)
+ return kvm_s2pmd_exec(pmdp);
+ else
+ return kvm_s2pte_exec(ptep);
+}
+
+static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
+ phys_addr_t addr, const pte_t *new_pte,
+ unsigned long flags)
+{
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte, old_pte;
+ bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
+ bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
+
+ VM_BUG_ON(logging_active && !cache);
+
+ /* Create stage-2 page table mapping - Levels 0 and 1 */
+ pud = stage2_get_pud(kvm, cache, addr);
+ if (!pud) {
+ /*
+ * Ignore calls from kvm_set_spte_hva for unallocated
+ * address ranges.
+ */
+ return 0;
+ }
+
+ /*
+ * While dirty page logging - dissolve huge PUD, then continue
+ * on to allocate page.
+ */
+ if (logging_active)
+ stage2_dissolve_pud(kvm, addr, pud);
+
+ if (stage2_pud_none(kvm, *pud)) {
+ if (!cache)
+ return 0; /* ignore calls from kvm_set_spte_hva */
+ pmd = mmu_memory_cache_alloc(cache);
+ stage2_pud_populate(kvm, pud, pmd);
+ get_page(virt_to_page(pud));
+ }
+
+ pmd = stage2_pmd_offset(kvm, pud, addr);
+ if (!pmd) {
+ /*
+ * Ignore calls from kvm_set_spte_hva for unallocated
+ * address ranges.
+ */
+ return 0;
+ }
+
+ /*
+ * While dirty page logging - dissolve huge PMD, then continue on to
+ * allocate page.
+ */
+ if (logging_active)
+ stage2_dissolve_pmd(kvm, addr, pmd);
+
+ /* Create stage-2 page mappings - Level 2 */
+ if (pmd_none(*pmd)) {
+ if (!cache)
+ return 0; /* ignore calls from kvm_set_spte_hva */
+ pte = mmu_memory_cache_alloc(cache);
+ kvm_pmd_populate(pmd, pte);
+ get_page(virt_to_page(pmd));
+ }
+
+ pte = pte_offset_kernel(pmd, addr);
+
+ if (iomap && pte_present(*pte))
+ return -EFAULT;
+
+ /* Create 2nd stage page table mapping - Level 3 */
+ old_pte = *pte;
+ if (pte_present(old_pte)) {
+ /* Skip page table update if there is no change */
+ if (pte_val(old_pte) == pte_val(*new_pte))
+ return 0;
+
+ kvm_set_pte(pte, __pte(0));
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ } else {
+ get_page(virt_to_page(pte));
+ }
+
+ kvm_set_pte(pte, *new_pte);
+ return 0;
+}
+
+#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
+static int stage2_ptep_test_and_clear_young(pte_t *pte)
+{
+ if (pte_young(*pte)) {
+ *pte = pte_mkold(*pte);
+ return 1;
+ }
+ return 0;
+}
+#else
+static int stage2_ptep_test_and_clear_young(pte_t *pte)
+{
+ return __ptep_test_and_clear_young(pte);
+}
+#endif
+
+static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
+{
+ return stage2_ptep_test_and_clear_young((pte_t *)pmd);
+}
+
+static int stage2_pudp_test_and_clear_young(pud_t *pud)
+{
+ return stage2_ptep_test_and_clear_young((pte_t *)pud);
+}
+
+/**
+ * kvm_phys_addr_ioremap - map a device range to guest IPA
+ *
+ * @kvm: The KVM pointer
+ * @guest_ipa: The IPA at which to insert the mapping
+ * @pa: The physical address of the device
+ * @size: The size of the mapping
+ */
+int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
+ phys_addr_t pa, unsigned long size, bool writable)
+{
+ phys_addr_t addr, end;
+ int ret = 0;
+ unsigned long pfn;
+ struct kvm_mmu_memory_cache cache = { 0, };
+
+ end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
+ pfn = __phys_to_pfn(pa);
+
+ for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
+ pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
+
+ if (writable)
+ pte = kvm_s2pte_mkwrite(pte);
+
+ ret = mmu_topup_memory_cache(&cache,
+ kvm_mmu_cache_min_pages(kvm),
+ KVM_NR_MEM_OBJS);
+ if (ret)
+ goto out;
+ spin_lock(&kvm->mmu_lock);
+ ret = stage2_set_pte(kvm, &cache, addr, &pte,
+ KVM_S2PTE_FLAG_IS_IOMAP);
+ spin_unlock(&kvm->mmu_lock);
+ if (ret)
+ goto out;
+
+ pfn++;
+ }
+
+out:
+ mmu_free_memory_cache(&cache);
+ return ret;
+}
+
+/**
+ * stage2_wp_ptes - write protect PMD range
+ * @pmd: pointer to pmd entry
+ * @addr: range start address
+ * @end: range end address
+ */
+static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
+{
+ pte_t *pte;
+
+ pte = pte_offset_kernel(pmd, addr);
+ do {
+ if (!pte_none(*pte)) {
+ if (!kvm_s2pte_readonly(pte))
+ kvm_set_s2pte_readonly(pte);
+ }
+ } while (pte++, addr += PAGE_SIZE, addr != end);
+}
+
+/**
+ * stage2_wp_pmds - write protect PUD range
+ * kvm: kvm instance for the VM
+ * @pud: pointer to pud entry
+ * @addr: range start address
+ * @end: range end address
+ */
+static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud,
+ phys_addr_t addr, phys_addr_t end)
+{
+ pmd_t *pmd;
+ phys_addr_t next;
+
+ pmd = stage2_pmd_offset(kvm, pud, addr);
+
+ do {
+ next = stage2_pmd_addr_end(kvm, addr, end);
+ if (!pmd_none(*pmd)) {
+ if (pmd_thp_or_huge(*pmd)) {
+ if (!kvm_s2pmd_readonly(pmd))
+ kvm_set_s2pmd_readonly(pmd);
+ } else {
+ stage2_wp_ptes(pmd, addr, next);
+ }
+ }
+ } while (pmd++, addr = next, addr != end);
+}
+
+/**
+ * stage2_wp_puds - write protect PGD range
+ * @pgd: pointer to pgd entry
+ * @addr: range start address
+ * @end: range end address
+ */
+static void stage2_wp_puds(struct kvm *kvm, pgd_t *pgd,
+ phys_addr_t addr, phys_addr_t end)
+{
+ pud_t *pud;
+ phys_addr_t next;
+
+ pud = stage2_pud_offset(kvm, pgd, addr);
+ do {
+ next = stage2_pud_addr_end(kvm, addr, end);
+ if (!stage2_pud_none(kvm, *pud)) {
+ if (stage2_pud_huge(kvm, *pud)) {
+ if (!kvm_s2pud_readonly(pud))
+ kvm_set_s2pud_readonly(pud);
+ } else {
+ stage2_wp_pmds(kvm, pud, addr, next);
+ }
+ }
+ } while (pud++, addr = next, addr != end);
+}
+
+/**
+ * stage2_wp_range() - write protect stage2 memory region range
+ * @kvm: The KVM pointer
+ * @addr: Start address of range
+ * @end: End address of range
+ */
+static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
+{
+ pgd_t *pgd;
+ phys_addr_t next;
+
+ pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
+ do {
+ /*
+ * Release kvm_mmu_lock periodically if the memory region is
+ * large. Otherwise, we may see kernel panics with
+ * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
+ * CONFIG_LOCKDEP. Additionally, holding the lock too long
+ * will also starve other vCPUs. We have to also make sure
+ * that the page tables are not freed while we released
+ * the lock.
+ */
+ cond_resched_lock(&kvm->mmu_lock);
+ if (!READ_ONCE(kvm->arch.pgd))
+ break;
+ next = stage2_pgd_addr_end(kvm, addr, end);
+ if (stage2_pgd_present(kvm, *pgd))
+ stage2_wp_puds(kvm, pgd, addr, next);
+ } while (pgd++, addr = next, addr != end);
+}
+
+/**
+ * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
+ * @kvm: The KVM pointer
+ * @slot: The memory slot to write protect
+ *
+ * Called to start logging dirty pages after memory region
+ * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
+ * all present PUD, PMD and PTEs are write protected in the memory region.
+ * Afterwards read of dirty page log can be called.
+ *
+ * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
+ * serializing operations for VM memory regions.
+ */
+void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
+{
+ struct kvm_memslots *slots = kvm_memslots(kvm);
+ struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
+ phys_addr_t start, end;
+
+ if (WARN_ON_ONCE(!memslot))
+ return;
+
+ start = memslot->base_gfn << PAGE_SHIFT;
+ end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
+
+ spin_lock(&kvm->mmu_lock);
+ stage2_wp_range(kvm, start, end);
+ spin_unlock(&kvm->mmu_lock);
+ kvm_flush_remote_tlbs(kvm);
+}
+
+/**
+ * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
+ * @kvm: The KVM pointer
+ * @slot: The memory slot associated with mask
+ * @gfn_offset: The gfn offset in memory slot
+ * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
+ * slot to be write protected
+ *
+ * Walks bits set in mask write protects the associated pte's. Caller must
+ * acquire kvm_mmu_lock.
+ */
+static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
+ struct kvm_memory_slot *slot,
+ gfn_t gfn_offset, unsigned long mask)
+{
+ phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
+ phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
+ phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
+
+ stage2_wp_range(kvm, start, end);
+}
+
+/*
+ * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
+ * dirty pages.
+ *
+ * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
+ * enable dirty logging for them.
+ */
+void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
+ struct kvm_memory_slot *slot,
+ gfn_t gfn_offset, unsigned long mask)
+{
+ kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
+}
+
+static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
+{
+ __clean_dcache_guest_page(pfn, size);
+}
+
+static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
+{
+ __invalidate_icache_guest_page(pfn, size);
+}
+
+static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
+{
+ send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
+}
+
+static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
+ unsigned long hva,
+ unsigned long map_size)
+{
+ gpa_t gpa_start;
+ hva_t uaddr_start, uaddr_end;
+ size_t size;
+
+ /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
+ if (map_size == PAGE_SIZE)
+ return true;
+
+ size = memslot->npages * PAGE_SIZE;
+
+ gpa_start = memslot->base_gfn << PAGE_SHIFT;
+
+ uaddr_start = memslot->userspace_addr;
+ uaddr_end = uaddr_start + size;
+
+ /*
+ * Pages belonging to memslots that don't have the same alignment
+ * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
+ * PMD/PUD entries, because we'll end up mapping the wrong pages.
+ *
+ * Consider a layout like the following:
+ *
+ * memslot->userspace_addr:
+ * +-----+--------------------+--------------------+---+
+ * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
+ * +-----+--------------------+--------------------+---+
+ *
+ * memslot->base_gfn << PAGE_SHIFT:
+ * +---+--------------------+--------------------+-----+
+ * |abc|def Stage-2 block | Stage-2 block |tvxyz|
+ * +---+--------------------+--------------------+-----+
+ *
+ * If we create those stage-2 blocks, we'll end up with this incorrect
+ * mapping:
+ * d -> f
+ * e -> g
+ * f -> h
+ */
+ if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
+ return false;
+
+ /*
+ * Next, let's make sure we're not trying to map anything not covered
+ * by the memslot. This means we have to prohibit block size mappings
+ * for the beginning and end of a non-block aligned and non-block sized
+ * memory slot (illustrated by the head and tail parts of the
+ * userspace view above containing pages 'abcde' and 'xyz',
+ * respectively).
+ *
+ * Note that it doesn't matter if we do the check using the
+ * userspace_addr or the base_gfn, as both are equally aligned (per
+ * the check above) and equally sized.
+ */
+ return (hva & ~(map_size - 1)) >= uaddr_start &&
+ (hva & ~(map_size - 1)) + map_size <= uaddr_end;
+}
+
+/*
+ * Check if the given hva is backed by a transparent huge page (THP) and
+ * whether it can be mapped using block mapping in stage2. If so, adjust
+ * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
+ * supported. This will need to be updated to support other THP sizes.
+ *
+ * Returns the size of the mapping.
+ */
+static unsigned long
+transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
+ unsigned long hva, kvm_pfn_t *pfnp,
+ phys_addr_t *ipap)
+{
+ kvm_pfn_t pfn = *pfnp;
+
+ /*
+ * Make sure the adjustment is done only for THP pages. Also make
+ * sure that the HVA and IPA are sufficiently aligned and that the
+ * block map is contained within the memslot.
+ */
+ if (kvm_is_transparent_hugepage(pfn) &&
+ fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
+ /*
+ * The address we faulted on is backed by a transparent huge
+ * page. However, because we map the compound huge page and
+ * not the individual tail page, we need to transfer the
+ * refcount to the head page. We have to be careful that the
+ * THP doesn't start to split while we are adjusting the
+ * refcounts.
+ *
+ * We are sure this doesn't happen, because mmu_notifier_retry
+ * was successful and we are holding the mmu_lock, so if this
+ * THP is trying to split, it will be blocked in the mmu
+ * notifier before touching any of the pages, specifically
+ * before being able to call __split_huge_page_refcount().
+ *
+ * We can therefore safely transfer the refcount from PG_tail
+ * to PG_head and switch the pfn from a tail page to the head
+ * page accordingly.
+ */
+ *ipap &= PMD_MASK;
+ kvm_release_pfn_clean(pfn);
+ pfn &= ~(PTRS_PER_PMD - 1);
+ kvm_get_pfn(pfn);
+ *pfnp = pfn;
+
+ return PMD_SIZE;
+ }
+
+ /* Use page mapping if we cannot use block mapping. */
+ return PAGE_SIZE;
+}
+
+static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
+ struct kvm_memory_slot *memslot, unsigned long hva,
+ unsigned long fault_status)
+{
+ int ret;
+ bool write_fault, writable, force_pte = false;
+ bool exec_fault, needs_exec;
+ unsigned long mmu_seq;
+ gfn_t gfn = fault_ipa >> PAGE_SHIFT;
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
+ struct vm_area_struct *vma;
+ short vma_shift;
+ kvm_pfn_t pfn;
+ pgprot_t mem_type = PAGE_S2;
+ bool logging_active = memslot_is_logging(memslot);
+ unsigned long vma_pagesize, flags = 0;
+
+ write_fault = kvm_is_write_fault(vcpu);
+ exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
+ VM_BUG_ON(write_fault && exec_fault);
+
+ if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
+ kvm_err("Unexpected L2 read permission error\n");
+ return -EFAULT;
+ }
+
+ /* Let's check if we will get back a huge page backed by hugetlbfs */
+ down_read(&current->mm->mmap_sem);
+ vma = find_vma_intersection(current->mm, hva, hva + 1);
+ if (unlikely(!vma)) {
+ kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
+ up_read(&current->mm->mmap_sem);
+ return -EFAULT;
+ }
+
+ if (is_vm_hugetlb_page(vma))
+ vma_shift = huge_page_shift(hstate_vma(vma));
+ else
+ vma_shift = PAGE_SHIFT;
+
+ vma_pagesize = 1ULL << vma_shift;
+ if (logging_active ||
+ (vma->vm_flags & VM_PFNMAP) ||
+ !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) {
+ force_pte = true;
+ vma_pagesize = PAGE_SIZE;
+ }
+
+ /*
+ * The stage2 has a minimum of 2 level table (For arm64 see
+ * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can
+ * use PMD_SIZE huge mappings (even when the PMD is folded into PGD).
+ * As for PUD huge maps, we must make sure that we have at least
+ * 3 levels, i.e, PMD is not folded.
+ */
+ if (vma_pagesize == PMD_SIZE ||
+ (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm)))
+ gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
+ up_read(&current->mm->mmap_sem);
+
+ /* We need minimum second+third level pages */
+ ret = mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm),
+ KVM_NR_MEM_OBJS);
+ if (ret)
+ return ret;
+
+ mmu_seq = vcpu->kvm->mmu_notifier_seq;
+ /*
+ * Ensure the read of mmu_notifier_seq happens before we call
+ * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
+ * the page we just got a reference to gets unmapped before we have a
+ * chance to grab the mmu_lock, which ensure that if the page gets
+ * unmapped afterwards, the call to kvm_unmap_hva will take it away
+ * from us again properly. This smp_rmb() interacts with the smp_wmb()
+ * in kvm_mmu_notifier_invalidate_<page|range_end>.
+ */
+ smp_rmb();
+
+ pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
+ if (pfn == KVM_PFN_ERR_HWPOISON) {
+ kvm_send_hwpoison_signal(hva, vma_shift);
+ return 0;
+ }
+ if (is_error_noslot_pfn(pfn))
+ return -EFAULT;
+
+ if (kvm_is_device_pfn(pfn)) {
+ mem_type = PAGE_S2_DEVICE;
+ flags |= KVM_S2PTE_FLAG_IS_IOMAP;
+ } else if (logging_active) {
+ /*
+ * Faults on pages in a memslot with logging enabled
+ * should not be mapped with huge pages (it introduces churn
+ * and performance degradation), so force a pte mapping.
+ */
+ flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
+
+ /*
+ * Only actually map the page as writable if this was a write
+ * fault.
+ */
+ if (!write_fault)
+ writable = false;
+ }
+
+ if (exec_fault && is_iomap(flags))
+ return -ENOEXEC;
+
+ spin_lock(&kvm->mmu_lock);
+ if (mmu_notifier_retry(kvm, mmu_seq))
+ goto out_unlock;
+
+ /*
+ * If we are not forced to use page mapping, check if we are
+ * backed by a THP and thus use block mapping if possible.
+ */
+ if (vma_pagesize == PAGE_SIZE && !force_pte)
+ vma_pagesize = transparent_hugepage_adjust(memslot, hva,
+ &pfn, &fault_ipa);
+ if (writable)
+ kvm_set_pfn_dirty(pfn);
+
+ if (fault_status != FSC_PERM && !is_iomap(flags))
+ clean_dcache_guest_page(pfn, vma_pagesize);
+
+ if (exec_fault)
+ invalidate_icache_guest_page(pfn, vma_pagesize);
+
+ /*
+ * If we took an execution fault we have made the
+ * icache/dcache coherent above and should now let the s2
+ * mapping be executable.
+ *
+ * Write faults (!exec_fault && FSC_PERM) are orthogonal to
+ * execute permissions, and we preserve whatever we have.
+ */
+ needs_exec = exec_fault ||
+ (fault_status == FSC_PERM && stage2_is_exec(kvm, fault_ipa));
+
+ if (vma_pagesize == PUD_SIZE) {
+ pud_t new_pud = kvm_pfn_pud(pfn, mem_type);
+
+ new_pud = kvm_pud_mkhuge(new_pud);
+ if (writable)
+ new_pud = kvm_s2pud_mkwrite(new_pud);
+
+ if (needs_exec)
+ new_pud = kvm_s2pud_mkexec(new_pud);
+
+ ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud);
+ } else if (vma_pagesize == PMD_SIZE) {
+ pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);
+
+ new_pmd = kvm_pmd_mkhuge(new_pmd);
+
+ if (writable)
+ new_pmd = kvm_s2pmd_mkwrite(new_pmd);
+
+ if (needs_exec)
+ new_pmd = kvm_s2pmd_mkexec(new_pmd);
+
+ ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
+ } else {
+ pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
+
+ if (writable) {
+ new_pte = kvm_s2pte_mkwrite(new_pte);
+ mark_page_dirty(kvm, gfn);
+ }
+
+ if (needs_exec)
+ new_pte = kvm_s2pte_mkexec(new_pte);
+
+ ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
+ }
+
+out_unlock:
+ spin_unlock(&kvm->mmu_lock);
+ kvm_set_pfn_accessed(pfn);
+ kvm_release_pfn_clean(pfn);
+ return ret;
+}
+
+/*
+ * Resolve the access fault by making the page young again.
+ * Note that because the faulting entry is guaranteed not to be
+ * cached in the TLB, we don't need to invalidate anything.
+ * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
+ * so there is no need for atomic (pte|pmd)_mkyoung operations.
+ */
+static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
+{
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+ kvm_pfn_t pfn;
+ bool pfn_valid = false;
+
+ trace_kvm_access_fault(fault_ipa);
+
+ spin_lock(&vcpu->kvm->mmu_lock);
+
+ if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte))
+ goto out;
+
+ if (pud) { /* HugeTLB */
+ *pud = kvm_s2pud_mkyoung(*pud);
+ pfn = kvm_pud_pfn(*pud);
+ pfn_valid = true;
+ } else if (pmd) { /* THP, HugeTLB */
+ *pmd = pmd_mkyoung(*pmd);
+ pfn = pmd_pfn(*pmd);
+ pfn_valid = true;
+ } else {
+ *pte = pte_mkyoung(*pte); /* Just a page... */
+ pfn = pte_pfn(*pte);
+ pfn_valid = true;
+ }
+
+out:
+ spin_unlock(&vcpu->kvm->mmu_lock);
+ if (pfn_valid)
+ kvm_set_pfn_accessed(pfn);
+}
+
+/**
+ * kvm_handle_guest_abort - handles all 2nd stage aborts
+ * @vcpu: the VCPU pointer
+ * @run: the kvm_run structure
+ *
+ * Any abort that gets to the host is almost guaranteed to be caused by a
+ * missing second stage translation table entry, which can mean that either the
+ * guest simply needs more memory and we must allocate an appropriate page or it
+ * can mean that the guest tried to access I/O memory, which is emulated by user
+ * space. The distinction is based on the IPA causing the fault and whether this
+ * memory region has been registered as standard RAM by user space.
+ */
+int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ unsigned long fault_status;
+ phys_addr_t fault_ipa;
+ struct kvm_memory_slot *memslot;
+ unsigned long hva;
+ bool is_iabt, write_fault, writable;
+ gfn_t gfn;
+ int ret, idx;
+
+ fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
+
+ fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
+ is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
+
+ /* Synchronous External Abort? */
+ if (kvm_vcpu_dabt_isextabt(vcpu)) {
+ /*
+ * For RAS the host kernel may handle this abort.
+ * There is no need to pass the error into the guest.
+ */
+ if (!kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
+ return 1;
+
+ if (unlikely(!is_iabt)) {
+ kvm_inject_vabt(vcpu);
+ return 1;
+ }
+ }
+
+ trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
+ kvm_vcpu_get_hfar(vcpu), fault_ipa);
+
+ /* Check the stage-2 fault is trans. fault or write fault */
+ if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
+ fault_status != FSC_ACCESS) {
+ kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
+ kvm_vcpu_trap_get_class(vcpu),
+ (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
+ (unsigned long)kvm_vcpu_get_hsr(vcpu));
+ return -EFAULT;
+ }
+
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+
+ gfn = fault_ipa >> PAGE_SHIFT;
+ memslot = gfn_to_memslot(vcpu->kvm, gfn);
+ hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
+ write_fault = kvm_is_write_fault(vcpu);
+ if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
+ if (is_iabt) {
+ /* Prefetch Abort on I/O address */
+ ret = -ENOEXEC;
+ goto out;
+ }
+
+ /*
+ * Check for a cache maintenance operation. Since we
+ * ended-up here, we know it is outside of any memory
+ * slot. But we can't find out if that is for a device,
+ * or if the guest is just being stupid. The only thing
+ * we know for sure is that this range cannot be cached.
+ *
+ * So let's assume that the guest is just being
+ * cautious, and skip the instruction.
+ */
+ if (kvm_vcpu_dabt_is_cm(vcpu)) {
+ kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
+ ret = 1;
+ goto out_unlock;
+ }
+
+ /*
+ * The IPA is reported as [MAX:12], so we need to
+ * complement it with the bottom 12 bits from the
+ * faulting VA. This is always 12 bits, irrespective
+ * of the page size.
+ */
+ fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
+ ret = io_mem_abort(vcpu, run, fault_ipa);
+ goto out_unlock;
+ }
+
+ /* Userspace should not be able to register out-of-bounds IPAs */
+ VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
+
+ if (fault_status == FSC_ACCESS) {
+ handle_access_fault(vcpu, fault_ipa);
+ ret = 1;
+ goto out_unlock;
+ }
+
+ ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
+ if (ret == 0)
+ ret = 1;
+out:
+ if (ret == -ENOEXEC) {
+ kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
+ ret = 1;
+ }
+out_unlock:
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+ return ret;
+}
+
+static int handle_hva_to_gpa(struct kvm *kvm,
+ unsigned long start,
+ unsigned long end,
+ int (*handler)(struct kvm *kvm,
+ gpa_t gpa, u64 size,
+ void *data),
+ void *data)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+ int ret = 0;
+
+ slots = kvm_memslots(kvm);
+
+ /* we only care about the pages that the guest sees */
+ kvm_for_each_memslot(memslot, slots) {
+ unsigned long hva_start, hva_end;
+ gfn_t gpa;
+
+ hva_start = max(start, memslot->userspace_addr);
+ hva_end = min(end, memslot->userspace_addr +
+ (memslot->npages << PAGE_SHIFT));
+ if (hva_start >= hva_end)
+ continue;
+
+ gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
+ ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
+ }
+
+ return ret;
+}
+
+static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
+{
+ unmap_stage2_range(kvm, gpa, size);
+ return 0;
+}
+
+int kvm_unmap_hva_range(struct kvm *kvm,
+ unsigned long start, unsigned long end)
+{
+ if (!kvm->arch.pgd)
+ return 0;
+
+ trace_kvm_unmap_hva_range(start, end);
+ handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
+ return 0;
+}
+
+static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
+{
+ pte_t *pte = (pte_t *)data;
+
+ WARN_ON(size != PAGE_SIZE);
+ /*
+ * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
+ * flag clear because MMU notifiers will have unmapped a huge PMD before
+ * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
+ * therefore stage2_set_pte() never needs to clear out a huge PMD
+ * through this calling path.
+ */
+ stage2_set_pte(kvm, NULL, gpa, pte, 0);
+ return 0;
+}
+
+
+int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
+{
+ unsigned long end = hva + PAGE_SIZE;
+ kvm_pfn_t pfn = pte_pfn(pte);
+ pte_t stage2_pte;
+
+ if (!kvm->arch.pgd)
+ return 0;
+
+ trace_kvm_set_spte_hva(hva);
+
+ /*
+ * We've moved a page around, probably through CoW, so let's treat it
+ * just like a translation fault and clean the cache to the PoC.
+ */
+ clean_dcache_guest_page(pfn, PAGE_SIZE);
+ stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
+ handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
+
+ return 0;
+}
+
+static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
+{
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
+ if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
+ return 0;
+
+ if (pud)
+ return stage2_pudp_test_and_clear_young(pud);
+ else if (pmd)
+ return stage2_pmdp_test_and_clear_young(pmd);
+ else
+ return stage2_ptep_test_and_clear_young(pte);
+}
+
+static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
+{
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
+ if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
+ return 0;
+
+ if (pud)
+ return kvm_s2pud_young(*pud);
+ else if (pmd)
+ return pmd_young(*pmd);
+ else
+ return pte_young(*pte);
+}
+
+int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
+{
+ if (!kvm->arch.pgd)
+ return 0;
+ trace_kvm_age_hva(start, end);
+ return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
+}
+
+int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
+{
+ if (!kvm->arch.pgd)
+ return 0;
+ trace_kvm_test_age_hva(hva);
+ return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
+ kvm_test_age_hva_handler, NULL);
+}
+
+void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
+{
+ mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
+}
+
+phys_addr_t kvm_mmu_get_httbr(void)
+{
+ if (__kvm_cpu_uses_extended_idmap())
+ return virt_to_phys(merged_hyp_pgd);
+ else
+ return virt_to_phys(hyp_pgd);
+}
+
+phys_addr_t kvm_get_idmap_vector(void)
+{
+ return hyp_idmap_vector;
+}
+
+static int kvm_map_idmap_text(pgd_t *pgd)
+{
+ int err;
+
+ /* Create the idmap in the boot page tables */
+ err = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
+ hyp_idmap_start, hyp_idmap_end,
+ __phys_to_pfn(hyp_idmap_start),
+ PAGE_HYP_EXEC);
+ if (err)
+ kvm_err("Failed to idmap %lx-%lx\n",
+ hyp_idmap_start, hyp_idmap_end);
+
+ return err;
+}
+
+int kvm_mmu_init(void)
+{
+ int err;
+
+ hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
+ hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
+ hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
+ hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
+ hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
+
+ /*
+ * We rely on the linker script to ensure at build time that the HYP
+ * init code does not cross a page boundary.
+ */
+ BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
+
+ kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
+ kvm_debug("HYP VA range: %lx:%lx\n",
+ kern_hyp_va(PAGE_OFFSET),
+ kern_hyp_va((unsigned long)high_memory - 1));
+
+ if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
+ hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) &&
+ hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
+ /*
+ * The idmap page is intersecting with the VA space,
+ * it is not safe to continue further.
+ */
+ kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
+ err = -EINVAL;
+ goto out;
+ }
+
+ hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
+ if (!hyp_pgd) {
+ kvm_err("Hyp mode PGD not allocated\n");
+ err = -ENOMEM;
+ goto out;
+ }
+
+ if (__kvm_cpu_uses_extended_idmap()) {
+ boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
+ hyp_pgd_order);
+ if (!boot_hyp_pgd) {
+ kvm_err("Hyp boot PGD not allocated\n");
+ err = -ENOMEM;
+ goto out;
+ }
+
+ err = kvm_map_idmap_text(boot_hyp_pgd);
+ if (err)
+ goto out;
+
+ merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
+ if (!merged_hyp_pgd) {
+ kvm_err("Failed to allocate extra HYP pgd\n");
+ goto out;
+ }
+ __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
+ hyp_idmap_start);
+ } else {
+ err = kvm_map_idmap_text(hyp_pgd);
+ if (err)
+ goto out;
+ }
+
+ io_map_base = hyp_idmap_start;
+ return 0;
+out:
+ free_hyp_pgds();
+ return err;
+}
+
+void kvm_arch_commit_memory_region(struct kvm *kvm,
+ const struct kvm_userspace_memory_region *mem,
+ struct kvm_memory_slot *old,
+ const struct kvm_memory_slot *new,
+ enum kvm_mr_change change)
+{
+ /*
+ * At this point memslot has been committed and there is an
+ * allocated dirty_bitmap[], dirty pages will be tracked while the
+ * memory slot is write protected.
+ */
+ if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
+ /*
+ * If we're with initial-all-set, we don't need to write
+ * protect any pages because they're all reported as dirty.
+ * Huge pages and normal pages will be write protect gradually.
+ */
+ if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
+ kvm_mmu_wp_memory_region(kvm, mem->slot);
+ }
+ }
+}
+
+int kvm_arch_prepare_memory_region(struct kvm *kvm,
+ struct kvm_memory_slot *memslot,
+ const struct kvm_userspace_memory_region *mem,
+ enum kvm_mr_change change)
+{
+ hva_t hva = mem->userspace_addr;
+ hva_t reg_end = hva + mem->memory_size;
+ bool writable = !(mem->flags & KVM_MEM_READONLY);
+ int ret = 0;
+
+ if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
+ change != KVM_MR_FLAGS_ONLY)
+ return 0;
+
+ /*
+ * Prevent userspace from creating a memory region outside of the IPA
+ * space addressable by the KVM guest IPA space.
+ */
+ if (memslot->base_gfn + memslot->npages >=
+ (kvm_phys_size(kvm) >> PAGE_SHIFT))
+ return -EFAULT;
+
+ down_read(&current->mm->mmap_sem);
+ /*
+ * A memory region could potentially cover multiple VMAs, and any holes
+ * between them, so iterate over all of them to find out if we can map
+ * any of them right now.
+ *
+ * +--------------------------------------------+
+ * +---------------+----------------+ +----------------+
+ * | : VMA 1 | VMA 2 | | VMA 3 : |
+ * +---------------+----------------+ +----------------+
+ * | memory region |
+ * +--------------------------------------------+
+ */
+ do {
+ struct vm_area_struct *vma = find_vma(current->mm, hva);
+ hva_t vm_start, vm_end;
+
+ if (!vma || vma->vm_start >= reg_end)
+ break;
+
+ /*
+ * Take the intersection of this VMA with the memory region
+ */
+ vm_start = max(hva, vma->vm_start);
+ vm_end = min(reg_end, vma->vm_end);
+
+ if (vma->vm_flags & VM_PFNMAP) {
+ gpa_t gpa = mem->guest_phys_addr +
+ (vm_start - mem->userspace_addr);
+ phys_addr_t pa;
+
+ pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
+ pa += vm_start - vma->vm_start;
+
+ /* IO region dirty page logging not allowed */
+ if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
+ vm_end - vm_start,
+ writable);
+ if (ret)
+ break;
+ }
+ hva = vm_end;
+ } while (hva < reg_end);
+
+ if (change == KVM_MR_FLAGS_ONLY)
+ goto out;
+
+ spin_lock(&kvm->mmu_lock);
+ if (ret)
+ unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
+ else
+ stage2_flush_memslot(kvm, memslot);
+ spin_unlock(&kvm->mmu_lock);
+out:
+ up_read(&current->mm->mmap_sem);
+ return ret;
+}
+
+void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
+{
+}
+
+void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
+{
+}
+
+void kvm_arch_flush_shadow_all(struct kvm *kvm)
+{
+ kvm_free_stage2_pgd(kvm);
+}
+
+void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *slot)
+{
+ gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
+ phys_addr_t size = slot->npages << PAGE_SHIFT;
+
+ spin_lock(&kvm->mmu_lock);
+ unmap_stage2_range(kvm, gpa, size);
+ spin_unlock(&kvm->mmu_lock);
+}
+
+/*
+ * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
+ *
+ * Main problems:
+ * - S/W ops are local to a CPU (not broadcast)
+ * - We have line migration behind our back (speculation)
+ * - System caches don't support S/W at all (damn!)
+ *
+ * In the face of the above, the best we can do is to try and convert
+ * S/W ops to VA ops. Because the guest is not allowed to infer the
+ * S/W to PA mapping, it can only use S/W to nuke the whole cache,
+ * which is a rather good thing for us.
+ *
+ * Also, it is only used when turning caches on/off ("The expected
+ * usage of the cache maintenance instructions that operate by set/way
+ * is associated with the cache maintenance instructions associated
+ * with the powerdown and powerup of caches, if this is required by
+ * the implementation.").
+ *
+ * We use the following policy:
+ *
+ * - If we trap a S/W operation, we enable VM trapping to detect
+ * caches being turned on/off, and do a full clean.
+ *
+ * - We flush the caches on both caches being turned on and off.
+ *
+ * - Once the caches are enabled, we stop trapping VM ops.
+ */
+void kvm_set_way_flush(struct kvm_vcpu *vcpu)
+{
+ unsigned long hcr = *vcpu_hcr(vcpu);
+
+ /*
+ * If this is the first time we do a S/W operation
+ * (i.e. HCR_TVM not set) flush the whole memory, and set the
+ * VM trapping.
+ *
+ * Otherwise, rely on the VM trapping to wait for the MMU +
+ * Caches to be turned off. At that point, we'll be able to
+ * clean the caches again.
+ */
+ if (!(hcr & HCR_TVM)) {
+ trace_kvm_set_way_flush(*vcpu_pc(vcpu),
+ vcpu_has_cache_enabled(vcpu));
+ stage2_flush_vm(vcpu->kvm);
+ *vcpu_hcr(vcpu) = hcr | HCR_TVM;
+ }
+}
+
+void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
+{
+ bool now_enabled = vcpu_has_cache_enabled(vcpu);
+
+ /*
+ * If switching the MMU+caches on, need to invalidate the caches.
+ * If switching it off, need to clean the caches.
+ * Clean + invalidate does the trick always.
+ */
+ if (now_enabled != was_enabled)
+ stage2_flush_vm(vcpu->kvm);
+
+ /* Caches are now on, stop trapping VM ops (until a S/W op) */
+ if (now_enabled)
+ *vcpu_hcr(vcpu) &= ~HCR_TVM;
+
+ trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
+}
diff --git a/arch/arm64/kvm/perf.c b/arch/arm64/kvm/perf.c
new file mode 100644
index 000000000000..d45b8b9a4415
--- /dev/null
+++ b/arch/arm64/kvm/perf.c
@@ -0,0 +1,57 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Based on the x86 implementation.
+ *
+ * Copyright (C) 2012 ARM Ltd.
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <linux/perf_event.h>
+#include <linux/kvm_host.h>
+
+#include <asm/kvm_emulate.h>
+
+static int kvm_is_in_guest(void)
+{
+ return kvm_get_running_vcpu() != NULL;
+}
+
+static int kvm_is_user_mode(void)
+{
+ struct kvm_vcpu *vcpu;
+
+ vcpu = kvm_get_running_vcpu();
+
+ if (vcpu)
+ return !vcpu_mode_priv(vcpu);
+
+ return 0;
+}
+
+static unsigned long kvm_get_guest_ip(void)
+{
+ struct kvm_vcpu *vcpu;
+
+ vcpu = kvm_get_running_vcpu();
+
+ if (vcpu)
+ return *vcpu_pc(vcpu);
+
+ return 0;
+}
+
+static struct perf_guest_info_callbacks kvm_guest_cbs = {
+ .is_in_guest = kvm_is_in_guest,
+ .is_user_mode = kvm_is_user_mode,
+ .get_guest_ip = kvm_get_guest_ip,
+};
+
+int kvm_perf_init(void)
+{
+ return perf_register_guest_info_callbacks(&kvm_guest_cbs);
+}
+
+int kvm_perf_teardown(void)
+{
+ return perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
+}
diff --git a/arch/arm64/kvm/pmu-emul.c b/arch/arm64/kvm/pmu-emul.c
new file mode 100644
index 000000000000..f0d0312c0a55
--- /dev/null
+++ b/arch/arm64/kvm/pmu-emul.c
@@ -0,0 +1,869 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2015 Linaro Ltd.
+ * Author: Shannon Zhao <shannon.zhao@linaro.org>
+ */
+
+#include <linux/cpu.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/perf_event.h>
+#include <linux/perf/arm_pmu.h>
+#include <linux/uaccess.h>
+#include <asm/kvm_emulate.h>
+#include <kvm/arm_pmu.h>
+#include <kvm/arm_vgic.h>
+
+static void kvm_pmu_create_perf_event(struct kvm_vcpu *vcpu, u64 select_idx);
+static void kvm_pmu_update_pmc_chained(struct kvm_vcpu *vcpu, u64 select_idx);
+static void kvm_pmu_stop_counter(struct kvm_vcpu *vcpu, struct kvm_pmc *pmc);
+
+#define PERF_ATTR_CFG1_KVM_PMU_CHAINED 0x1
+
+/**
+ * kvm_pmu_idx_is_64bit - determine if select_idx is a 64bit counter
+ * @vcpu: The vcpu pointer
+ * @select_idx: The counter index
+ */
+static bool kvm_pmu_idx_is_64bit(struct kvm_vcpu *vcpu, u64 select_idx)
+{
+ return (select_idx == ARMV8_PMU_CYCLE_IDX &&
+ __vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_LC);
+}
+
+static struct kvm_vcpu *kvm_pmc_to_vcpu(struct kvm_pmc *pmc)
+{
+ struct kvm_pmu *pmu;
+ struct kvm_vcpu_arch *vcpu_arch;
+
+ pmc -= pmc->idx;
+ pmu = container_of(pmc, struct kvm_pmu, pmc[0]);
+ vcpu_arch = container_of(pmu, struct kvm_vcpu_arch, pmu);
+ return container_of(vcpu_arch, struct kvm_vcpu, arch);
+}
+
+/**
+ * kvm_pmu_pmc_is_chained - determine if the pmc is chained
+ * @pmc: The PMU counter pointer
+ */
+static bool kvm_pmu_pmc_is_chained(struct kvm_pmc *pmc)
+{
+ struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
+
+ return test_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
+}
+
+/**
+ * kvm_pmu_idx_is_high_counter - determine if select_idx is a high/low counter
+ * @select_idx: The counter index
+ */
+static bool kvm_pmu_idx_is_high_counter(u64 select_idx)
+{
+ return select_idx & 0x1;
+}
+
+/**
+ * kvm_pmu_get_canonical_pmc - obtain the canonical pmc
+ * @pmc: The PMU counter pointer
+ *
+ * When a pair of PMCs are chained together we use the low counter (canonical)
+ * to hold the underlying perf event.
+ */
+static struct kvm_pmc *kvm_pmu_get_canonical_pmc(struct kvm_pmc *pmc)
+{
+ if (kvm_pmu_pmc_is_chained(pmc) &&
+ kvm_pmu_idx_is_high_counter(pmc->idx))
+ return pmc - 1;
+
+ return pmc;
+}
+static struct kvm_pmc *kvm_pmu_get_alternate_pmc(struct kvm_pmc *pmc)
+{
+ if (kvm_pmu_idx_is_high_counter(pmc->idx))
+ return pmc - 1;
+ else
+ return pmc + 1;
+}
+
+/**
+ * kvm_pmu_idx_has_chain_evtype - determine if the event type is chain
+ * @vcpu: The vcpu pointer
+ * @select_idx: The counter index
+ */
+static bool kvm_pmu_idx_has_chain_evtype(struct kvm_vcpu *vcpu, u64 select_idx)
+{
+ u64 eventsel, reg;
+
+ select_idx |= 0x1;
+
+ if (select_idx == ARMV8_PMU_CYCLE_IDX)
+ return false;
+
+ reg = PMEVTYPER0_EL0 + select_idx;
+ eventsel = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_EVENT;
+
+ return eventsel == ARMV8_PMUV3_PERFCTR_CHAIN;
+}
+
+/**
+ * kvm_pmu_get_pair_counter_value - get PMU counter value
+ * @vcpu: The vcpu pointer
+ * @pmc: The PMU counter pointer
+ */
+static u64 kvm_pmu_get_pair_counter_value(struct kvm_vcpu *vcpu,
+ struct kvm_pmc *pmc)
+{
+ u64 counter, counter_high, reg, enabled, running;
+
+ if (kvm_pmu_pmc_is_chained(pmc)) {
+ pmc = kvm_pmu_get_canonical_pmc(pmc);
+ reg = PMEVCNTR0_EL0 + pmc->idx;
+
+ counter = __vcpu_sys_reg(vcpu, reg);
+ counter_high = __vcpu_sys_reg(vcpu, reg + 1);
+
+ counter = lower_32_bits(counter) | (counter_high << 32);
+ } else {
+ reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX)
+ ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + pmc->idx;
+ counter = __vcpu_sys_reg(vcpu, reg);
+ }
+
+ /*
+ * The real counter value is equal to the value of counter register plus
+ * the value perf event counts.
+ */
+ if (pmc->perf_event)
+ counter += perf_event_read_value(pmc->perf_event, &enabled,
+ &running);
+
+ return counter;
+}
+
+/**
+ * kvm_pmu_get_counter_value - get PMU counter value
+ * @vcpu: The vcpu pointer
+ * @select_idx: The counter index
+ */
+u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
+{
+ u64 counter;
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+ struct kvm_pmc *pmc = &pmu->pmc[select_idx];
+
+ counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);
+
+ if (kvm_pmu_pmc_is_chained(pmc) &&
+ kvm_pmu_idx_is_high_counter(select_idx))
+ counter = upper_32_bits(counter);
+ else if (select_idx != ARMV8_PMU_CYCLE_IDX)
+ counter = lower_32_bits(counter);
+
+ return counter;
+}
+
+/**
+ * kvm_pmu_set_counter_value - set PMU counter value
+ * @vcpu: The vcpu pointer
+ * @select_idx: The counter index
+ * @val: The counter value
+ */
+void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
+{
+ u64 reg;
+
+ reg = (select_idx == ARMV8_PMU_CYCLE_IDX)
+ ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + select_idx;
+ __vcpu_sys_reg(vcpu, reg) += (s64)val - kvm_pmu_get_counter_value(vcpu, select_idx);
+
+ /* Recreate the perf event to reflect the updated sample_period */
+ kvm_pmu_create_perf_event(vcpu, select_idx);
+}
+
+/**
+ * kvm_pmu_release_perf_event - remove the perf event
+ * @pmc: The PMU counter pointer
+ */
+static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
+{
+ pmc = kvm_pmu_get_canonical_pmc(pmc);
+ if (pmc->perf_event) {
+ perf_event_disable(pmc->perf_event);
+ perf_event_release_kernel(pmc->perf_event);
+ pmc->perf_event = NULL;
+ }
+}
+
+/**
+ * kvm_pmu_stop_counter - stop PMU counter
+ * @pmc: The PMU counter pointer
+ *
+ * If this counter has been configured to monitor some event, release it here.
+ */
+static void kvm_pmu_stop_counter(struct kvm_vcpu *vcpu, struct kvm_pmc *pmc)
+{
+ u64 counter, reg, val;
+
+ pmc = kvm_pmu_get_canonical_pmc(pmc);
+ if (!pmc->perf_event)
+ return;
+
+ counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);
+
+ if (pmc->idx == ARMV8_PMU_CYCLE_IDX) {
+ reg = PMCCNTR_EL0;
+ val = counter;
+ } else {
+ reg = PMEVCNTR0_EL0 + pmc->idx;
+ val = lower_32_bits(counter);
+ }
+
+ __vcpu_sys_reg(vcpu, reg) = val;
+
+ if (kvm_pmu_pmc_is_chained(pmc))
+ __vcpu_sys_reg(vcpu, reg + 1) = upper_32_bits(counter);
+
+ kvm_pmu_release_perf_event(pmc);
+}
+
+/**
+ * kvm_pmu_vcpu_init - assign pmu counter idx for cpu
+ * @vcpu: The vcpu pointer
+ *
+ */
+void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
+{
+ int i;
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+
+ for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
+ pmu->pmc[i].idx = i;
+}
+
+/**
+ * kvm_pmu_vcpu_reset - reset pmu state for cpu
+ * @vcpu: The vcpu pointer
+ *
+ */
+void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
+{
+ unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+ int i;
+
+ for_each_set_bit(i, &mask, 32)
+ kvm_pmu_stop_counter(vcpu, &pmu->pmc[i]);
+
+ bitmap_zero(vcpu->arch.pmu.chained, ARMV8_PMU_MAX_COUNTER_PAIRS);
+}
+
+/**
+ * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
+ * @vcpu: The vcpu pointer
+ *
+ */
+void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
+{
+ int i;
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+
+ for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
+ kvm_pmu_release_perf_event(&pmu->pmc[i]);
+}
+
+u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
+{
+ u64 val = __vcpu_sys_reg(vcpu, PMCR_EL0) >> ARMV8_PMU_PMCR_N_SHIFT;
+
+ val &= ARMV8_PMU_PMCR_N_MASK;
+ if (val == 0)
+ return BIT(ARMV8_PMU_CYCLE_IDX);
+ else
+ return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
+}
+
+/**
+ * kvm_pmu_enable_counter_mask - enable selected PMU counters
+ * @vcpu: The vcpu pointer
+ * @val: the value guest writes to PMCNTENSET register
+ *
+ * Call perf_event_enable to start counting the perf event
+ */
+void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
+{
+ int i;
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+ struct kvm_pmc *pmc;
+
+ if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) || !val)
+ return;
+
+ for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
+ if (!(val & BIT(i)))
+ continue;
+
+ pmc = &pmu->pmc[i];
+
+ /* A change in the enable state may affect the chain state */
+ kvm_pmu_update_pmc_chained(vcpu, i);
+ kvm_pmu_create_perf_event(vcpu, i);
+
+ /* At this point, pmc must be the canonical */
+ if (pmc->perf_event) {
+ perf_event_enable(pmc->perf_event);
+ if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
+ kvm_debug("fail to enable perf event\n");
+ }
+ }
+}
+
+/**
+ * kvm_pmu_disable_counter_mask - disable selected PMU counters
+ * @vcpu: The vcpu pointer
+ * @val: the value guest writes to PMCNTENCLR register
+ *
+ * Call perf_event_disable to stop counting the perf event
+ */
+void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
+{
+ int i;
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+ struct kvm_pmc *pmc;
+
+ if (!val)
+ return;
+
+ for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
+ if (!(val & BIT(i)))
+ continue;
+
+ pmc = &pmu->pmc[i];
+
+ /* A change in the enable state may affect the chain state */
+ kvm_pmu_update_pmc_chained(vcpu, i);
+ kvm_pmu_create_perf_event(vcpu, i);
+
+ /* At this point, pmc must be the canonical */
+ if (pmc->perf_event)
+ perf_event_disable(pmc->perf_event);
+ }
+}
+
+static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
+{
+ u64 reg = 0;
+
+ if ((__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) {
+ reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
+ reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
+ reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
+ reg &= kvm_pmu_valid_counter_mask(vcpu);
+ }
+
+ return reg;
+}
+
+static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
+{
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+ bool overflow;
+
+ if (!kvm_arm_pmu_v3_ready(vcpu))
+ return;
+
+ overflow = !!kvm_pmu_overflow_status(vcpu);
+ if (pmu->irq_level == overflow)
+ return;
+
+ pmu->irq_level = overflow;
+
+ if (likely(irqchip_in_kernel(vcpu->kvm))) {
+ int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
+ pmu->irq_num, overflow, pmu);
+ WARN_ON(ret);
+ }
+}
+
+bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
+{
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+ struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
+ bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
+
+ if (likely(irqchip_in_kernel(vcpu->kvm)))
+ return false;
+
+ return pmu->irq_level != run_level;
+}
+
+/*
+ * Reflect the PMU overflow interrupt output level into the kvm_run structure
+ */
+void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
+{
+ struct kvm_sync_regs *regs = &vcpu->run->s.regs;
+
+ /* Populate the timer bitmap for user space */
+ regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
+ if (vcpu->arch.pmu.irq_level)
+ regs->device_irq_level |= KVM_ARM_DEV_PMU;
+}
+
+/**
+ * kvm_pmu_flush_hwstate - flush pmu state to cpu
+ * @vcpu: The vcpu pointer
+ *
+ * Check if the PMU has overflowed while we were running in the host, and inject
+ * an interrupt if that was the case.
+ */
+void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
+{
+ kvm_pmu_update_state(vcpu);
+}
+
+/**
+ * kvm_pmu_sync_hwstate - sync pmu state from cpu
+ * @vcpu: The vcpu pointer
+ *
+ * Check if the PMU has overflowed while we were running in the guest, and
+ * inject an interrupt if that was the case.
+ */
+void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
+{
+ kvm_pmu_update_state(vcpu);
+}
+
+/**
+ * When the perf event overflows, set the overflow status and inform the vcpu.
+ */
+static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
+ struct perf_sample_data *data,
+ struct pt_regs *regs)
+{
+ struct kvm_pmc *pmc = perf_event->overflow_handler_context;
+ struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
+ struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
+ int idx = pmc->idx;
+ u64 period;
+
+ cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);
+
+ /*
+ * Reset the sample period to the architectural limit,
+ * i.e. the point where the counter overflows.
+ */
+ period = -(local64_read(&perf_event->count));
+
+ if (!kvm_pmu_idx_is_64bit(vcpu, pmc->idx))
+ period &= GENMASK(31, 0);
+
+ local64_set(&perf_event->hw.period_left, 0);
+ perf_event->attr.sample_period = period;
+ perf_event->hw.sample_period = period;
+
+ __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx);
+
+ if (kvm_pmu_overflow_status(vcpu)) {
+ kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
+ kvm_vcpu_kick(vcpu);
+ }
+
+ cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
+}
+
+/**
+ * kvm_pmu_software_increment - do software increment
+ * @vcpu: The vcpu pointer
+ * @val: the value guest writes to PMSWINC register
+ */
+void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
+{
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+ int i;
+
+ if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E))
+ return;
+
+ /* Weed out disabled counters */
+ val &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
+
+ for (i = 0; i < ARMV8_PMU_CYCLE_IDX; i++) {
+ u64 type, reg;
+
+ if (!(val & BIT(i)))
+ continue;
+
+ /* PMSWINC only applies to ... SW_INC! */
+ type = __vcpu_sys_reg(vcpu, PMEVTYPER0_EL0 + i);
+ type &= ARMV8_PMU_EVTYPE_EVENT;
+ if (type != ARMV8_PMUV3_PERFCTR_SW_INCR)
+ continue;
+
+ /* increment this even SW_INC counter */
+ reg = __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) + 1;
+ reg = lower_32_bits(reg);
+ __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) = reg;
+
+ if (reg) /* no overflow on the low part */
+ continue;
+
+ if (kvm_pmu_pmc_is_chained(&pmu->pmc[i])) {
+ /* increment the high counter */
+ reg = __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i + 1) + 1;
+ reg = lower_32_bits(reg);
+ __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i + 1) = reg;
+ if (!reg) /* mark overflow on the high counter */
+ __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i + 1);
+ } else {
+ /* mark overflow on low counter */
+ __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i);
+ }
+ }
+}
+
+/**
+ * kvm_pmu_handle_pmcr - handle PMCR register
+ * @vcpu: The vcpu pointer
+ * @val: the value guest writes to PMCR register
+ */
+void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
+{
+ unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
+ int i;
+
+ if (val & ARMV8_PMU_PMCR_E) {
+ kvm_pmu_enable_counter_mask(vcpu,
+ __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask);
+ } else {
+ kvm_pmu_disable_counter_mask(vcpu, mask);
+ }
+
+ if (val & ARMV8_PMU_PMCR_C)
+ kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
+
+ if (val & ARMV8_PMU_PMCR_P) {
+ for_each_set_bit(i, &mask, 32)
+ kvm_pmu_set_counter_value(vcpu, i, 0);
+ }
+}
+
+static bool kvm_pmu_counter_is_enabled(struct kvm_vcpu *vcpu, u64 select_idx)
+{
+ return (__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) &&
+ (__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(select_idx));
+}
+
+/**
+ * kvm_pmu_create_perf_event - create a perf event for a counter
+ * @vcpu: The vcpu pointer
+ * @select_idx: The number of selected counter
+ */
+static void kvm_pmu_create_perf_event(struct kvm_vcpu *vcpu, u64 select_idx)
+{
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+ struct kvm_pmc *pmc;
+ struct perf_event *event;
+ struct perf_event_attr attr;
+ u64 eventsel, counter, reg, data;
+
+ /*
+ * For chained counters the event type and filtering attributes are
+ * obtained from the low/even counter. We also use this counter to
+ * determine if the event is enabled/disabled.
+ */
+ pmc = kvm_pmu_get_canonical_pmc(&pmu->pmc[select_idx]);
+
+ reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX)
+ ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + pmc->idx;
+ data = __vcpu_sys_reg(vcpu, reg);
+
+ kvm_pmu_stop_counter(vcpu, pmc);
+ eventsel = data & ARMV8_PMU_EVTYPE_EVENT;
+
+ /* Software increment event does't need to be backed by a perf event */
+ if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR &&
+ pmc->idx != ARMV8_PMU_CYCLE_IDX)
+ return;
+
+ memset(&attr, 0, sizeof(struct perf_event_attr));
+ attr.type = PERF_TYPE_RAW;
+ attr.size = sizeof(attr);
+ attr.pinned = 1;
+ attr.disabled = !kvm_pmu_counter_is_enabled(vcpu, pmc->idx);
+ attr.exclude_user = data & ARMV8_PMU_EXCLUDE_EL0 ? 1 : 0;
+ attr.exclude_kernel = data & ARMV8_PMU_EXCLUDE_EL1 ? 1 : 0;
+ attr.exclude_hv = 1; /* Don't count EL2 events */
+ attr.exclude_host = 1; /* Don't count host events */
+ attr.config = (pmc->idx == ARMV8_PMU_CYCLE_IDX) ?
+ ARMV8_PMUV3_PERFCTR_CPU_CYCLES : eventsel;
+
+ counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);
+
+ if (kvm_pmu_pmc_is_chained(pmc)) {
+ /**
+ * The initial sample period (overflow count) of an event. For
+ * chained counters we only support overflow interrupts on the
+ * high counter.
+ */
+ attr.sample_period = (-counter) & GENMASK(63, 0);
+ attr.config1 |= PERF_ATTR_CFG1_KVM_PMU_CHAINED;
+
+ event = perf_event_create_kernel_counter(&attr, -1, current,
+ kvm_pmu_perf_overflow,
+ pmc + 1);
+ } else {
+ /* The initial sample period (overflow count) of an event. */
+ if (kvm_pmu_idx_is_64bit(vcpu, pmc->idx))
+ attr.sample_period = (-counter) & GENMASK(63, 0);
+ else
+ attr.sample_period = (-counter) & GENMASK(31, 0);
+
+ event = perf_event_create_kernel_counter(&attr, -1, current,
+ kvm_pmu_perf_overflow, pmc);
+ }
+
+ if (IS_ERR(event)) {
+ pr_err_once("kvm: pmu event creation failed %ld\n",
+ PTR_ERR(event));
+ return;
+ }
+
+ pmc->perf_event = event;
+}
+
+/**
+ * kvm_pmu_update_pmc_chained - update chained bitmap
+ * @vcpu: The vcpu pointer
+ * @select_idx: The number of selected counter
+ *
+ * Update the chained bitmap based on the event type written in the
+ * typer register and the enable state of the odd register.
+ */
+static void kvm_pmu_update_pmc_chained(struct kvm_vcpu *vcpu, u64 select_idx)
+{
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+ struct kvm_pmc *pmc = &pmu->pmc[select_idx], *canonical_pmc;
+ bool new_state, old_state;
+
+ old_state = kvm_pmu_pmc_is_chained(pmc);
+ new_state = kvm_pmu_idx_has_chain_evtype(vcpu, pmc->idx) &&
+ kvm_pmu_counter_is_enabled(vcpu, pmc->idx | 0x1);
+
+ if (old_state == new_state)
+ return;
+
+ canonical_pmc = kvm_pmu_get_canonical_pmc(pmc);
+ kvm_pmu_stop_counter(vcpu, canonical_pmc);
+ if (new_state) {
+ /*
+ * During promotion from !chained to chained we must ensure
+ * the adjacent counter is stopped and its event destroyed
+ */
+ kvm_pmu_stop_counter(vcpu, kvm_pmu_get_alternate_pmc(pmc));
+ set_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
+ return;
+ }
+ clear_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
+}
+
+/**
+ * kvm_pmu_set_counter_event_type - set selected counter to monitor some event
+ * @vcpu: The vcpu pointer
+ * @data: The data guest writes to PMXEVTYPER_EL0
+ * @select_idx: The number of selected counter
+ *
+ * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
+ * event with given hardware event number. Here we call perf_event API to
+ * emulate this action and create a kernel perf event for it.
+ */
+void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
+ u64 select_idx)
+{
+ u64 reg, event_type = data & ARMV8_PMU_EVTYPE_MASK;
+
+ reg = (select_idx == ARMV8_PMU_CYCLE_IDX)
+ ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + select_idx;
+
+ __vcpu_sys_reg(vcpu, reg) = event_type;
+
+ kvm_pmu_update_pmc_chained(vcpu, select_idx);
+ kvm_pmu_create_perf_event(vcpu, select_idx);
+}
+
+bool kvm_arm_support_pmu_v3(void)
+{
+ /*
+ * Check if HW_PERF_EVENTS are supported by checking the number of
+ * hardware performance counters. This could ensure the presence of
+ * a physical PMU and CONFIG_PERF_EVENT is selected.
+ */
+ return (perf_num_counters() > 0);
+}
+
+int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
+{
+ if (!vcpu->arch.pmu.created)
+ return 0;
+
+ /*
+ * A valid interrupt configuration for the PMU is either to have a
+ * properly configured interrupt number and using an in-kernel
+ * irqchip, or to not have an in-kernel GIC and not set an IRQ.
+ */
+ if (irqchip_in_kernel(vcpu->kvm)) {
+ int irq = vcpu->arch.pmu.irq_num;
+ if (!kvm_arm_pmu_irq_initialized(vcpu))
+ return -EINVAL;
+
+ /*
+ * If we are using an in-kernel vgic, at this point we know
+ * the vgic will be initialized, so we can check the PMU irq
+ * number against the dimensions of the vgic and make sure
+ * it's valid.
+ */
+ if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
+ return -EINVAL;
+ } else if (kvm_arm_pmu_irq_initialized(vcpu)) {
+ return -EINVAL;
+ }
+
+ kvm_pmu_vcpu_reset(vcpu);
+ vcpu->arch.pmu.ready = true;
+
+ return 0;
+}
+
+static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
+{
+ if (!kvm_arm_support_pmu_v3())
+ return -ENODEV;
+
+ if (!test_bit(KVM_ARM_VCPU_PMU_V3, vcpu->arch.features))
+ return -ENXIO;
+
+ if (vcpu->arch.pmu.created)
+ return -EBUSY;
+
+ if (irqchip_in_kernel(vcpu->kvm)) {
+ int ret;
+
+ /*
+ * If using the PMU with an in-kernel virtual GIC
+ * implementation, we require the GIC to be already
+ * initialized when initializing the PMU.
+ */
+ if (!vgic_initialized(vcpu->kvm))
+ return -ENODEV;
+
+ if (!kvm_arm_pmu_irq_initialized(vcpu))
+ return -ENXIO;
+
+ ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
+ &vcpu->arch.pmu);
+ if (ret)
+ return ret;
+ }
+
+ vcpu->arch.pmu.created = true;
+ return 0;
+}
+
+/*
+ * For one VM the interrupt type must be same for each vcpu.
+ * As a PPI, the interrupt number is the same for all vcpus,
+ * while as an SPI it must be a separate number per vcpu.
+ */
+static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
+{
+ int i;
+ struct kvm_vcpu *vcpu;
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (!kvm_arm_pmu_irq_initialized(vcpu))
+ continue;
+
+ if (irq_is_ppi(irq)) {
+ if (vcpu->arch.pmu.irq_num != irq)
+ return false;
+ } else {
+ if (vcpu->arch.pmu.irq_num == irq)
+ return false;
+ }
+ }
+
+ return true;
+}
+
+int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
+{
+ switch (attr->attr) {
+ case KVM_ARM_VCPU_PMU_V3_IRQ: {
+ int __user *uaddr = (int __user *)(long)attr->addr;
+ int irq;
+
+ if (!irqchip_in_kernel(vcpu->kvm))
+ return -EINVAL;
+
+ if (!test_bit(KVM_ARM_VCPU_PMU_V3, vcpu->arch.features))
+ return -ENODEV;
+
+ if (get_user(irq, uaddr))
+ return -EFAULT;
+
+ /* The PMU overflow interrupt can be a PPI or a valid SPI. */
+ if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
+ return -EINVAL;
+
+ if (!pmu_irq_is_valid(vcpu->kvm, irq))
+ return -EINVAL;
+
+ if (kvm_arm_pmu_irq_initialized(vcpu))
+ return -EBUSY;
+
+ kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
+ vcpu->arch.pmu.irq_num = irq;
+ return 0;
+ }
+ case KVM_ARM_VCPU_PMU_V3_INIT:
+ return kvm_arm_pmu_v3_init(vcpu);
+ }
+
+ return -ENXIO;
+}
+
+int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
+{
+ switch (attr->attr) {
+ case KVM_ARM_VCPU_PMU_V3_IRQ: {
+ int __user *uaddr = (int __user *)(long)attr->addr;
+ int irq;
+
+ if (!irqchip_in_kernel(vcpu->kvm))
+ return -EINVAL;
+
+ if (!test_bit(KVM_ARM_VCPU_PMU_V3, vcpu->arch.features))
+ return -ENODEV;
+
+ if (!kvm_arm_pmu_irq_initialized(vcpu))
+ return -ENXIO;
+
+ irq = vcpu->arch.pmu.irq_num;
+ return put_user(irq, uaddr);
+ }
+ }
+
+ return -ENXIO;
+}
+
+int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
+{
+ switch (attr->attr) {
+ case KVM_ARM_VCPU_PMU_V3_IRQ:
+ case KVM_ARM_VCPU_PMU_V3_INIT:
+ if (kvm_arm_support_pmu_v3() &&
+ test_bit(KVM_ARM_VCPU_PMU_V3, vcpu->arch.features))
+ return 0;
+ }
+
+ return -ENXIO;
+}
diff --git a/arch/arm64/kvm/psci.c b/arch/arm64/kvm/psci.c
new file mode 100644
index 000000000000..83415e96b589
--- /dev/null
+++ b/arch/arm64/kvm/psci.c
@@ -0,0 +1,564 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <linux/arm-smccc.h>
+#include <linux/preempt.h>
+#include <linux/kvm_host.h>
+#include <linux/uaccess.h>
+#include <linux/wait.h>
+
+#include <asm/cputype.h>
+#include <asm/kvm_emulate.h>
+
+#include <kvm/arm_psci.h>
+#include <kvm/arm_hypercalls.h>
+
+/*
+ * This is an implementation of the Power State Coordination Interface
+ * as described in ARM document number ARM DEN 0022A.
+ */
+
+#define AFFINITY_MASK(level) ~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1)
+
+static unsigned long psci_affinity_mask(unsigned long affinity_level)
+{
+ if (affinity_level <= 3)
+ return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level);
+
+ return 0;
+}
+
+static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu)
+{
+ /*
+ * NOTE: For simplicity, we make VCPU suspend emulation to be
+ * same-as WFI (Wait-for-interrupt) emulation.
+ *
+ * This means for KVM the wakeup events are interrupts and
+ * this is consistent with intended use of StateID as described
+ * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A).
+ *
+ * Further, we also treat power-down request to be same as
+ * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2
+ * specification (ARM DEN 0022A). This means all suspend states
+ * for KVM will preserve the register state.
+ */
+ kvm_vcpu_block(vcpu);
+ kvm_clear_request(KVM_REQ_UNHALT, vcpu);
+
+ return PSCI_RET_SUCCESS;
+}
+
+static void kvm_psci_vcpu_off(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.power_off = true;
+ kvm_make_request(KVM_REQ_SLEEP, vcpu);
+ kvm_vcpu_kick(vcpu);
+}
+
+static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu)
+{
+ struct vcpu_reset_state *reset_state;
+ struct kvm *kvm = source_vcpu->kvm;
+ struct kvm_vcpu *vcpu = NULL;
+ unsigned long cpu_id;
+
+ cpu_id = smccc_get_arg1(source_vcpu) & MPIDR_HWID_BITMASK;
+ if (vcpu_mode_is_32bit(source_vcpu))
+ cpu_id &= ~((u32) 0);
+
+ vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id);
+
+ /*
+ * Make sure the caller requested a valid CPU and that the CPU is
+ * turned off.
+ */
+ if (!vcpu)
+ return PSCI_RET_INVALID_PARAMS;
+ if (!vcpu->arch.power_off) {
+ if (kvm_psci_version(source_vcpu, kvm) != KVM_ARM_PSCI_0_1)
+ return PSCI_RET_ALREADY_ON;
+ else
+ return PSCI_RET_INVALID_PARAMS;
+ }
+
+ reset_state = &vcpu->arch.reset_state;
+
+ reset_state->pc = smccc_get_arg2(source_vcpu);
+
+ /* Propagate caller endianness */
+ reset_state->be = kvm_vcpu_is_be(source_vcpu);
+
+ /*
+ * NOTE: We always update r0 (or x0) because for PSCI v0.1
+ * the general purpose registers are undefined upon CPU_ON.
+ */
+ reset_state->r0 = smccc_get_arg3(source_vcpu);
+
+ WRITE_ONCE(reset_state->reset, true);
+ kvm_make_request(KVM_REQ_VCPU_RESET, vcpu);
+
+ /*
+ * Make sure the reset request is observed if the change to
+ * power_state is observed.
+ */
+ smp_wmb();
+
+ vcpu->arch.power_off = false;
+ kvm_vcpu_wake_up(vcpu);
+
+ return PSCI_RET_SUCCESS;
+}
+
+static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu)
+{
+ int i, matching_cpus = 0;
+ unsigned long mpidr;
+ unsigned long target_affinity;
+ unsigned long target_affinity_mask;
+ unsigned long lowest_affinity_level;
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_vcpu *tmp;
+
+ target_affinity = smccc_get_arg1(vcpu);
+ lowest_affinity_level = smccc_get_arg2(vcpu);
+
+ /* Determine target affinity mask */
+ target_affinity_mask = psci_affinity_mask(lowest_affinity_level);
+ if (!target_affinity_mask)
+ return PSCI_RET_INVALID_PARAMS;
+
+ /* Ignore other bits of target affinity */
+ target_affinity &= target_affinity_mask;
+
+ /*
+ * If one or more VCPU matching target affinity are running
+ * then ON else OFF
+ */
+ kvm_for_each_vcpu(i, tmp, kvm) {
+ mpidr = kvm_vcpu_get_mpidr_aff(tmp);
+ if ((mpidr & target_affinity_mask) == target_affinity) {
+ matching_cpus++;
+ if (!tmp->arch.power_off)
+ return PSCI_0_2_AFFINITY_LEVEL_ON;
+ }
+ }
+
+ if (!matching_cpus)
+ return PSCI_RET_INVALID_PARAMS;
+
+ return PSCI_0_2_AFFINITY_LEVEL_OFF;
+}
+
+static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type)
+{
+ int i;
+ struct kvm_vcpu *tmp;
+
+ /*
+ * The KVM ABI specifies that a system event exit may call KVM_RUN
+ * again and may perform shutdown/reboot at a later time that when the
+ * actual request is made. Since we are implementing PSCI and a
+ * caller of PSCI reboot and shutdown expects that the system shuts
+ * down or reboots immediately, let's make sure that VCPUs are not run
+ * after this call is handled and before the VCPUs have been
+ * re-initialized.
+ */
+ kvm_for_each_vcpu(i, tmp, vcpu->kvm)
+ tmp->arch.power_off = true;
+ kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_SLEEP);
+
+ memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
+ vcpu->run->system_event.type = type;
+ vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
+}
+
+static void kvm_psci_system_off(struct kvm_vcpu *vcpu)
+{
+ kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN);
+}
+
+static void kvm_psci_system_reset(struct kvm_vcpu *vcpu)
+{
+ kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET);
+}
+
+static void kvm_psci_narrow_to_32bit(struct kvm_vcpu *vcpu)
+{
+ int i;
+
+ /*
+ * Zero the input registers' upper 32 bits. They will be fully
+ * zeroed on exit, so we're fine changing them in place.
+ */
+ for (i = 1; i < 4; i++)
+ vcpu_set_reg(vcpu, i, lower_32_bits(vcpu_get_reg(vcpu, i)));
+}
+
+static unsigned long kvm_psci_check_allowed_function(struct kvm_vcpu *vcpu, u32 fn)
+{
+ switch(fn) {
+ case PSCI_0_2_FN64_CPU_SUSPEND:
+ case PSCI_0_2_FN64_CPU_ON:
+ case PSCI_0_2_FN64_AFFINITY_INFO:
+ /* Disallow these functions for 32bit guests */
+ if (vcpu_mode_is_32bit(vcpu))
+ return PSCI_RET_NOT_SUPPORTED;
+ break;
+ }
+
+ return 0;
+}
+
+static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ u32 psci_fn = smccc_get_function(vcpu);
+ unsigned long val;
+ int ret = 1;
+
+ val = kvm_psci_check_allowed_function(vcpu, psci_fn);
+ if (val)
+ goto out;
+
+ switch (psci_fn) {
+ case PSCI_0_2_FN_PSCI_VERSION:
+ /*
+ * Bits[31:16] = Major Version = 0
+ * Bits[15:0] = Minor Version = 2
+ */
+ val = KVM_ARM_PSCI_0_2;
+ break;
+ case PSCI_0_2_FN_CPU_SUSPEND:
+ case PSCI_0_2_FN64_CPU_SUSPEND:
+ val = kvm_psci_vcpu_suspend(vcpu);
+ break;
+ case PSCI_0_2_FN_CPU_OFF:
+ kvm_psci_vcpu_off(vcpu);
+ val = PSCI_RET_SUCCESS;
+ break;
+ case PSCI_0_2_FN_CPU_ON:
+ kvm_psci_narrow_to_32bit(vcpu);
+ fallthrough;
+ case PSCI_0_2_FN64_CPU_ON:
+ mutex_lock(&kvm->lock);
+ val = kvm_psci_vcpu_on(vcpu);
+ mutex_unlock(&kvm->lock);
+ break;
+ case PSCI_0_2_FN_AFFINITY_INFO:
+ kvm_psci_narrow_to_32bit(vcpu);
+ fallthrough;
+ case PSCI_0_2_FN64_AFFINITY_INFO:
+ val = kvm_psci_vcpu_affinity_info(vcpu);
+ break;
+ case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
+ /*
+ * Trusted OS is MP hence does not require migration
+ * or
+ * Trusted OS is not present
+ */
+ val = PSCI_0_2_TOS_MP;
+ break;
+ case PSCI_0_2_FN_SYSTEM_OFF:
+ kvm_psci_system_off(vcpu);
+ /*
+ * We shouldn't be going back to guest VCPU after
+ * receiving SYSTEM_OFF request.
+ *
+ * If user space accidentally/deliberately resumes
+ * guest VCPU after SYSTEM_OFF request then guest
+ * VCPU should see internal failure from PSCI return
+ * value. To achieve this, we preload r0 (or x0) with
+ * PSCI return value INTERNAL_FAILURE.
+ */
+ val = PSCI_RET_INTERNAL_FAILURE;
+ ret = 0;
+ break;
+ case PSCI_0_2_FN_SYSTEM_RESET:
+ kvm_psci_system_reset(vcpu);
+ /*
+ * Same reason as SYSTEM_OFF for preloading r0 (or x0)
+ * with PSCI return value INTERNAL_FAILURE.
+ */
+ val = PSCI_RET_INTERNAL_FAILURE;
+ ret = 0;
+ break;
+ default:
+ val = PSCI_RET_NOT_SUPPORTED;
+ break;
+ }
+
+out:
+ smccc_set_retval(vcpu, val, 0, 0, 0);
+ return ret;
+}
+
+static int kvm_psci_1_0_call(struct kvm_vcpu *vcpu)
+{
+ u32 psci_fn = smccc_get_function(vcpu);
+ u32 feature;
+ unsigned long val;
+ int ret = 1;
+
+ switch(psci_fn) {
+ case PSCI_0_2_FN_PSCI_VERSION:
+ val = KVM_ARM_PSCI_1_0;
+ break;
+ case PSCI_1_0_FN_PSCI_FEATURES:
+ feature = smccc_get_arg1(vcpu);
+ val = kvm_psci_check_allowed_function(vcpu, feature);
+ if (val)
+ break;
+
+ switch(feature) {
+ case PSCI_0_2_FN_PSCI_VERSION:
+ case PSCI_0_2_FN_CPU_SUSPEND:
+ case PSCI_0_2_FN64_CPU_SUSPEND:
+ case PSCI_0_2_FN_CPU_OFF:
+ case PSCI_0_2_FN_CPU_ON:
+ case PSCI_0_2_FN64_CPU_ON:
+ case PSCI_0_2_FN_AFFINITY_INFO:
+ case PSCI_0_2_FN64_AFFINITY_INFO:
+ case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
+ case PSCI_0_2_FN_SYSTEM_OFF:
+ case PSCI_0_2_FN_SYSTEM_RESET:
+ case PSCI_1_0_FN_PSCI_FEATURES:
+ case ARM_SMCCC_VERSION_FUNC_ID:
+ val = 0;
+ break;
+ default:
+ val = PSCI_RET_NOT_SUPPORTED;
+ break;
+ }
+ break;
+ default:
+ return kvm_psci_0_2_call(vcpu);
+ }
+
+ smccc_set_retval(vcpu, val, 0, 0, 0);
+ return ret;
+}
+
+static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ u32 psci_fn = smccc_get_function(vcpu);
+ unsigned long val;
+
+ switch (psci_fn) {
+ case KVM_PSCI_FN_CPU_OFF:
+ kvm_psci_vcpu_off(vcpu);
+ val = PSCI_RET_SUCCESS;
+ break;
+ case KVM_PSCI_FN_CPU_ON:
+ mutex_lock(&kvm->lock);
+ val = kvm_psci_vcpu_on(vcpu);
+ mutex_unlock(&kvm->lock);
+ break;
+ default:
+ val = PSCI_RET_NOT_SUPPORTED;
+ break;
+ }
+
+ smccc_set_retval(vcpu, val, 0, 0, 0);
+ return 1;
+}
+
+/**
+ * kvm_psci_call - handle PSCI call if r0 value is in range
+ * @vcpu: Pointer to the VCPU struct
+ *
+ * Handle PSCI calls from guests through traps from HVC instructions.
+ * The calling convention is similar to SMC calls to the secure world
+ * where the function number is placed in r0.
+ *
+ * This function returns: > 0 (success), 0 (success but exit to user
+ * space), and < 0 (errors)
+ *
+ * Errors:
+ * -EINVAL: Unrecognized PSCI function
+ */
+int kvm_psci_call(struct kvm_vcpu *vcpu)
+{
+ switch (kvm_psci_version(vcpu, vcpu->kvm)) {
+ case KVM_ARM_PSCI_1_0:
+ return kvm_psci_1_0_call(vcpu);
+ case KVM_ARM_PSCI_0_2:
+ return kvm_psci_0_2_call(vcpu);
+ case KVM_ARM_PSCI_0_1:
+ return kvm_psci_0_1_call(vcpu);
+ default:
+ return -EINVAL;
+ };
+}
+
+int kvm_arm_get_fw_num_regs(struct kvm_vcpu *vcpu)
+{
+ return 3; /* PSCI version and two workaround registers */
+}
+
+int kvm_arm_copy_fw_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
+{
+ if (put_user(KVM_REG_ARM_PSCI_VERSION, uindices++))
+ return -EFAULT;
+
+ if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1, uindices++))
+ return -EFAULT;
+
+ if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2, uindices++))
+ return -EFAULT;
+
+ return 0;
+}
+
+#define KVM_REG_FEATURE_LEVEL_WIDTH 4
+#define KVM_REG_FEATURE_LEVEL_MASK (BIT(KVM_REG_FEATURE_LEVEL_WIDTH) - 1)
+
+/*
+ * Convert the workaround level into an easy-to-compare number, where higher
+ * values mean better protection.
+ */
+static int get_kernel_wa_level(u64 regid)
+{
+ switch (regid) {
+ case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
+ switch (kvm_arm_harden_branch_predictor()) {
+ case KVM_BP_HARDEN_UNKNOWN:
+ return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL;
+ case KVM_BP_HARDEN_WA_NEEDED:
+ return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_AVAIL;
+ case KVM_BP_HARDEN_NOT_REQUIRED:
+ return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_REQUIRED;
+ }
+ return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL;
+ case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
+ switch (kvm_arm_have_ssbd()) {
+ case KVM_SSBD_FORCE_DISABLE:
+ return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
+ case KVM_SSBD_KERNEL:
+ return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL;
+ case KVM_SSBD_FORCE_ENABLE:
+ case KVM_SSBD_MITIGATED:
+ return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED;
+ case KVM_SSBD_UNKNOWN:
+ default:
+ return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_UNKNOWN;
+ }
+ }
+
+ return -EINVAL;
+}
+
+int kvm_arm_get_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ void __user *uaddr = (void __user *)(long)reg->addr;
+ u64 val;
+
+ switch (reg->id) {
+ case KVM_REG_ARM_PSCI_VERSION:
+ val = kvm_psci_version(vcpu, vcpu->kvm);
+ break;
+ case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
+ val = get_kernel_wa_level(reg->id) & KVM_REG_FEATURE_LEVEL_MASK;
+ break;
+ case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
+ val = get_kernel_wa_level(reg->id) & KVM_REG_FEATURE_LEVEL_MASK;
+
+ if (val == KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL &&
+ kvm_arm_get_vcpu_workaround_2_flag(vcpu))
+ val |= KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED;
+ break;
+ default:
+ return -ENOENT;
+ }
+
+ if (copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)))
+ return -EFAULT;
+
+ return 0;
+}
+
+int kvm_arm_set_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ void __user *uaddr = (void __user *)(long)reg->addr;
+ u64 val;
+ int wa_level;
+
+ if (copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id)))
+ return -EFAULT;
+
+ switch (reg->id) {
+ case KVM_REG_ARM_PSCI_VERSION:
+ {
+ bool wants_02;
+
+ wants_02 = test_bit(KVM_ARM_VCPU_PSCI_0_2, vcpu->arch.features);
+
+ switch (val) {
+ case KVM_ARM_PSCI_0_1:
+ if (wants_02)
+ return -EINVAL;
+ vcpu->kvm->arch.psci_version = val;
+ return 0;
+ case KVM_ARM_PSCI_0_2:
+ case KVM_ARM_PSCI_1_0:
+ if (!wants_02)
+ return -EINVAL;
+ vcpu->kvm->arch.psci_version = val;
+ return 0;
+ }
+ break;
+ }
+
+ case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
+ if (val & ~KVM_REG_FEATURE_LEVEL_MASK)
+ return -EINVAL;
+
+ if (get_kernel_wa_level(reg->id) < val)
+ return -EINVAL;
+
+ return 0;
+
+ case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
+ if (val & ~(KVM_REG_FEATURE_LEVEL_MASK |
+ KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED))
+ return -EINVAL;
+
+ wa_level = val & KVM_REG_FEATURE_LEVEL_MASK;
+
+ if (get_kernel_wa_level(reg->id) < wa_level)
+ return -EINVAL;
+
+ /* The enabled bit must not be set unless the level is AVAIL. */
+ if (wa_level != KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL &&
+ wa_level != val)
+ return -EINVAL;
+
+ /* Are we finished or do we need to check the enable bit ? */
+ if (kvm_arm_have_ssbd() != KVM_SSBD_KERNEL)
+ return 0;
+
+ /*
+ * If this kernel supports the workaround to be switched on
+ * or off, make sure it matches the requested setting.
+ */
+ switch (wa_level) {
+ case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL:
+ kvm_arm_set_vcpu_workaround_2_flag(vcpu,
+ val & KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED);
+ break;
+ case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED:
+ kvm_arm_set_vcpu_workaround_2_flag(vcpu, true);
+ break;
+ }
+
+ return 0;
+ default:
+ return -ENOENT;
+ }
+
+ return -EINVAL;
+}
diff --git a/arch/arm64/kvm/pvtime.c b/arch/arm64/kvm/pvtime.c
new file mode 100644
index 000000000000..1e0f4c284888
--- /dev/null
+++ b/arch/arm64/kvm/pvtime.c
@@ -0,0 +1,131 @@
+// SPDX-License-Identifier: GPL-2.0
+// Copyright (C) 2019 Arm Ltd.
+
+#include <linux/arm-smccc.h>
+#include <linux/kvm_host.h>
+
+#include <asm/kvm_mmu.h>
+#include <asm/pvclock-abi.h>
+
+#include <kvm/arm_hypercalls.h>
+
+void kvm_update_stolen_time(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ u64 steal;
+ __le64 steal_le;
+ u64 offset;
+ int idx;
+ u64 base = vcpu->arch.steal.base;
+
+ if (base == GPA_INVALID)
+ return;
+
+ /* Let's do the local bookkeeping */
+ steal = vcpu->arch.steal.steal;
+ steal += current->sched_info.run_delay - vcpu->arch.steal.last_steal;
+ vcpu->arch.steal.last_steal = current->sched_info.run_delay;
+ vcpu->arch.steal.steal = steal;
+
+ steal_le = cpu_to_le64(steal);
+ idx = srcu_read_lock(&kvm->srcu);
+ offset = offsetof(struct pvclock_vcpu_stolen_time, stolen_time);
+ kvm_put_guest(kvm, base + offset, steal_le, u64);
+ srcu_read_unlock(&kvm->srcu, idx);
+}
+
+long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu)
+{
+ u32 feature = smccc_get_arg1(vcpu);
+ long val = SMCCC_RET_NOT_SUPPORTED;
+
+ switch (feature) {
+ case ARM_SMCCC_HV_PV_TIME_FEATURES:
+ case ARM_SMCCC_HV_PV_TIME_ST:
+ val = SMCCC_RET_SUCCESS;
+ break;
+ }
+
+ return val;
+}
+
+gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu)
+{
+ struct pvclock_vcpu_stolen_time init_values = {};
+ struct kvm *kvm = vcpu->kvm;
+ u64 base = vcpu->arch.steal.base;
+ int idx;
+
+ if (base == GPA_INVALID)
+ return base;
+
+ /*
+ * Start counting stolen time from the time the guest requests
+ * the feature enabled.
+ */
+ vcpu->arch.steal.steal = 0;
+ vcpu->arch.steal.last_steal = current->sched_info.run_delay;
+
+ idx = srcu_read_lock(&kvm->srcu);
+ kvm_write_guest(kvm, base, &init_values, sizeof(init_values));
+ srcu_read_unlock(&kvm->srcu, idx);
+
+ return base;
+}
+
+int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr)
+{
+ u64 __user *user = (u64 __user *)attr->addr;
+ struct kvm *kvm = vcpu->kvm;
+ u64 ipa;
+ int ret = 0;
+ int idx;
+
+ if (attr->attr != KVM_ARM_VCPU_PVTIME_IPA)
+ return -ENXIO;
+
+ if (get_user(ipa, user))
+ return -EFAULT;
+ if (!IS_ALIGNED(ipa, 64))
+ return -EINVAL;
+ if (vcpu->arch.steal.base != GPA_INVALID)
+ return -EEXIST;
+
+ /* Check the address is in a valid memslot */
+ idx = srcu_read_lock(&kvm->srcu);
+ if (kvm_is_error_hva(gfn_to_hva(kvm, ipa >> PAGE_SHIFT)))
+ ret = -EINVAL;
+ srcu_read_unlock(&kvm->srcu, idx);
+
+ if (!ret)
+ vcpu->arch.steal.base = ipa;
+
+ return ret;
+}
+
+int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr)
+{
+ u64 __user *user = (u64 __user *)attr->addr;
+ u64 ipa;
+
+ if (attr->attr != KVM_ARM_VCPU_PVTIME_IPA)
+ return -ENXIO;
+
+ ipa = vcpu->arch.steal.base;
+
+ if (put_user(ipa, user))
+ return -EFAULT;
+ return 0;
+}
+
+int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr)
+{
+ switch (attr->attr) {
+ case KVM_ARM_VCPU_PVTIME_IPA:
+ return 0;
+ }
+ return -ENXIO;
+}
diff --git a/arch/arm64/kvm/reset.c b/arch/arm64/kvm/reset.c
index 70cd7bcca433..d3b209023727 100644
--- a/arch/arm64/kvm/reset.c
+++ b/arch/arm64/kvm/reset.c
@@ -36,15 +36,11 @@ static u32 kvm_ipa_limit;
/*
* ARMv8 Reset Values
*/
-static const struct kvm_regs default_regs_reset = {
- .regs.pstate = (PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT |
- PSR_F_BIT | PSR_D_BIT),
-};
+#define VCPU_RESET_PSTATE_EL1 (PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT | \
+ PSR_F_BIT | PSR_D_BIT)
-static const struct kvm_regs default_regs_reset32 = {
- .regs.pstate = (PSR_AA32_MODE_SVC | PSR_AA32_A_BIT |
- PSR_AA32_I_BIT | PSR_AA32_F_BIT),
-};
+#define VCPU_RESET_PSTATE_SVC (PSR_AA32_MODE_SVC | PSR_AA32_A_BIT | \
+ PSR_AA32_I_BIT | PSR_AA32_F_BIT)
/**
* kvm_arch_vm_ioctl_check_extension
@@ -155,7 +151,7 @@ static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu)
vl = vcpu->arch.sve_max_vl;
/*
- * Resposibility for these properties is shared between
+ * Responsibility for these properties is shared between
* kvm_arm_init_arch_resources(), kvm_vcpu_enable_sve() and
* set_sve_vls(). Double-check here just to be sure:
*/
@@ -241,7 +237,7 @@ static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu)
* ioctl or as part of handling a request issued by another VCPU in the PSCI
* handling code. In the first case, the VCPU will not be loaded, and in the
* second case the VCPU will be loaded. Because this function operates purely
- * on the memory-backed valus of system registers, we want to do a full put if
+ * on the memory-backed values of system registers, we want to do a full put if
* we were loaded (handling a request) and load the values back at the end of
* the function. Otherwise we leave the state alone. In both cases, we
* disable preemption around the vcpu reset as we would otherwise race with
@@ -249,9 +245,9 @@ static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu)
*/
int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
{
- const struct kvm_regs *cpu_reset;
int ret = -EINVAL;
bool loaded;
+ u32 pstate;
/* Reset PMU outside of the non-preemptible section */
kvm_pmu_vcpu_reset(vcpu);
@@ -282,16 +278,17 @@ int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
if (test_bit(KVM_ARM_VCPU_EL1_32BIT, vcpu->arch.features)) {
if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1))
goto out;
- cpu_reset = &default_regs_reset32;
+ pstate = VCPU_RESET_PSTATE_SVC;
} else {
- cpu_reset = &default_regs_reset;
+ pstate = VCPU_RESET_PSTATE_EL1;
}
break;
}
/* Reset core registers */
- memcpy(vcpu_gp_regs(vcpu), cpu_reset, sizeof(*cpu_reset));
+ memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu)));
+ vcpu_gp_regs(vcpu)->regs.pstate = pstate;
/* Reset system registers */
kvm_reset_sys_regs(vcpu);
@@ -388,7 +385,7 @@ int kvm_set_ipa_limit(void)
*
* So clamp the ipa limit further down to limit the number of levels.
* Since we can concatenate upto 16 tables at entry level, we could
- * go upto 4bits above the maximum VA addressible with the current
+ * go upto 4bits above the maximum VA addressable with the current
* number of levels.
*/
va_max = PGDIR_SHIFT + PAGE_SHIFT - 3;
diff --git a/arch/arm64/kvm/sys_regs.c b/arch/arm64/kvm/sys_regs.c
index 7d7a39b01135..80985439bfb2 100644
--- a/arch/arm64/kvm/sys_regs.c
+++ b/arch/arm64/kvm/sys_regs.c
@@ -34,7 +34,7 @@
#include "trace.h"
/*
- * All of this file is extremly similar to the ARM coproc.c, but the
+ * All of this file is extremely similar to the ARM coproc.c, but the
* types are different. My gut feeling is that it should be pretty
* easy to merge, but that would be an ABI breakage -- again. VFP
* would also need to be abstracted.
@@ -64,11 +64,8 @@ static bool write_to_read_only(struct kvm_vcpu *vcpu,
return false;
}
-u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
+static bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
{
- if (!vcpu->arch.sysregs_loaded_on_cpu)
- goto immediate_read;
-
/*
* System registers listed in the switch are not saved on every
* exit from the guest but are only saved on vcpu_put.
@@ -79,75 +76,92 @@ u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
* thread when emulating cross-VCPU communication.
*/
switch (reg) {
- case CSSELR_EL1: return read_sysreg_s(SYS_CSSELR_EL1);
- case SCTLR_EL1: return read_sysreg_s(SYS_SCTLR_EL12);
- case ACTLR_EL1: return read_sysreg_s(SYS_ACTLR_EL1);
- case CPACR_EL1: return read_sysreg_s(SYS_CPACR_EL12);
- case TTBR0_EL1: return read_sysreg_s(SYS_TTBR0_EL12);
- case TTBR1_EL1: return read_sysreg_s(SYS_TTBR1_EL12);
- case TCR_EL1: return read_sysreg_s(SYS_TCR_EL12);
- case ESR_EL1: return read_sysreg_s(SYS_ESR_EL12);
- case AFSR0_EL1: return read_sysreg_s(SYS_AFSR0_EL12);
- case AFSR1_EL1: return read_sysreg_s(SYS_AFSR1_EL12);
- case FAR_EL1: return read_sysreg_s(SYS_FAR_EL12);
- case MAIR_EL1: return read_sysreg_s(SYS_MAIR_EL12);
- case VBAR_EL1: return read_sysreg_s(SYS_VBAR_EL12);
- case CONTEXTIDR_EL1: return read_sysreg_s(SYS_CONTEXTIDR_EL12);
- case TPIDR_EL0: return read_sysreg_s(SYS_TPIDR_EL0);
- case TPIDRRO_EL0: return read_sysreg_s(SYS_TPIDRRO_EL0);
- case TPIDR_EL1: return read_sysreg_s(SYS_TPIDR_EL1);
- case AMAIR_EL1: return read_sysreg_s(SYS_AMAIR_EL12);
- case CNTKCTL_EL1: return read_sysreg_s(SYS_CNTKCTL_EL12);
- case PAR_EL1: return read_sysreg_s(SYS_PAR_EL1);
- case DACR32_EL2: return read_sysreg_s(SYS_DACR32_EL2);
- case IFSR32_EL2: return read_sysreg_s(SYS_IFSR32_EL2);
- case DBGVCR32_EL2: return read_sysreg_s(SYS_DBGVCR32_EL2);
+ case CSSELR_EL1: *val = read_sysreg_s(SYS_CSSELR_EL1); break;
+ case SCTLR_EL1: *val = read_sysreg_s(SYS_SCTLR_EL12); break;
+ case ACTLR_EL1: *val = read_sysreg_s(SYS_ACTLR_EL1); break;
+ case CPACR_EL1: *val = read_sysreg_s(SYS_CPACR_EL12); break;
+ case TTBR0_EL1: *val = read_sysreg_s(SYS_TTBR0_EL12); break;
+ case TTBR1_EL1: *val = read_sysreg_s(SYS_TTBR1_EL12); break;
+ case TCR_EL1: *val = read_sysreg_s(SYS_TCR_EL12); break;
+ case ESR_EL1: *val = read_sysreg_s(SYS_ESR_EL12); break;
+ case AFSR0_EL1: *val = read_sysreg_s(SYS_AFSR0_EL12); break;
+ case AFSR1_EL1: *val = read_sysreg_s(SYS_AFSR1_EL12); break;
+ case FAR_EL1: *val = read_sysreg_s(SYS_FAR_EL12); break;
+ case MAIR_EL1: *val = read_sysreg_s(SYS_MAIR_EL12); break;
+ case VBAR_EL1: *val = read_sysreg_s(SYS_VBAR_EL12); break;
+ case CONTEXTIDR_EL1: *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
+ case TPIDR_EL0: *val = read_sysreg_s(SYS_TPIDR_EL0); break;
+ case TPIDRRO_EL0: *val = read_sysreg_s(SYS_TPIDRRO_EL0); break;
+ case TPIDR_EL1: *val = read_sysreg_s(SYS_TPIDR_EL1); break;
+ case AMAIR_EL1: *val = read_sysreg_s(SYS_AMAIR_EL12); break;
+ case CNTKCTL_EL1: *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
+ case PAR_EL1: *val = read_sysreg_s(SYS_PAR_EL1); break;
+ case DACR32_EL2: *val = read_sysreg_s(SYS_DACR32_EL2); break;
+ case IFSR32_EL2: *val = read_sysreg_s(SYS_IFSR32_EL2); break;
+ case DBGVCR32_EL2: *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
+ default: return false;
}
-immediate_read:
- return __vcpu_sys_reg(vcpu, reg);
+ return true;
}
-void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
+static bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
{
- if (!vcpu->arch.sysregs_loaded_on_cpu)
- goto immediate_write;
-
/*
* System registers listed in the switch are not restored on every
* entry to the guest but are only restored on vcpu_load.
*
* Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
- * should never be listed below, because the the MPIDR should only be
- * set once, before running the VCPU, and never changed later.
+ * should never be listed below, because the MPIDR should only be set
+ * once, before running the VCPU, and never changed later.
*/
switch (reg) {
- case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); return;
- case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); return;
- case ACTLR_EL1: write_sysreg_s(val, SYS_ACTLR_EL1); return;
- case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); return;
- case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); return;
- case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); return;
- case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); return;
- case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); return;
- case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); return;
- case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); return;
- case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); return;
- case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); return;
- case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); return;
- case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12); return;
- case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); return;
- case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); return;
- case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); return;
- case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); return;
- case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); return;
- case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); return;
- case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); return;
- case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); return;
- case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); return;
+ case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); break;
+ case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break;
+ case ACTLR_EL1: write_sysreg_s(val, SYS_ACTLR_EL1); break;
+ case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break;
+ case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break;
+ case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break;
+ case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); break;
+ case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); break;
+ case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); break;
+ case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); break;
+ case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); break;
+ case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); break;
+ case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); break;
+ case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
+ case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); break;
+ case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); break;
+ case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break;
+ case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break;
+ case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break;
+ case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break;
+ case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break;
+ case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break;
+ case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); break;
+ default: return false;
}
-immediate_write:
+ return true;
+}
+
+u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
+{
+ u64 val = 0x8badf00d8badf00d;
+
+ if (vcpu->arch.sysregs_loaded_on_cpu &&
+ __vcpu_read_sys_reg_from_cpu(reg, &val))
+ return val;
+
+ return __vcpu_sys_reg(vcpu, reg);
+}
+
+void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
+{
+ if (vcpu->arch.sysregs_loaded_on_cpu &&
+ __vcpu_write_sys_reg_to_cpu(val, reg))
+ return;
+
__vcpu_sys_reg(vcpu, reg) = val;
}
@@ -1532,7 +1546,7 @@ static const struct sys_reg_desc sys_reg_descs[] = {
{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
- { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
+ { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
@@ -1571,8 +1585,8 @@ static const struct sys_reg_desc sys_reg_descs[] = {
{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
- { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
- { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
+ { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
+ { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
@@ -2073,12 +2087,37 @@ static const struct sys_reg_desc cp15_64_regs[] = {
{ SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer },
};
+static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
+ bool is_32)
+{
+ unsigned int i;
+
+ for (i = 0; i < n; i++) {
+ if (!is_32 && table[i].reg && !table[i].reset) {
+ kvm_err("sys_reg table %p entry %d has lacks reset\n",
+ table, i);
+ return 1;
+ }
+
+ if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
+ kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
/* Target specific emulation tables */
static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
void kvm_register_target_sys_reg_table(unsigned int target,
struct kvm_sys_reg_target_table *table)
{
+ if (check_sysreg_table(table->table64.table, table->table64.num, false) ||
+ check_sysreg_table(table->table32.table, table->table32.num, true))
+ return;
+
target_tables[target] = table;
}
@@ -2364,19 +2403,13 @@ static int emulate_sys_reg(struct kvm_vcpu *vcpu,
}
static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
- const struct sys_reg_desc *table, size_t num,
- unsigned long *bmap)
+ const struct sys_reg_desc *table, size_t num)
{
unsigned long i;
for (i = 0; i < num; i++)
- if (table[i].reset) {
- int reg = table[i].reg;
-
+ if (table[i].reset)
table[i].reset(vcpu, &table[i]);
- if (reg > 0 && reg < NR_SYS_REGS)
- set_bit(reg, bmap);
- }
}
/**
@@ -2832,32 +2865,18 @@ int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
return write_demux_regids(uindices);
}
-static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
-{
- unsigned int i;
-
- for (i = 1; i < n; i++) {
- if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
- kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
- return 1;
- }
- }
-
- return 0;
-}
-
void kvm_sys_reg_table_init(void)
{
unsigned int i;
struct sys_reg_desc clidr;
/* Make sure tables are unique and in order. */
- BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
- BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
- BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
- BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
- BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
- BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
+ BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
+ BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
+ BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
+ BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
+ BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
+ BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
/* We abuse the reset function to overwrite the table itself. */
for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
@@ -2893,17 +2912,10 @@ void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
{
size_t num;
const struct sys_reg_desc *table;
- DECLARE_BITMAP(bmap, NR_SYS_REGS) = { 0, };
/* Generic chip reset first (so target could override). */
- reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs), bmap);
+ reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
table = get_target_table(vcpu->arch.target, true, &num);
- reset_sys_reg_descs(vcpu, table, num, bmap);
-
- for (num = 1; num < NR_SYS_REGS; num++) {
- if (WARN(!test_bit(num, bmap),
- "Didn't reset __vcpu_sys_reg(%zi)\n", num))
- break;
- }
+ reset_sys_reg_descs(vcpu, table, num);
}
diff --git a/arch/arm64/kvm/trace.h b/arch/arm64/kvm/trace.h
index eab91ad0effb..86f9ea47be29 100644
--- a/arch/arm64/kvm/trace.h
+++ b/arch/arm64/kvm/trace.h
@@ -1,216 +1,8 @@
/* SPDX-License-Identifier: GPL-2.0 */
-#if !defined(_TRACE_ARM64_KVM_H) || defined(TRACE_HEADER_MULTI_READ)
+#ifndef _TRACE_ARM64_KVM_H
#define _TRACE_ARM64_KVM_H
-#include <linux/tracepoint.h>
-#include "sys_regs.h"
+#include "trace_arm.h"
+#include "trace_handle_exit.h"
-#undef TRACE_SYSTEM
-#define TRACE_SYSTEM kvm
-
-TRACE_EVENT(kvm_wfx_arm64,
- TP_PROTO(unsigned long vcpu_pc, bool is_wfe),
- TP_ARGS(vcpu_pc, is_wfe),
-
- TP_STRUCT__entry(
- __field(unsigned long, vcpu_pc)
- __field(bool, is_wfe)
- ),
-
- TP_fast_assign(
- __entry->vcpu_pc = vcpu_pc;
- __entry->is_wfe = is_wfe;
- ),
-
- TP_printk("guest executed wf%c at: 0x%08lx",
- __entry->is_wfe ? 'e' : 'i', __entry->vcpu_pc)
-);
-
-TRACE_EVENT(kvm_hvc_arm64,
- TP_PROTO(unsigned long vcpu_pc, unsigned long r0, unsigned long imm),
- TP_ARGS(vcpu_pc, r0, imm),
-
- TP_STRUCT__entry(
- __field(unsigned long, vcpu_pc)
- __field(unsigned long, r0)
- __field(unsigned long, imm)
- ),
-
- TP_fast_assign(
- __entry->vcpu_pc = vcpu_pc;
- __entry->r0 = r0;
- __entry->imm = imm;
- ),
-
- TP_printk("HVC at 0x%08lx (r0: 0x%08lx, imm: 0x%lx)",
- __entry->vcpu_pc, __entry->r0, __entry->imm)
-);
-
-TRACE_EVENT(kvm_arm_setup_debug,
- TP_PROTO(struct kvm_vcpu *vcpu, __u32 guest_debug),
- TP_ARGS(vcpu, guest_debug),
-
- TP_STRUCT__entry(
- __field(struct kvm_vcpu *, vcpu)
- __field(__u32, guest_debug)
- ),
-
- TP_fast_assign(
- __entry->vcpu = vcpu;
- __entry->guest_debug = guest_debug;
- ),
-
- TP_printk("vcpu: %p, flags: 0x%08x", __entry->vcpu, __entry->guest_debug)
-);
-
-TRACE_EVENT(kvm_arm_clear_debug,
- TP_PROTO(__u32 guest_debug),
- TP_ARGS(guest_debug),
-
- TP_STRUCT__entry(
- __field(__u32, guest_debug)
- ),
-
- TP_fast_assign(
- __entry->guest_debug = guest_debug;
- ),
-
- TP_printk("flags: 0x%08x", __entry->guest_debug)
-);
-
-TRACE_EVENT(kvm_arm_set_dreg32,
- TP_PROTO(const char *name, __u32 value),
- TP_ARGS(name, value),
-
- TP_STRUCT__entry(
- __field(const char *, name)
- __field(__u32, value)
- ),
-
- TP_fast_assign(
- __entry->name = name;
- __entry->value = value;
- ),
-
- TP_printk("%s: 0x%08x", __entry->name, __entry->value)
-);
-
-TRACE_DEFINE_SIZEOF(__u64);
-
-TRACE_EVENT(kvm_arm_set_regset,
- TP_PROTO(const char *type, int len, __u64 *control, __u64 *value),
- TP_ARGS(type, len, control, value),
- TP_STRUCT__entry(
- __field(const char *, name)
- __field(int, len)
- __array(u64, ctrls, 16)
- __array(u64, values, 16)
- ),
- TP_fast_assign(
- __entry->name = type;
- __entry->len = len;
- memcpy(__entry->ctrls, control, len << 3);
- memcpy(__entry->values, value, len << 3);
- ),
- TP_printk("%d %s CTRL:%s VALUE:%s", __entry->len, __entry->name,
- __print_array(__entry->ctrls, __entry->len, sizeof(__u64)),
- __print_array(__entry->values, __entry->len, sizeof(__u64)))
-);
-
-TRACE_EVENT(trap_reg,
- TP_PROTO(const char *fn, int reg, bool is_write, u64 write_value),
- TP_ARGS(fn, reg, is_write, write_value),
-
- TP_STRUCT__entry(
- __field(const char *, fn)
- __field(int, reg)
- __field(bool, is_write)
- __field(u64, write_value)
- ),
-
- TP_fast_assign(
- __entry->fn = fn;
- __entry->reg = reg;
- __entry->is_write = is_write;
- __entry->write_value = write_value;
- ),
-
- TP_printk("%s %s reg %d (0x%08llx)", __entry->fn, __entry->is_write?"write to":"read from", __entry->reg, __entry->write_value)
-);
-
-TRACE_EVENT(kvm_handle_sys_reg,
- TP_PROTO(unsigned long hsr),
- TP_ARGS(hsr),
-
- TP_STRUCT__entry(
- __field(unsigned long, hsr)
- ),
-
- TP_fast_assign(
- __entry->hsr = hsr;
- ),
-
- TP_printk("HSR 0x%08lx", __entry->hsr)
-);
-
-TRACE_EVENT(kvm_sys_access,
- TP_PROTO(unsigned long vcpu_pc, struct sys_reg_params *params, const struct sys_reg_desc *reg),
- TP_ARGS(vcpu_pc, params, reg),
-
- TP_STRUCT__entry(
- __field(unsigned long, vcpu_pc)
- __field(bool, is_write)
- __field(const char *, name)
- __field(u8, Op0)
- __field(u8, Op1)
- __field(u8, CRn)
- __field(u8, CRm)
- __field(u8, Op2)
- ),
-
- TP_fast_assign(
- __entry->vcpu_pc = vcpu_pc;
- __entry->is_write = params->is_write;
- __entry->name = reg->name;
- __entry->Op0 = reg->Op0;
- __entry->Op0 = reg->Op0;
- __entry->Op1 = reg->Op1;
- __entry->CRn = reg->CRn;
- __entry->CRm = reg->CRm;
- __entry->Op2 = reg->Op2;
- ),
-
- TP_printk("PC: %lx %s (%d,%d,%d,%d,%d) %s",
- __entry->vcpu_pc, __entry->name ?: "UNKN",
- __entry->Op0, __entry->Op1, __entry->CRn,
- __entry->CRm, __entry->Op2,
- __entry->is_write ? "write" : "read")
-);
-
-TRACE_EVENT(kvm_set_guest_debug,
- TP_PROTO(struct kvm_vcpu *vcpu, __u32 guest_debug),
- TP_ARGS(vcpu, guest_debug),
-
- TP_STRUCT__entry(
- __field(struct kvm_vcpu *, vcpu)
- __field(__u32, guest_debug)
- ),
-
- TP_fast_assign(
- __entry->vcpu = vcpu;
- __entry->guest_debug = guest_debug;
- ),
-
- TP_printk("vcpu: %p, flags: 0x%08x", __entry->vcpu, __entry->guest_debug)
-);
-
-
-#endif /* _TRACE_ARM64_KVM_H */
-
-#undef TRACE_INCLUDE_PATH
-#define TRACE_INCLUDE_PATH .
-#undef TRACE_INCLUDE_FILE
-#define TRACE_INCLUDE_FILE trace
-
-/* This part must be outside protection */
-#include <trace/define_trace.h>
+#endif /* _TRACE_ARM64_KVM_H */
diff --git a/arch/arm64/kvm/trace_arm.h b/arch/arm64/kvm/trace_arm.h
new file mode 100644
index 000000000000..4c71270cc097
--- /dev/null
+++ b/arch/arm64/kvm/trace_arm.h
@@ -0,0 +1,378 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#if !defined(_TRACE_ARM_ARM64_KVM_H) || defined(TRACE_HEADER_MULTI_READ)
+#define _TRACE_ARM_ARM64_KVM_H
+
+#include <kvm/arm_arch_timer.h>
+#include <linux/tracepoint.h>
+
+#undef TRACE_SYSTEM
+#define TRACE_SYSTEM kvm
+
+/*
+ * Tracepoints for entry/exit to guest
+ */
+TRACE_EVENT(kvm_entry,
+ TP_PROTO(unsigned long vcpu_pc),
+ TP_ARGS(vcpu_pc),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_pc )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ ),
+
+ TP_printk("PC: 0x%08lx", __entry->vcpu_pc)
+);
+
+TRACE_EVENT(kvm_exit,
+ TP_PROTO(int ret, unsigned int esr_ec, unsigned long vcpu_pc),
+ TP_ARGS(ret, esr_ec, vcpu_pc),
+
+ TP_STRUCT__entry(
+ __field( int, ret )
+ __field( unsigned int, esr_ec )
+ __field( unsigned long, vcpu_pc )
+ ),
+
+ TP_fast_assign(
+ __entry->ret = ARM_EXCEPTION_CODE(ret);
+ __entry->esr_ec = ARM_EXCEPTION_IS_TRAP(ret) ? esr_ec : 0;
+ __entry->vcpu_pc = vcpu_pc;
+ ),
+
+ TP_printk("%s: HSR_EC: 0x%04x (%s), PC: 0x%08lx",
+ __print_symbolic(__entry->ret, kvm_arm_exception_type),
+ __entry->esr_ec,
+ __print_symbolic(__entry->esr_ec, kvm_arm_exception_class),
+ __entry->vcpu_pc)
+);
+
+TRACE_EVENT(kvm_guest_fault,
+ TP_PROTO(unsigned long vcpu_pc, unsigned long hsr,
+ unsigned long hxfar,
+ unsigned long long ipa),
+ TP_ARGS(vcpu_pc, hsr, hxfar, ipa),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_pc )
+ __field( unsigned long, hsr )
+ __field( unsigned long, hxfar )
+ __field( unsigned long long, ipa )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->hsr = hsr;
+ __entry->hxfar = hxfar;
+ __entry->ipa = ipa;
+ ),
+
+ TP_printk("ipa %#llx, hsr %#08lx, hxfar %#08lx, pc %#08lx",
+ __entry->ipa, __entry->hsr,
+ __entry->hxfar, __entry->vcpu_pc)
+);
+
+TRACE_EVENT(kvm_access_fault,
+ TP_PROTO(unsigned long ipa),
+ TP_ARGS(ipa),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, ipa )
+ ),
+
+ TP_fast_assign(
+ __entry->ipa = ipa;
+ ),
+
+ TP_printk("IPA: %lx", __entry->ipa)
+);
+
+TRACE_EVENT(kvm_irq_line,
+ TP_PROTO(unsigned int type, int vcpu_idx, int irq_num, int level),
+ TP_ARGS(type, vcpu_idx, irq_num, level),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, type )
+ __field( int, vcpu_idx )
+ __field( int, irq_num )
+ __field( int, level )
+ ),
+
+ TP_fast_assign(
+ __entry->type = type;
+ __entry->vcpu_idx = vcpu_idx;
+ __entry->irq_num = irq_num;
+ __entry->level = level;
+ ),
+
+ TP_printk("Inject %s interrupt (%d), vcpu->idx: %d, num: %d, level: %d",
+ (__entry->type == KVM_ARM_IRQ_TYPE_CPU) ? "CPU" :
+ (__entry->type == KVM_ARM_IRQ_TYPE_PPI) ? "VGIC PPI" :
+ (__entry->type == KVM_ARM_IRQ_TYPE_SPI) ? "VGIC SPI" : "UNKNOWN",
+ __entry->type, __entry->vcpu_idx, __entry->irq_num, __entry->level)
+);
+
+TRACE_EVENT(kvm_mmio_emulate,
+ TP_PROTO(unsigned long vcpu_pc, unsigned long instr,
+ unsigned long cpsr),
+ TP_ARGS(vcpu_pc, instr, cpsr),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_pc )
+ __field( unsigned long, instr )
+ __field( unsigned long, cpsr )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->instr = instr;
+ __entry->cpsr = cpsr;
+ ),
+
+ TP_printk("Emulate MMIO at: 0x%08lx (instr: %08lx, cpsr: %08lx)",
+ __entry->vcpu_pc, __entry->instr, __entry->cpsr)
+);
+
+TRACE_EVENT(kvm_unmap_hva_range,
+ TP_PROTO(unsigned long start, unsigned long end),
+ TP_ARGS(start, end),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, start )
+ __field( unsigned long, end )
+ ),
+
+ TP_fast_assign(
+ __entry->start = start;
+ __entry->end = end;
+ ),
+
+ TP_printk("mmu notifier unmap range: %#08lx -- %#08lx",
+ __entry->start, __entry->end)
+);
+
+TRACE_EVENT(kvm_set_spte_hva,
+ TP_PROTO(unsigned long hva),
+ TP_ARGS(hva),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, hva )
+ ),
+
+ TP_fast_assign(
+ __entry->hva = hva;
+ ),
+
+ TP_printk("mmu notifier set pte hva: %#08lx", __entry->hva)
+);
+
+TRACE_EVENT(kvm_age_hva,
+ TP_PROTO(unsigned long start, unsigned long end),
+ TP_ARGS(start, end),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, start )
+ __field( unsigned long, end )
+ ),
+
+ TP_fast_assign(
+ __entry->start = start;
+ __entry->end = end;
+ ),
+
+ TP_printk("mmu notifier age hva: %#08lx -- %#08lx",
+ __entry->start, __entry->end)
+);
+
+TRACE_EVENT(kvm_test_age_hva,
+ TP_PROTO(unsigned long hva),
+ TP_ARGS(hva),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, hva )
+ ),
+
+ TP_fast_assign(
+ __entry->hva = hva;
+ ),
+
+ TP_printk("mmu notifier test age hva: %#08lx", __entry->hva)
+);
+
+TRACE_EVENT(kvm_set_way_flush,
+ TP_PROTO(unsigned long vcpu_pc, bool cache),
+ TP_ARGS(vcpu_pc, cache),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_pc )
+ __field( bool, cache )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->cache = cache;
+ ),
+
+ TP_printk("S/W flush at 0x%016lx (cache %s)",
+ __entry->vcpu_pc, __entry->cache ? "on" : "off")
+);
+
+TRACE_EVENT(kvm_toggle_cache,
+ TP_PROTO(unsigned long vcpu_pc, bool was, bool now),
+ TP_ARGS(vcpu_pc, was, now),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_pc )
+ __field( bool, was )
+ __field( bool, now )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->was = was;
+ __entry->now = now;
+ ),
+
+ TP_printk("VM op at 0x%016lx (cache was %s, now %s)",
+ __entry->vcpu_pc, __entry->was ? "on" : "off",
+ __entry->now ? "on" : "off")
+);
+
+/*
+ * Tracepoints for arch_timer
+ */
+TRACE_EVENT(kvm_timer_update_irq,
+ TP_PROTO(unsigned long vcpu_id, __u32 irq, int level),
+ TP_ARGS(vcpu_id, irq, level),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_id )
+ __field( __u32, irq )
+ __field( int, level )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_id = vcpu_id;
+ __entry->irq = irq;
+ __entry->level = level;
+ ),
+
+ TP_printk("VCPU: %ld, IRQ %d, level %d",
+ __entry->vcpu_id, __entry->irq, __entry->level)
+);
+
+TRACE_EVENT(kvm_get_timer_map,
+ TP_PROTO(unsigned long vcpu_id, struct timer_map *map),
+ TP_ARGS(vcpu_id, map),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_id )
+ __field( int, direct_vtimer )
+ __field( int, direct_ptimer )
+ __field( int, emul_ptimer )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_id = vcpu_id;
+ __entry->direct_vtimer = arch_timer_ctx_index(map->direct_vtimer);
+ __entry->direct_ptimer =
+ (map->direct_ptimer) ? arch_timer_ctx_index(map->direct_ptimer) : -1;
+ __entry->emul_ptimer =
+ (map->emul_ptimer) ? arch_timer_ctx_index(map->emul_ptimer) : -1;
+ ),
+
+ TP_printk("VCPU: %ld, dv: %d, dp: %d, ep: %d",
+ __entry->vcpu_id,
+ __entry->direct_vtimer,
+ __entry->direct_ptimer,
+ __entry->emul_ptimer)
+);
+
+TRACE_EVENT(kvm_timer_save_state,
+ TP_PROTO(struct arch_timer_context *ctx),
+ TP_ARGS(ctx),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, ctl )
+ __field( unsigned long long, cval )
+ __field( int, timer_idx )
+ ),
+
+ TP_fast_assign(
+ __entry->ctl = ctx->cnt_ctl;
+ __entry->cval = ctx->cnt_cval;
+ __entry->timer_idx = arch_timer_ctx_index(ctx);
+ ),
+
+ TP_printk(" CTL: %#08lx CVAL: %#16llx arch_timer_ctx_index: %d",
+ __entry->ctl,
+ __entry->cval,
+ __entry->timer_idx)
+);
+
+TRACE_EVENT(kvm_timer_restore_state,
+ TP_PROTO(struct arch_timer_context *ctx),
+ TP_ARGS(ctx),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, ctl )
+ __field( unsigned long long, cval )
+ __field( int, timer_idx )
+ ),
+
+ TP_fast_assign(
+ __entry->ctl = ctx->cnt_ctl;
+ __entry->cval = ctx->cnt_cval;
+ __entry->timer_idx = arch_timer_ctx_index(ctx);
+ ),
+
+ TP_printk("CTL: %#08lx CVAL: %#16llx arch_timer_ctx_index: %d",
+ __entry->ctl,
+ __entry->cval,
+ __entry->timer_idx)
+);
+
+TRACE_EVENT(kvm_timer_hrtimer_expire,
+ TP_PROTO(struct arch_timer_context *ctx),
+ TP_ARGS(ctx),
+
+ TP_STRUCT__entry(
+ __field( int, timer_idx )
+ ),
+
+ TP_fast_assign(
+ __entry->timer_idx = arch_timer_ctx_index(ctx);
+ ),
+
+ TP_printk("arch_timer_ctx_index: %d", __entry->timer_idx)
+);
+
+TRACE_EVENT(kvm_timer_emulate,
+ TP_PROTO(struct arch_timer_context *ctx, bool should_fire),
+ TP_ARGS(ctx, should_fire),
+
+ TP_STRUCT__entry(
+ __field( int, timer_idx )
+ __field( bool, should_fire )
+ ),
+
+ TP_fast_assign(
+ __entry->timer_idx = arch_timer_ctx_index(ctx);
+ __entry->should_fire = should_fire;
+ ),
+
+ TP_printk("arch_timer_ctx_index: %d (should_fire: %d)",
+ __entry->timer_idx, __entry->should_fire)
+);
+
+#endif /* _TRACE_ARM_ARM64_KVM_H */
+
+#undef TRACE_INCLUDE_PATH
+#define TRACE_INCLUDE_PATH .
+#undef TRACE_INCLUDE_FILE
+#define TRACE_INCLUDE_FILE trace_arm
+
+/* This part must be outside protection */
+#include <trace/define_trace.h>
diff --git a/arch/arm64/kvm/trace_handle_exit.h b/arch/arm64/kvm/trace_handle_exit.h
new file mode 100644
index 000000000000..2c56d1e0f5bd
--- /dev/null
+++ b/arch/arm64/kvm/trace_handle_exit.h
@@ -0,0 +1,215 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#if !defined(_TRACE_HANDLE_EXIT_ARM64_KVM_H) || defined(TRACE_HEADER_MULTI_READ)
+#define _TRACE_HANDLE_EXIT_ARM64_KVM_H
+
+#include <linux/tracepoint.h>
+#include "sys_regs.h"
+
+#undef TRACE_SYSTEM
+#define TRACE_SYSTEM kvm
+
+TRACE_EVENT(kvm_wfx_arm64,
+ TP_PROTO(unsigned long vcpu_pc, bool is_wfe),
+ TP_ARGS(vcpu_pc, is_wfe),
+
+ TP_STRUCT__entry(
+ __field(unsigned long, vcpu_pc)
+ __field(bool, is_wfe)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->is_wfe = is_wfe;
+ ),
+
+ TP_printk("guest executed wf%c at: 0x%08lx",
+ __entry->is_wfe ? 'e' : 'i', __entry->vcpu_pc)
+);
+
+TRACE_EVENT(kvm_hvc_arm64,
+ TP_PROTO(unsigned long vcpu_pc, unsigned long r0, unsigned long imm),
+ TP_ARGS(vcpu_pc, r0, imm),
+
+ TP_STRUCT__entry(
+ __field(unsigned long, vcpu_pc)
+ __field(unsigned long, r0)
+ __field(unsigned long, imm)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->r0 = r0;
+ __entry->imm = imm;
+ ),
+
+ TP_printk("HVC at 0x%08lx (r0: 0x%08lx, imm: 0x%lx)",
+ __entry->vcpu_pc, __entry->r0, __entry->imm)
+);
+
+TRACE_EVENT(kvm_arm_setup_debug,
+ TP_PROTO(struct kvm_vcpu *vcpu, __u32 guest_debug),
+ TP_ARGS(vcpu, guest_debug),
+
+ TP_STRUCT__entry(
+ __field(struct kvm_vcpu *, vcpu)
+ __field(__u32, guest_debug)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu = vcpu;
+ __entry->guest_debug = guest_debug;
+ ),
+
+ TP_printk("vcpu: %p, flags: 0x%08x", __entry->vcpu, __entry->guest_debug)
+);
+
+TRACE_EVENT(kvm_arm_clear_debug,
+ TP_PROTO(__u32 guest_debug),
+ TP_ARGS(guest_debug),
+
+ TP_STRUCT__entry(
+ __field(__u32, guest_debug)
+ ),
+
+ TP_fast_assign(
+ __entry->guest_debug = guest_debug;
+ ),
+
+ TP_printk("flags: 0x%08x", __entry->guest_debug)
+);
+
+TRACE_EVENT(kvm_arm_set_dreg32,
+ TP_PROTO(const char *name, __u32 value),
+ TP_ARGS(name, value),
+
+ TP_STRUCT__entry(
+ __field(const char *, name)
+ __field(__u32, value)
+ ),
+
+ TP_fast_assign(
+ __entry->name = name;
+ __entry->value = value;
+ ),
+
+ TP_printk("%s: 0x%08x", __entry->name, __entry->value)
+);
+
+TRACE_DEFINE_SIZEOF(__u64);
+
+TRACE_EVENT(kvm_arm_set_regset,
+ TP_PROTO(const char *type, int len, __u64 *control, __u64 *value),
+ TP_ARGS(type, len, control, value),
+ TP_STRUCT__entry(
+ __field(const char *, name)
+ __field(int, len)
+ __array(u64, ctrls, 16)
+ __array(u64, values, 16)
+ ),
+ TP_fast_assign(
+ __entry->name = type;
+ __entry->len = len;
+ memcpy(__entry->ctrls, control, len << 3);
+ memcpy(__entry->values, value, len << 3);
+ ),
+ TP_printk("%d %s CTRL:%s VALUE:%s", __entry->len, __entry->name,
+ __print_array(__entry->ctrls, __entry->len, sizeof(__u64)),
+ __print_array(__entry->values, __entry->len, sizeof(__u64)))
+);
+
+TRACE_EVENT(trap_reg,
+ TP_PROTO(const char *fn, int reg, bool is_write, u64 write_value),
+ TP_ARGS(fn, reg, is_write, write_value),
+
+ TP_STRUCT__entry(
+ __field(const char *, fn)
+ __field(int, reg)
+ __field(bool, is_write)
+ __field(u64, write_value)
+ ),
+
+ TP_fast_assign(
+ __entry->fn = fn;
+ __entry->reg = reg;
+ __entry->is_write = is_write;
+ __entry->write_value = write_value;
+ ),
+
+ TP_printk("%s %s reg %d (0x%08llx)", __entry->fn, __entry->is_write?"write to":"read from", __entry->reg, __entry->write_value)
+);
+
+TRACE_EVENT(kvm_handle_sys_reg,
+ TP_PROTO(unsigned long hsr),
+ TP_ARGS(hsr),
+
+ TP_STRUCT__entry(
+ __field(unsigned long, hsr)
+ ),
+
+ TP_fast_assign(
+ __entry->hsr = hsr;
+ ),
+
+ TP_printk("HSR 0x%08lx", __entry->hsr)
+);
+
+TRACE_EVENT(kvm_sys_access,
+ TP_PROTO(unsigned long vcpu_pc, struct sys_reg_params *params, const struct sys_reg_desc *reg),
+ TP_ARGS(vcpu_pc, params, reg),
+
+ TP_STRUCT__entry(
+ __field(unsigned long, vcpu_pc)
+ __field(bool, is_write)
+ __field(const char *, name)
+ __field(u8, Op0)
+ __field(u8, Op1)
+ __field(u8, CRn)
+ __field(u8, CRm)
+ __field(u8, Op2)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->is_write = params->is_write;
+ __entry->name = reg->name;
+ __entry->Op0 = reg->Op0;
+ __entry->Op0 = reg->Op0;
+ __entry->Op1 = reg->Op1;
+ __entry->CRn = reg->CRn;
+ __entry->CRm = reg->CRm;
+ __entry->Op2 = reg->Op2;
+ ),
+
+ TP_printk("PC: %lx %s (%d,%d,%d,%d,%d) %s",
+ __entry->vcpu_pc, __entry->name ?: "UNKN",
+ __entry->Op0, __entry->Op1, __entry->CRn,
+ __entry->CRm, __entry->Op2,
+ __entry->is_write ? "write" : "read")
+);
+
+TRACE_EVENT(kvm_set_guest_debug,
+ TP_PROTO(struct kvm_vcpu *vcpu, __u32 guest_debug),
+ TP_ARGS(vcpu, guest_debug),
+
+ TP_STRUCT__entry(
+ __field(struct kvm_vcpu *, vcpu)
+ __field(__u32, guest_debug)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu = vcpu;
+ __entry->guest_debug = guest_debug;
+ ),
+
+ TP_printk("vcpu: %p, flags: 0x%08x", __entry->vcpu, __entry->guest_debug)
+);
+
+#endif /* _TRACE_HANDLE_EXIT_ARM64_KVM_H */
+
+#undef TRACE_INCLUDE_PATH
+#define TRACE_INCLUDE_PATH .
+#undef TRACE_INCLUDE_FILE
+#define TRACE_INCLUDE_FILE trace_handle_exit
+
+/* This part must be outside protection */
+#include <trace/define_trace.h>
diff --git a/arch/arm64/kvm/vgic-sys-reg-v3.c b/arch/arm64/kvm/vgic-sys-reg-v3.c
index e7d1ea92095d..2f92bdcb1188 100644
--- a/arch/arm64/kvm/vgic-sys-reg-v3.c
+++ b/arch/arm64/kvm/vgic-sys-reg-v3.c
@@ -7,7 +7,7 @@
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <asm/kvm_emulate.h>
-#include "vgic.h"
+#include "vgic/vgic.h"
#include "sys_regs.h"
static bool access_gic_ctlr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
diff --git a/arch/arm64/kvm/vgic/trace.h b/arch/arm64/kvm/vgic/trace.h
new file mode 100644
index 000000000000..83c64401a7fc
--- /dev/null
+++ b/arch/arm64/kvm/vgic/trace.h
@@ -0,0 +1,38 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#if !defined(_TRACE_VGIC_H) || defined(TRACE_HEADER_MULTI_READ)
+#define _TRACE_VGIC_H
+
+#include <linux/tracepoint.h>
+
+#undef TRACE_SYSTEM
+#define TRACE_SYSTEM kvm
+
+TRACE_EVENT(vgic_update_irq_pending,
+ TP_PROTO(unsigned long vcpu_id, __u32 irq, bool level),
+ TP_ARGS(vcpu_id, irq, level),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_id )
+ __field( __u32, irq )
+ __field( bool, level )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_id = vcpu_id;
+ __entry->irq = irq;
+ __entry->level = level;
+ ),
+
+ TP_printk("VCPU: %ld, IRQ %d, level: %d",
+ __entry->vcpu_id, __entry->irq, __entry->level)
+);
+
+#endif /* _TRACE_VGIC_H */
+
+#undef TRACE_INCLUDE_PATH
+#define TRACE_INCLUDE_PATH ../../arch/arm64/kvm/vgic
+#undef TRACE_INCLUDE_FILE
+#define TRACE_INCLUDE_FILE trace
+
+/* This part must be outside protection */
+#include <trace/define_trace.h>
diff --git a/arch/arm64/kvm/vgic/vgic-debug.c b/arch/arm64/kvm/vgic/vgic-debug.c
new file mode 100644
index 000000000000..b13a9e3f99dd
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-debug.c
@@ -0,0 +1,300 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2016 Linaro
+ * Author: Christoffer Dall <christoffer.dall@linaro.org>
+ */
+
+#include <linux/cpu.h>
+#include <linux/debugfs.h>
+#include <linux/interrupt.h>
+#include <linux/kvm_host.h>
+#include <linux/seq_file.h>
+#include <kvm/arm_vgic.h>
+#include <asm/kvm_mmu.h>
+#include "vgic.h"
+
+/*
+ * Structure to control looping through the entire vgic state. We start at
+ * zero for each field and move upwards. So, if dist_id is 0 we print the
+ * distributor info. When dist_id is 1, we have already printed it and move
+ * on.
+ *
+ * When vcpu_id < nr_cpus we print the vcpu info until vcpu_id == nr_cpus and
+ * so on.
+ */
+struct vgic_state_iter {
+ int nr_cpus;
+ int nr_spis;
+ int nr_lpis;
+ int dist_id;
+ int vcpu_id;
+ int intid;
+ int lpi_idx;
+ u32 *lpi_array;
+};
+
+static void iter_next(struct vgic_state_iter *iter)
+{
+ if (iter->dist_id == 0) {
+ iter->dist_id++;
+ return;
+ }
+
+ iter->intid++;
+ if (iter->intid == VGIC_NR_PRIVATE_IRQS &&
+ ++iter->vcpu_id < iter->nr_cpus)
+ iter->intid = 0;
+
+ if (iter->intid >= (iter->nr_spis + VGIC_NR_PRIVATE_IRQS)) {
+ if (iter->lpi_idx < iter->nr_lpis)
+ iter->intid = iter->lpi_array[iter->lpi_idx];
+ iter->lpi_idx++;
+ }
+}
+
+static void iter_init(struct kvm *kvm, struct vgic_state_iter *iter,
+ loff_t pos)
+{
+ int nr_cpus = atomic_read(&kvm->online_vcpus);
+
+ memset(iter, 0, sizeof(*iter));
+
+ iter->nr_cpus = nr_cpus;
+ iter->nr_spis = kvm->arch.vgic.nr_spis;
+ if (kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
+ iter->nr_lpis = vgic_copy_lpi_list(kvm, NULL, &iter->lpi_array);
+ if (iter->nr_lpis < 0)
+ iter->nr_lpis = 0;
+ }
+
+ /* Fast forward to the right position if needed */
+ while (pos--)
+ iter_next(iter);
+}
+
+static bool end_of_vgic(struct vgic_state_iter *iter)
+{
+ return iter->dist_id > 0 &&
+ iter->vcpu_id == iter->nr_cpus &&
+ iter->intid >= (iter->nr_spis + VGIC_NR_PRIVATE_IRQS) &&
+ iter->lpi_idx > iter->nr_lpis;
+}
+
+static void *vgic_debug_start(struct seq_file *s, loff_t *pos)
+{
+ struct kvm *kvm = (struct kvm *)s->private;
+ struct vgic_state_iter *iter;
+
+ mutex_lock(&kvm->lock);
+ iter = kvm->arch.vgic.iter;
+ if (iter) {
+ iter = ERR_PTR(-EBUSY);
+ goto out;
+ }
+
+ iter = kmalloc(sizeof(*iter), GFP_KERNEL);
+ if (!iter) {
+ iter = ERR_PTR(-ENOMEM);
+ goto out;
+ }
+
+ iter_init(kvm, iter, *pos);
+ kvm->arch.vgic.iter = iter;
+
+ if (end_of_vgic(iter))
+ iter = NULL;
+out:
+ mutex_unlock(&kvm->lock);
+ return iter;
+}
+
+static void *vgic_debug_next(struct seq_file *s, void *v, loff_t *pos)
+{
+ struct kvm *kvm = (struct kvm *)s->private;
+ struct vgic_state_iter *iter = kvm->arch.vgic.iter;
+
+ ++*pos;
+ iter_next(iter);
+ if (end_of_vgic(iter))
+ iter = NULL;
+ return iter;
+}
+
+static void vgic_debug_stop(struct seq_file *s, void *v)
+{
+ struct kvm *kvm = (struct kvm *)s->private;
+ struct vgic_state_iter *iter;
+
+ /*
+ * If the seq file wasn't properly opened, there's nothing to clearn
+ * up.
+ */
+ if (IS_ERR(v))
+ return;
+
+ mutex_lock(&kvm->lock);
+ iter = kvm->arch.vgic.iter;
+ kfree(iter->lpi_array);
+ kfree(iter);
+ kvm->arch.vgic.iter = NULL;
+ mutex_unlock(&kvm->lock);
+}
+
+static void print_dist_state(struct seq_file *s, struct vgic_dist *dist)
+{
+ bool v3 = dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3;
+
+ seq_printf(s, "Distributor\n");
+ seq_printf(s, "===========\n");
+ seq_printf(s, "vgic_model:\t%s\n", v3 ? "GICv3" : "GICv2");
+ seq_printf(s, "nr_spis:\t%d\n", dist->nr_spis);
+ if (v3)
+ seq_printf(s, "nr_lpis:\t%d\n", dist->lpi_list_count);
+ seq_printf(s, "enabled:\t%d\n", dist->enabled);
+ seq_printf(s, "\n");
+
+ seq_printf(s, "P=pending_latch, L=line_level, A=active\n");
+ seq_printf(s, "E=enabled, H=hw, C=config (level=1, edge=0)\n");
+ seq_printf(s, "G=group\n");
+}
+
+static void print_header(struct seq_file *s, struct vgic_irq *irq,
+ struct kvm_vcpu *vcpu)
+{
+ int id = 0;
+ char *hdr = "SPI ";
+
+ if (vcpu) {
+ hdr = "VCPU";
+ id = vcpu->vcpu_id;
+ }
+
+ seq_printf(s, "\n");
+ seq_printf(s, "%s%2d TYP ID TGT_ID PLAEHCG HWID TARGET SRC PRI VCPU_ID\n", hdr, id);
+ seq_printf(s, "----------------------------------------------------------------\n");
+}
+
+static void print_irq_state(struct seq_file *s, struct vgic_irq *irq,
+ struct kvm_vcpu *vcpu)
+{
+ char *type;
+ bool pending;
+
+ if (irq->intid < VGIC_NR_SGIS)
+ type = "SGI";
+ else if (irq->intid < VGIC_NR_PRIVATE_IRQS)
+ type = "PPI";
+ else if (irq->intid < VGIC_MAX_SPI)
+ type = "SPI";
+ else
+ type = "LPI";
+
+ if (irq->intid ==0 || irq->intid == VGIC_NR_PRIVATE_IRQS)
+ print_header(s, irq, vcpu);
+
+ pending = irq->pending_latch;
+ if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
+ int err;
+
+ err = irq_get_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING,
+ &pending);
+ WARN_ON_ONCE(err);
+ }
+
+ seq_printf(s, " %s %4d "
+ " %2d "
+ "%d%d%d%d%d%d%d "
+ "%8d "
+ "%8x "
+ " %2x "
+ "%3d "
+ " %2d "
+ "\n",
+ type, irq->intid,
+ (irq->target_vcpu) ? irq->target_vcpu->vcpu_id : -1,
+ pending,
+ irq->line_level,
+ irq->active,
+ irq->enabled,
+ irq->hw,
+ irq->config == VGIC_CONFIG_LEVEL,
+ irq->group,
+ irq->hwintid,
+ irq->mpidr,
+ irq->source,
+ irq->priority,
+ (irq->vcpu) ? irq->vcpu->vcpu_id : -1);
+}
+
+static int vgic_debug_show(struct seq_file *s, void *v)
+{
+ struct kvm *kvm = (struct kvm *)s->private;
+ struct vgic_state_iter *iter = (struct vgic_state_iter *)v;
+ struct vgic_irq *irq;
+ struct kvm_vcpu *vcpu = NULL;
+ unsigned long flags;
+
+ if (iter->dist_id == 0) {
+ print_dist_state(s, &kvm->arch.vgic);
+ return 0;
+ }
+
+ if (!kvm->arch.vgic.initialized)
+ return 0;
+
+ if (iter->vcpu_id < iter->nr_cpus)
+ vcpu = kvm_get_vcpu(kvm, iter->vcpu_id);
+
+ irq = vgic_get_irq(kvm, vcpu, iter->intid);
+ if (!irq) {
+ seq_printf(s, " LPI %4d freed\n", iter->intid);
+ return 0;
+ }
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ print_irq_state(s, irq, vcpu);
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ vgic_put_irq(kvm, irq);
+ return 0;
+}
+
+static const struct seq_operations vgic_debug_seq_ops = {
+ .start = vgic_debug_start,
+ .next = vgic_debug_next,
+ .stop = vgic_debug_stop,
+ .show = vgic_debug_show
+};
+
+static int debug_open(struct inode *inode, struct file *file)
+{
+ int ret;
+ ret = seq_open(file, &vgic_debug_seq_ops);
+ if (!ret) {
+ struct seq_file *seq;
+ /* seq_open will have modified file->private_data */
+ seq = file->private_data;
+ seq->private = inode->i_private;
+ }
+
+ return ret;
+};
+
+static const struct file_operations vgic_debug_fops = {
+ .owner = THIS_MODULE,
+ .open = debug_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = seq_release
+};
+
+void vgic_debug_init(struct kvm *kvm)
+{
+ debugfs_create_file("vgic-state", 0444, kvm->debugfs_dentry, kvm,
+ &vgic_debug_fops);
+}
+
+void vgic_debug_destroy(struct kvm *kvm)
+{
+}
diff --git a/arch/arm64/kvm/vgic/vgic-init.c b/arch/arm64/kvm/vgic/vgic-init.c
new file mode 100644
index 000000000000..32e32d67a127
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-init.c
@@ -0,0 +1,556 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2015, 2016 ARM Ltd.
+ */
+
+#include <linux/uaccess.h>
+#include <linux/interrupt.h>
+#include <linux/cpu.h>
+#include <linux/kvm_host.h>
+#include <kvm/arm_vgic.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_mmu.h>
+#include "vgic.h"
+
+/*
+ * Initialization rules: there are multiple stages to the vgic
+ * initialization, both for the distributor and the CPU interfaces. The basic
+ * idea is that even though the VGIC is not functional or not requested from
+ * user space, the critical path of the run loop can still call VGIC functions
+ * that just won't do anything, without them having to check additional
+ * initialization flags to ensure they don't look at uninitialized data
+ * structures.
+ *
+ * Distributor:
+ *
+ * - kvm_vgic_early_init(): initialization of static data that doesn't
+ * depend on any sizing information or emulation type. No allocation
+ * is allowed there.
+ *
+ * - vgic_init(): allocation and initialization of the generic data
+ * structures that depend on sizing information (number of CPUs,
+ * number of interrupts). Also initializes the vcpu specific data
+ * structures. Can be executed lazily for GICv2.
+ *
+ * CPU Interface:
+ *
+ * - kvm_vgic_vcpu_init(): initialization of static data that
+ * doesn't depend on any sizing information or emulation type. No
+ * allocation is allowed there.
+ */
+
+/* EARLY INIT */
+
+/**
+ * kvm_vgic_early_init() - Initialize static VGIC VCPU data structures
+ * @kvm: The VM whose VGIC districutor should be initialized
+ *
+ * Only do initialization of static structures that don't require any
+ * allocation or sizing information from userspace. vgic_init() called
+ * kvm_vgic_dist_init() which takes care of the rest.
+ */
+void kvm_vgic_early_init(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+
+ INIT_LIST_HEAD(&dist->lpi_list_head);
+ INIT_LIST_HEAD(&dist->lpi_translation_cache);
+ raw_spin_lock_init(&dist->lpi_list_lock);
+}
+
+/* CREATION */
+
+/**
+ * kvm_vgic_create: triggered by the instantiation of the VGIC device by
+ * user space, either through the legacy KVM_CREATE_IRQCHIP ioctl (v2 only)
+ * or through the generic KVM_CREATE_DEVICE API ioctl.
+ * irqchip_in_kernel() tells you if this function succeeded or not.
+ * @kvm: kvm struct pointer
+ * @type: KVM_DEV_TYPE_ARM_VGIC_V[23]
+ */
+int kvm_vgic_create(struct kvm *kvm, u32 type)
+{
+ int i, ret;
+ struct kvm_vcpu *vcpu;
+
+ if (irqchip_in_kernel(kvm))
+ return -EEXIST;
+
+ /*
+ * This function is also called by the KVM_CREATE_IRQCHIP handler,
+ * which had no chance yet to check the availability of the GICv2
+ * emulation. So check this here again. KVM_CREATE_DEVICE does
+ * the proper checks already.
+ */
+ if (type == KVM_DEV_TYPE_ARM_VGIC_V2 &&
+ !kvm_vgic_global_state.can_emulate_gicv2)
+ return -ENODEV;
+
+ ret = -EBUSY;
+ if (!lock_all_vcpus(kvm))
+ return ret;
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (vcpu->arch.has_run_once)
+ goto out_unlock;
+ }
+ ret = 0;
+
+ if (type == KVM_DEV_TYPE_ARM_VGIC_V2)
+ kvm->arch.max_vcpus = VGIC_V2_MAX_CPUS;
+ else
+ kvm->arch.max_vcpus = VGIC_V3_MAX_CPUS;
+
+ if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus) {
+ ret = -E2BIG;
+ goto out_unlock;
+ }
+
+ kvm->arch.vgic.in_kernel = true;
+ kvm->arch.vgic.vgic_model = type;
+
+ kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
+
+ if (type == KVM_DEV_TYPE_ARM_VGIC_V2)
+ kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
+ else
+ INIT_LIST_HEAD(&kvm->arch.vgic.rd_regions);
+
+out_unlock:
+ unlock_all_vcpus(kvm);
+ return ret;
+}
+
+/* INIT/DESTROY */
+
+/**
+ * kvm_vgic_dist_init: initialize the dist data structures
+ * @kvm: kvm struct pointer
+ * @nr_spis: number of spis, frozen by caller
+ */
+static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0);
+ int i;
+
+ dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL);
+ if (!dist->spis)
+ return -ENOMEM;
+
+ /*
+ * In the following code we do not take the irq struct lock since
+ * no other action on irq structs can happen while the VGIC is
+ * not initialized yet:
+ * If someone wants to inject an interrupt or does a MMIO access, we
+ * require prior initialization in case of a virtual GICv3 or trigger
+ * initialization when using a virtual GICv2.
+ */
+ for (i = 0; i < nr_spis; i++) {
+ struct vgic_irq *irq = &dist->spis[i];
+
+ irq->intid = i + VGIC_NR_PRIVATE_IRQS;
+ INIT_LIST_HEAD(&irq->ap_list);
+ raw_spin_lock_init(&irq->irq_lock);
+ irq->vcpu = NULL;
+ irq->target_vcpu = vcpu0;
+ kref_init(&irq->refcount);
+ switch (dist->vgic_model) {
+ case KVM_DEV_TYPE_ARM_VGIC_V2:
+ irq->targets = 0;
+ irq->group = 0;
+ break;
+ case KVM_DEV_TYPE_ARM_VGIC_V3:
+ irq->mpidr = 0;
+ irq->group = 1;
+ break;
+ default:
+ kfree(dist->spis);
+ dist->spis = NULL;
+ return -EINVAL;
+ }
+ }
+ return 0;
+}
+
+/**
+ * kvm_vgic_vcpu_init() - Initialize static VGIC VCPU data
+ * structures and register VCPU-specific KVM iodevs
+ *
+ * @vcpu: pointer to the VCPU being created and initialized
+ *
+ * Only do initialization, but do not actually enable the
+ * VGIC CPU interface
+ */
+int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
+ int ret = 0;
+ int i;
+
+ vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF;
+
+ INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
+ raw_spin_lock_init(&vgic_cpu->ap_list_lock);
+ atomic_set(&vgic_cpu->vgic_v3.its_vpe.vlpi_count, 0);
+
+ /*
+ * Enable and configure all SGIs to be edge-triggered and
+ * configure all PPIs as level-triggered.
+ */
+ for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
+ struct vgic_irq *irq = &vgic_cpu->private_irqs[i];
+
+ INIT_LIST_HEAD(&irq->ap_list);
+ raw_spin_lock_init(&irq->irq_lock);
+ irq->intid = i;
+ irq->vcpu = NULL;
+ irq->target_vcpu = vcpu;
+ kref_init(&irq->refcount);
+ if (vgic_irq_is_sgi(i)) {
+ /* SGIs */
+ irq->enabled = 1;
+ irq->config = VGIC_CONFIG_EDGE;
+ } else {
+ /* PPIs */
+ irq->config = VGIC_CONFIG_LEVEL;
+ }
+ }
+
+ if (!irqchip_in_kernel(vcpu->kvm))
+ return 0;
+
+ /*
+ * If we are creating a VCPU with a GICv3 we must also register the
+ * KVM io device for the redistributor that belongs to this VCPU.
+ */
+ if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
+ mutex_lock(&vcpu->kvm->lock);
+ ret = vgic_register_redist_iodev(vcpu);
+ mutex_unlock(&vcpu->kvm->lock);
+ }
+ return ret;
+}
+
+static void kvm_vgic_vcpu_enable(struct kvm_vcpu *vcpu)
+{
+ if (kvm_vgic_global_state.type == VGIC_V2)
+ vgic_v2_enable(vcpu);
+ else
+ vgic_v3_enable(vcpu);
+}
+
+/*
+ * vgic_init: allocates and initializes dist and vcpu data structures
+ * depending on two dimensioning parameters:
+ * - the number of spis
+ * - the number of vcpus
+ * The function is generally called when nr_spis has been explicitly set
+ * by the guest through the KVM DEVICE API. If not nr_spis is set to 256.
+ * vgic_initialized() returns true when this function has succeeded.
+ * Must be called with kvm->lock held!
+ */
+int vgic_init(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct kvm_vcpu *vcpu;
+ int ret = 0, i, idx;
+
+ if (vgic_initialized(kvm))
+ return 0;
+
+ /* Are we also in the middle of creating a VCPU? */
+ if (kvm->created_vcpus != atomic_read(&kvm->online_vcpus))
+ return -EBUSY;
+
+ /* freeze the number of spis */
+ if (!dist->nr_spis)
+ dist->nr_spis = VGIC_NR_IRQS_LEGACY - VGIC_NR_PRIVATE_IRQS;
+
+ ret = kvm_vgic_dist_init(kvm, dist->nr_spis);
+ if (ret)
+ goto out;
+
+ /* Initialize groups on CPUs created before the VGIC type was known */
+ kvm_for_each_vcpu(idx, vcpu, kvm) {
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+
+ for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
+ struct vgic_irq *irq = &vgic_cpu->private_irqs[i];
+ switch (dist->vgic_model) {
+ case KVM_DEV_TYPE_ARM_VGIC_V3:
+ irq->group = 1;
+ irq->mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
+ break;
+ case KVM_DEV_TYPE_ARM_VGIC_V2:
+ irq->group = 0;
+ irq->targets = 1U << idx;
+ break;
+ default:
+ ret = -EINVAL;
+ goto out;
+ }
+ }
+ }
+
+ if (vgic_has_its(kvm))
+ vgic_lpi_translation_cache_init(kvm);
+
+ /*
+ * If we have GICv4.1 enabled, unconditionnaly request enable the
+ * v4 support so that we get HW-accelerated vSGIs. Otherwise, only
+ * enable it if we present a virtual ITS to the guest.
+ */
+ if (vgic_supports_direct_msis(kvm)) {
+ ret = vgic_v4_init(kvm);
+ if (ret)
+ goto out;
+ }
+
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ kvm_vgic_vcpu_enable(vcpu);
+
+ ret = kvm_vgic_setup_default_irq_routing(kvm);
+ if (ret)
+ goto out;
+
+ vgic_debug_init(kvm);
+
+ dist->implementation_rev = 2;
+ dist->initialized = true;
+
+out:
+ return ret;
+}
+
+static void kvm_vgic_dist_destroy(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct vgic_redist_region *rdreg, *next;
+
+ dist->ready = false;
+ dist->initialized = false;
+
+ kfree(dist->spis);
+ dist->spis = NULL;
+ dist->nr_spis = 0;
+
+ if (kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
+ list_for_each_entry_safe(rdreg, next, &dist->rd_regions, list) {
+ list_del(&rdreg->list);
+ kfree(rdreg);
+ }
+ INIT_LIST_HEAD(&dist->rd_regions);
+ }
+
+ if (vgic_has_its(kvm))
+ vgic_lpi_translation_cache_destroy(kvm);
+
+ if (vgic_supports_direct_msis(kvm))
+ vgic_v4_teardown(kvm);
+}
+
+void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+
+ /*
+ * Retire all pending LPIs on this vcpu anyway as we're
+ * going to destroy it.
+ */
+ vgic_flush_pending_lpis(vcpu);
+
+ INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
+}
+
+/* To be called with kvm->lock held */
+static void __kvm_vgic_destroy(struct kvm *kvm)
+{
+ struct kvm_vcpu *vcpu;
+ int i;
+
+ vgic_debug_destroy(kvm);
+
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ kvm_vgic_vcpu_destroy(vcpu);
+
+ kvm_vgic_dist_destroy(kvm);
+}
+
+void kvm_vgic_destroy(struct kvm *kvm)
+{
+ mutex_lock(&kvm->lock);
+ __kvm_vgic_destroy(kvm);
+ mutex_unlock(&kvm->lock);
+}
+
+/**
+ * vgic_lazy_init: Lazy init is only allowed if the GIC exposed to the guest
+ * is a GICv2. A GICv3 must be explicitly initialized by the guest using the
+ * KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEVICE group.
+ * @kvm: kvm struct pointer
+ */
+int vgic_lazy_init(struct kvm *kvm)
+{
+ int ret = 0;
+
+ if (unlikely(!vgic_initialized(kvm))) {
+ /*
+ * We only provide the automatic initialization of the VGIC
+ * for the legacy case of a GICv2. Any other type must
+ * be explicitly initialized once setup with the respective
+ * KVM device call.
+ */
+ if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
+ return -EBUSY;
+
+ mutex_lock(&kvm->lock);
+ ret = vgic_init(kvm);
+ mutex_unlock(&kvm->lock);
+ }
+
+ return ret;
+}
+
+/* RESOURCE MAPPING */
+
+/**
+ * Map the MMIO regions depending on the VGIC model exposed to the guest
+ * called on the first VCPU run.
+ * Also map the virtual CPU interface into the VM.
+ * v2/v3 derivatives call vgic_init if not already done.
+ * vgic_ready() returns true if this function has succeeded.
+ * @kvm: kvm struct pointer
+ */
+int kvm_vgic_map_resources(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ int ret = 0;
+
+ mutex_lock(&kvm->lock);
+ if (!irqchip_in_kernel(kvm))
+ goto out;
+
+ if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2)
+ ret = vgic_v2_map_resources(kvm);
+ else
+ ret = vgic_v3_map_resources(kvm);
+
+ if (ret)
+ __kvm_vgic_destroy(kvm);
+
+out:
+ mutex_unlock(&kvm->lock);
+ return ret;
+}
+
+/* GENERIC PROBE */
+
+static int vgic_init_cpu_starting(unsigned int cpu)
+{
+ enable_percpu_irq(kvm_vgic_global_state.maint_irq, 0);
+ return 0;
+}
+
+
+static int vgic_init_cpu_dying(unsigned int cpu)
+{
+ disable_percpu_irq(kvm_vgic_global_state.maint_irq);
+ return 0;
+}
+
+static irqreturn_t vgic_maintenance_handler(int irq, void *data)
+{
+ /*
+ * We cannot rely on the vgic maintenance interrupt to be
+ * delivered synchronously. This means we can only use it to
+ * exit the VM, and we perform the handling of EOIed
+ * interrupts on the exit path (see vgic_fold_lr_state).
+ */
+ return IRQ_HANDLED;
+}
+
+/**
+ * kvm_vgic_init_cpu_hardware - initialize the GIC VE hardware
+ *
+ * For a specific CPU, initialize the GIC VE hardware.
+ */
+void kvm_vgic_init_cpu_hardware(void)
+{
+ BUG_ON(preemptible());
+
+ /*
+ * We want to make sure the list registers start out clear so that we
+ * only have the program the used registers.
+ */
+ if (kvm_vgic_global_state.type == VGIC_V2)
+ vgic_v2_init_lrs();
+ else
+ kvm_call_hyp(__vgic_v3_init_lrs);
+}
+
+/**
+ * kvm_vgic_hyp_init: populates the kvm_vgic_global_state variable
+ * according to the host GIC model. Accordingly calls either
+ * vgic_v2/v3_probe which registers the KVM_DEVICE that can be
+ * instantiated by a guest later on .
+ */
+int kvm_vgic_hyp_init(void)
+{
+ const struct gic_kvm_info *gic_kvm_info;
+ int ret;
+
+ gic_kvm_info = gic_get_kvm_info();
+ if (!gic_kvm_info)
+ return -ENODEV;
+
+ if (!gic_kvm_info->maint_irq) {
+ kvm_err("No vgic maintenance irq\n");
+ return -ENXIO;
+ }
+
+ switch (gic_kvm_info->type) {
+ case GIC_V2:
+ ret = vgic_v2_probe(gic_kvm_info);
+ break;
+ case GIC_V3:
+ ret = vgic_v3_probe(gic_kvm_info);
+ if (!ret) {
+ static_branch_enable(&kvm_vgic_global_state.gicv3_cpuif);
+ kvm_info("GIC system register CPU interface enabled\n");
+ }
+ break;
+ default:
+ ret = -ENODEV;
+ }
+
+ if (ret)
+ return ret;
+
+ kvm_vgic_global_state.maint_irq = gic_kvm_info->maint_irq;
+ ret = request_percpu_irq(kvm_vgic_global_state.maint_irq,
+ vgic_maintenance_handler,
+ "vgic", kvm_get_running_vcpus());
+ if (ret) {
+ kvm_err("Cannot register interrupt %d\n",
+ kvm_vgic_global_state.maint_irq);
+ return ret;
+ }
+
+ ret = cpuhp_setup_state(CPUHP_AP_KVM_ARM_VGIC_INIT_STARTING,
+ "kvm/arm/vgic:starting",
+ vgic_init_cpu_starting, vgic_init_cpu_dying);
+ if (ret) {
+ kvm_err("Cannot register vgic CPU notifier\n");
+ goto out_free_irq;
+ }
+
+ kvm_info("vgic interrupt IRQ%d\n", kvm_vgic_global_state.maint_irq);
+ return 0;
+
+out_free_irq:
+ free_percpu_irq(kvm_vgic_global_state.maint_irq,
+ kvm_get_running_vcpus());
+ return ret;
+}
diff --git a/arch/arm64/kvm/vgic/vgic-irqfd.c b/arch/arm64/kvm/vgic/vgic-irqfd.c
new file mode 100644
index 000000000000..d8cdfea5cc96
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-irqfd.c
@@ -0,0 +1,141 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2015, 2016 ARM Ltd.
+ */
+
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <trace/events/kvm.h>
+#include <kvm/arm_vgic.h>
+#include "vgic.h"
+
+/**
+ * vgic_irqfd_set_irq: inject the IRQ corresponding to the
+ * irqchip routing entry
+ *
+ * This is the entry point for irqfd IRQ injection
+ */
+static int vgic_irqfd_set_irq(struct kvm_kernel_irq_routing_entry *e,
+ struct kvm *kvm, int irq_source_id,
+ int level, bool line_status)
+{
+ unsigned int spi_id = e->irqchip.pin + VGIC_NR_PRIVATE_IRQS;
+
+ if (!vgic_valid_spi(kvm, spi_id))
+ return -EINVAL;
+ return kvm_vgic_inject_irq(kvm, 0, spi_id, level, NULL);
+}
+
+/**
+ * kvm_set_routing_entry: populate a kvm routing entry
+ * from a user routing entry
+ *
+ * @kvm: the VM this entry is applied to
+ * @e: kvm kernel routing entry handle
+ * @ue: user api routing entry handle
+ * return 0 on success, -EINVAL on errors.
+ */
+int kvm_set_routing_entry(struct kvm *kvm,
+ struct kvm_kernel_irq_routing_entry *e,
+ const struct kvm_irq_routing_entry *ue)
+{
+ int r = -EINVAL;
+
+ switch (ue->type) {
+ case KVM_IRQ_ROUTING_IRQCHIP:
+ e->set = vgic_irqfd_set_irq;
+ e->irqchip.irqchip = ue->u.irqchip.irqchip;
+ e->irqchip.pin = ue->u.irqchip.pin;
+ if ((e->irqchip.pin >= KVM_IRQCHIP_NUM_PINS) ||
+ (e->irqchip.irqchip >= KVM_NR_IRQCHIPS))
+ goto out;
+ break;
+ case KVM_IRQ_ROUTING_MSI:
+ e->set = kvm_set_msi;
+ e->msi.address_lo = ue->u.msi.address_lo;
+ e->msi.address_hi = ue->u.msi.address_hi;
+ e->msi.data = ue->u.msi.data;
+ e->msi.flags = ue->flags;
+ e->msi.devid = ue->u.msi.devid;
+ break;
+ default:
+ goto out;
+ }
+ r = 0;
+out:
+ return r;
+}
+
+static void kvm_populate_msi(struct kvm_kernel_irq_routing_entry *e,
+ struct kvm_msi *msi)
+{
+ msi->address_lo = e->msi.address_lo;
+ msi->address_hi = e->msi.address_hi;
+ msi->data = e->msi.data;
+ msi->flags = e->msi.flags;
+ msi->devid = e->msi.devid;
+}
+/**
+ * kvm_set_msi: inject the MSI corresponding to the
+ * MSI routing entry
+ *
+ * This is the entry point for irqfd MSI injection
+ * and userspace MSI injection.
+ */
+int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
+ struct kvm *kvm, int irq_source_id,
+ int level, bool line_status)
+{
+ struct kvm_msi msi;
+
+ if (!vgic_has_its(kvm))
+ return -ENODEV;
+
+ if (!level)
+ return -1;
+
+ kvm_populate_msi(e, &msi);
+ return vgic_its_inject_msi(kvm, &msi);
+}
+
+/**
+ * kvm_arch_set_irq_inatomic: fast-path for irqfd injection
+ *
+ * Currently only direct MSI injection is supported.
+ */
+int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
+ struct kvm *kvm, int irq_source_id, int level,
+ bool line_status)
+{
+ if (e->type == KVM_IRQ_ROUTING_MSI && vgic_has_its(kvm) && level) {
+ struct kvm_msi msi;
+
+ kvm_populate_msi(e, &msi);
+ if (!vgic_its_inject_cached_translation(kvm, &msi))
+ return 0;
+ }
+
+ return -EWOULDBLOCK;
+}
+
+int kvm_vgic_setup_default_irq_routing(struct kvm *kvm)
+{
+ struct kvm_irq_routing_entry *entries;
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ u32 nr = dist->nr_spis;
+ int i, ret;
+
+ entries = kcalloc(nr, sizeof(*entries), GFP_KERNEL);
+ if (!entries)
+ return -ENOMEM;
+
+ for (i = 0; i < nr; i++) {
+ entries[i].gsi = i;
+ entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
+ entries[i].u.irqchip.irqchip = 0;
+ entries[i].u.irqchip.pin = i;
+ }
+ ret = kvm_set_irq_routing(kvm, entries, nr, 0);
+ kfree(entries);
+ return ret;
+}
diff --git a/arch/arm64/kvm/vgic/vgic-its.c b/arch/arm64/kvm/vgic/vgic-its.c
new file mode 100644
index 000000000000..c012a52b19f5
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-its.c
@@ -0,0 +1,2783 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * GICv3 ITS emulation
+ *
+ * Copyright (C) 2015,2016 ARM Ltd.
+ * Author: Andre Przywara <andre.przywara@arm.com>
+ */
+
+#include <linux/cpu.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/interrupt.h>
+#include <linux/list.h>
+#include <linux/uaccess.h>
+#include <linux/list_sort.h>
+
+#include <linux/irqchip/arm-gic-v3.h>
+
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_mmu.h>
+
+#include "vgic.h"
+#include "vgic-mmio.h"
+
+static int vgic_its_save_tables_v0(struct vgic_its *its);
+static int vgic_its_restore_tables_v0(struct vgic_its *its);
+static int vgic_its_commit_v0(struct vgic_its *its);
+static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
+ struct kvm_vcpu *filter_vcpu, bool needs_inv);
+
+/*
+ * Creates a new (reference to a) struct vgic_irq for a given LPI.
+ * If this LPI is already mapped on another ITS, we increase its refcount
+ * and return a pointer to the existing structure.
+ * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
+ * This function returns a pointer to the _unlocked_ structure.
+ */
+static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
+ struct kvm_vcpu *vcpu)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
+ unsigned long flags;
+ int ret;
+
+ /* In this case there is no put, since we keep the reference. */
+ if (irq)
+ return irq;
+
+ irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
+ if (!irq)
+ return ERR_PTR(-ENOMEM);
+
+ INIT_LIST_HEAD(&irq->lpi_list);
+ INIT_LIST_HEAD(&irq->ap_list);
+ raw_spin_lock_init(&irq->irq_lock);
+
+ irq->config = VGIC_CONFIG_EDGE;
+ kref_init(&irq->refcount);
+ irq->intid = intid;
+ irq->target_vcpu = vcpu;
+ irq->group = 1;
+
+ raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
+
+ /*
+ * There could be a race with another vgic_add_lpi(), so we need to
+ * check that we don't add a second list entry with the same LPI.
+ */
+ list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
+ if (oldirq->intid != intid)
+ continue;
+
+ /* Someone was faster with adding this LPI, lets use that. */
+ kfree(irq);
+ irq = oldirq;
+
+ /*
+ * This increases the refcount, the caller is expected to
+ * call vgic_put_irq() on the returned pointer once it's
+ * finished with the IRQ.
+ */
+ vgic_get_irq_kref(irq);
+
+ goto out_unlock;
+ }
+
+ list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
+ dist->lpi_list_count++;
+
+out_unlock:
+ raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
+
+ /*
+ * We "cache" the configuration table entries in our struct vgic_irq's.
+ * However we only have those structs for mapped IRQs, so we read in
+ * the respective config data from memory here upon mapping the LPI.
+ *
+ * Should any of these fail, behave as if we couldn't create the LPI
+ * by dropping the refcount and returning the error.
+ */
+ ret = update_lpi_config(kvm, irq, NULL, false);
+ if (ret) {
+ vgic_put_irq(kvm, irq);
+ return ERR_PTR(ret);
+ }
+
+ ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
+ if (ret) {
+ vgic_put_irq(kvm, irq);
+ return ERR_PTR(ret);
+ }
+
+ return irq;
+}
+
+struct its_device {
+ struct list_head dev_list;
+
+ /* the head for the list of ITTEs */
+ struct list_head itt_head;
+ u32 num_eventid_bits;
+ gpa_t itt_addr;
+ u32 device_id;
+};
+
+#define COLLECTION_NOT_MAPPED ((u32)~0)
+
+struct its_collection {
+ struct list_head coll_list;
+
+ u32 collection_id;
+ u32 target_addr;
+};
+
+#define its_is_collection_mapped(coll) ((coll) && \
+ ((coll)->target_addr != COLLECTION_NOT_MAPPED))
+
+struct its_ite {
+ struct list_head ite_list;
+
+ struct vgic_irq *irq;
+ struct its_collection *collection;
+ u32 event_id;
+};
+
+struct vgic_translation_cache_entry {
+ struct list_head entry;
+ phys_addr_t db;
+ u32 devid;
+ u32 eventid;
+ struct vgic_irq *irq;
+};
+
+/**
+ * struct vgic_its_abi - ITS abi ops and settings
+ * @cte_esz: collection table entry size
+ * @dte_esz: device table entry size
+ * @ite_esz: interrupt translation table entry size
+ * @save tables: save the ITS tables into guest RAM
+ * @restore_tables: restore the ITS internal structs from tables
+ * stored in guest RAM
+ * @commit: initialize the registers which expose the ABI settings,
+ * especially the entry sizes
+ */
+struct vgic_its_abi {
+ int cte_esz;
+ int dte_esz;
+ int ite_esz;
+ int (*save_tables)(struct vgic_its *its);
+ int (*restore_tables)(struct vgic_its *its);
+ int (*commit)(struct vgic_its *its);
+};
+
+#define ABI_0_ESZ 8
+#define ESZ_MAX ABI_0_ESZ
+
+static const struct vgic_its_abi its_table_abi_versions[] = {
+ [0] = {
+ .cte_esz = ABI_0_ESZ,
+ .dte_esz = ABI_0_ESZ,
+ .ite_esz = ABI_0_ESZ,
+ .save_tables = vgic_its_save_tables_v0,
+ .restore_tables = vgic_its_restore_tables_v0,
+ .commit = vgic_its_commit_v0,
+ },
+};
+
+#define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions)
+
+inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
+{
+ return &its_table_abi_versions[its->abi_rev];
+}
+
+static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
+{
+ const struct vgic_its_abi *abi;
+
+ its->abi_rev = rev;
+ abi = vgic_its_get_abi(its);
+ return abi->commit(its);
+}
+
+/*
+ * Find and returns a device in the device table for an ITS.
+ * Must be called with the its_lock mutex held.
+ */
+static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
+{
+ struct its_device *device;
+
+ list_for_each_entry(device, &its->device_list, dev_list)
+ if (device_id == device->device_id)
+ return device;
+
+ return NULL;
+}
+
+/*
+ * Find and returns an interrupt translation table entry (ITTE) for a given
+ * Device ID/Event ID pair on an ITS.
+ * Must be called with the its_lock mutex held.
+ */
+static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
+ u32 event_id)
+{
+ struct its_device *device;
+ struct its_ite *ite;
+
+ device = find_its_device(its, device_id);
+ if (device == NULL)
+ return NULL;
+
+ list_for_each_entry(ite, &device->itt_head, ite_list)
+ if (ite->event_id == event_id)
+ return ite;
+
+ return NULL;
+}
+
+/* To be used as an iterator this macro misses the enclosing parentheses */
+#define for_each_lpi_its(dev, ite, its) \
+ list_for_each_entry(dev, &(its)->device_list, dev_list) \
+ list_for_each_entry(ite, &(dev)->itt_head, ite_list)
+
+#define GIC_LPI_OFFSET 8192
+
+#define VITS_TYPER_IDBITS 16
+#define VITS_TYPER_DEVBITS 16
+#define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1)
+#define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1)
+
+/*
+ * Finds and returns a collection in the ITS collection table.
+ * Must be called with the its_lock mutex held.
+ */
+static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
+{
+ struct its_collection *collection;
+
+ list_for_each_entry(collection, &its->collection_list, coll_list) {
+ if (coll_id == collection->collection_id)
+ return collection;
+ }
+
+ return NULL;
+}
+
+#define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
+#define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
+
+/*
+ * Reads the configuration data for a given LPI from guest memory and
+ * updates the fields in struct vgic_irq.
+ * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
+ * VCPU. Unconditionally applies if filter_vcpu is NULL.
+ */
+static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
+ struct kvm_vcpu *filter_vcpu, bool needs_inv)
+{
+ u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
+ u8 prop;
+ int ret;
+ unsigned long flags;
+
+ ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
+ &prop, 1);
+
+ if (ret)
+ return ret;
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
+ irq->priority = LPI_PROP_PRIORITY(prop);
+ irq->enabled = LPI_PROP_ENABLE_BIT(prop);
+
+ if (!irq->hw) {
+ vgic_queue_irq_unlock(kvm, irq, flags);
+ return 0;
+ }
+ }
+
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ if (irq->hw)
+ return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
+
+ return 0;
+}
+
+/*
+ * Create a snapshot of the current LPIs targeting @vcpu, so that we can
+ * enumerate those LPIs without holding any lock.
+ * Returns their number and puts the kmalloc'ed array into intid_ptr.
+ */
+int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct vgic_irq *irq;
+ unsigned long flags;
+ u32 *intids;
+ int irq_count, i = 0;
+
+ /*
+ * There is an obvious race between allocating the array and LPIs
+ * being mapped/unmapped. If we ended up here as a result of a
+ * command, we're safe (locks are held, preventing another
+ * command). If coming from another path (such as enabling LPIs),
+ * we must be careful not to overrun the array.
+ */
+ irq_count = READ_ONCE(dist->lpi_list_count);
+ intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
+ if (!intids)
+ return -ENOMEM;
+
+ raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
+ list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
+ if (i == irq_count)
+ break;
+ /* We don't need to "get" the IRQ, as we hold the list lock. */
+ if (vcpu && irq->target_vcpu != vcpu)
+ continue;
+ intids[i++] = irq->intid;
+ }
+ raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
+
+ *intid_ptr = intids;
+ return i;
+}
+
+static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
+{
+ int ret = 0;
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ irq->target_vcpu = vcpu;
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ if (irq->hw) {
+ struct its_vlpi_map map;
+
+ ret = its_get_vlpi(irq->host_irq, &map);
+ if (ret)
+ return ret;
+
+ if (map.vpe)
+ atomic_dec(&map.vpe->vlpi_count);
+ map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
+ atomic_inc(&map.vpe->vlpi_count);
+
+ ret = its_map_vlpi(irq->host_irq, &map);
+ }
+
+ return ret;
+}
+
+/*
+ * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
+ * is targeting) to the VGIC's view, which deals with target VCPUs.
+ * Needs to be called whenever either the collection for a LPIs has
+ * changed or the collection itself got retargeted.
+ */
+static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
+{
+ struct kvm_vcpu *vcpu;
+
+ if (!its_is_collection_mapped(ite->collection))
+ return;
+
+ vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
+ update_affinity(ite->irq, vcpu);
+}
+
+/*
+ * Updates the target VCPU for every LPI targeting this collection.
+ * Must be called with the its_lock mutex held.
+ */
+static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
+ struct its_collection *coll)
+{
+ struct its_device *device;
+ struct its_ite *ite;
+
+ for_each_lpi_its(device, ite, its) {
+ if (!ite->collection || coll != ite->collection)
+ continue;
+
+ update_affinity_ite(kvm, ite);
+ }
+}
+
+static u32 max_lpis_propbaser(u64 propbaser)
+{
+ int nr_idbits = (propbaser & 0x1f) + 1;
+
+ return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
+}
+
+/*
+ * Sync the pending table pending bit of LPIs targeting @vcpu
+ * with our own data structures. This relies on the LPI being
+ * mapped before.
+ */
+static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
+{
+ gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
+ struct vgic_irq *irq;
+ int last_byte_offset = -1;
+ int ret = 0;
+ u32 *intids;
+ int nr_irqs, i;
+ unsigned long flags;
+ u8 pendmask;
+
+ nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
+ if (nr_irqs < 0)
+ return nr_irqs;
+
+ for (i = 0; i < nr_irqs; i++) {
+ int byte_offset, bit_nr;
+
+ byte_offset = intids[i] / BITS_PER_BYTE;
+ bit_nr = intids[i] % BITS_PER_BYTE;
+
+ /*
+ * For contiguously allocated LPIs chances are we just read
+ * this very same byte in the last iteration. Reuse that.
+ */
+ if (byte_offset != last_byte_offset) {
+ ret = kvm_read_guest_lock(vcpu->kvm,
+ pendbase + byte_offset,
+ &pendmask, 1);
+ if (ret) {
+ kfree(intids);
+ return ret;
+ }
+ last_byte_offset = byte_offset;
+ }
+
+ irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ irq->pending_latch = pendmask & (1U << bit_nr);
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ kfree(intids);
+
+ return ret;
+}
+
+static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ u64 reg = GITS_TYPER_PLPIS;
+
+ /*
+ * We use linear CPU numbers for redistributor addressing,
+ * so GITS_TYPER.PTA is 0.
+ * Also we force all PROPBASER registers to be the same, so
+ * CommonLPIAff is 0 as well.
+ * To avoid memory waste in the guest, we keep the number of IDBits and
+ * DevBits low - as least for the time being.
+ */
+ reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
+ reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
+ reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
+
+ return extract_bytes(reg, addr & 7, len);
+}
+
+static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len)
+{
+ u32 val;
+
+ val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
+ val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
+ return val;
+}
+
+static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 rev = GITS_IIDR_REV(val);
+
+ if (rev >= NR_ITS_ABIS)
+ return -EINVAL;
+ return vgic_its_set_abi(its, rev);
+}
+
+static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len)
+{
+ switch (addr & 0xffff) {
+ case GITS_PIDR0:
+ return 0x92; /* part number, bits[7:0] */
+ case GITS_PIDR1:
+ return 0xb4; /* part number, bits[11:8] */
+ case GITS_PIDR2:
+ return GIC_PIDR2_ARCH_GICv3 | 0x0b;
+ case GITS_PIDR4:
+ return 0x40; /* This is a 64K software visible page */
+ /* The following are the ID registers for (any) GIC. */
+ case GITS_CIDR0:
+ return 0x0d;
+ case GITS_CIDR1:
+ return 0xf0;
+ case GITS_CIDR2:
+ return 0x05;
+ case GITS_CIDR3:
+ return 0xb1;
+ }
+
+ return 0;
+}
+
+static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
+ phys_addr_t db,
+ u32 devid, u32 eventid)
+{
+ struct vgic_translation_cache_entry *cte;
+
+ list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
+ /*
+ * If we hit a NULL entry, there is nothing after this
+ * point.
+ */
+ if (!cte->irq)
+ break;
+
+ if (cte->db != db || cte->devid != devid ||
+ cte->eventid != eventid)
+ continue;
+
+ /*
+ * Move this entry to the head, as it is the most
+ * recently used.
+ */
+ if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
+ list_move(&cte->entry, &dist->lpi_translation_cache);
+
+ return cte->irq;
+ }
+
+ return NULL;
+}
+
+static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
+ u32 devid, u32 eventid)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct vgic_irq *irq;
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
+ irq = __vgic_its_check_cache(dist, db, devid, eventid);
+ raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
+
+ return irq;
+}
+
+static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
+ u32 devid, u32 eventid,
+ struct vgic_irq *irq)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct vgic_translation_cache_entry *cte;
+ unsigned long flags;
+ phys_addr_t db;
+
+ /* Do not cache a directly injected interrupt */
+ if (irq->hw)
+ return;
+
+ raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
+
+ if (unlikely(list_empty(&dist->lpi_translation_cache)))
+ goto out;
+
+ /*
+ * We could have raced with another CPU caching the same
+ * translation behind our back, so let's check it is not in
+ * already
+ */
+ db = its->vgic_its_base + GITS_TRANSLATER;
+ if (__vgic_its_check_cache(dist, db, devid, eventid))
+ goto out;
+
+ /* Always reuse the last entry (LRU policy) */
+ cte = list_last_entry(&dist->lpi_translation_cache,
+ typeof(*cte), entry);
+
+ /*
+ * Caching the translation implies having an extra reference
+ * to the interrupt, so drop the potential reference on what
+ * was in the cache, and increment it on the new interrupt.
+ */
+ if (cte->irq)
+ __vgic_put_lpi_locked(kvm, cte->irq);
+
+ vgic_get_irq_kref(irq);
+
+ cte->db = db;
+ cte->devid = devid;
+ cte->eventid = eventid;
+ cte->irq = irq;
+
+ /* Move the new translation to the head of the list */
+ list_move(&cte->entry, &dist->lpi_translation_cache);
+
+out:
+ raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
+}
+
+void vgic_its_invalidate_cache(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct vgic_translation_cache_entry *cte;
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
+
+ list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
+ /*
+ * If we hit a NULL entry, there is nothing after this
+ * point.
+ */
+ if (!cte->irq)
+ break;
+
+ __vgic_put_lpi_locked(kvm, cte->irq);
+ cte->irq = NULL;
+ }
+
+ raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
+}
+
+int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
+ u32 devid, u32 eventid, struct vgic_irq **irq)
+{
+ struct kvm_vcpu *vcpu;
+ struct its_ite *ite;
+
+ if (!its->enabled)
+ return -EBUSY;
+
+ ite = find_ite(its, devid, eventid);
+ if (!ite || !its_is_collection_mapped(ite->collection))
+ return E_ITS_INT_UNMAPPED_INTERRUPT;
+
+ vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
+ if (!vcpu)
+ return E_ITS_INT_UNMAPPED_INTERRUPT;
+
+ if (!vcpu->arch.vgic_cpu.lpis_enabled)
+ return -EBUSY;
+
+ vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
+
+ *irq = ite->irq;
+ return 0;
+}
+
+struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
+{
+ u64 address;
+ struct kvm_io_device *kvm_io_dev;
+ struct vgic_io_device *iodev;
+
+ if (!vgic_has_its(kvm))
+ return ERR_PTR(-ENODEV);
+
+ if (!(msi->flags & KVM_MSI_VALID_DEVID))
+ return ERR_PTR(-EINVAL);
+
+ address = (u64)msi->address_hi << 32 | msi->address_lo;
+
+ kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
+ if (!kvm_io_dev)
+ return ERR_PTR(-EINVAL);
+
+ if (kvm_io_dev->ops != &kvm_io_gic_ops)
+ return ERR_PTR(-EINVAL);
+
+ iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
+ if (iodev->iodev_type != IODEV_ITS)
+ return ERR_PTR(-EINVAL);
+
+ return iodev->its;
+}
+
+/*
+ * Find the target VCPU and the LPI number for a given devid/eventid pair
+ * and make this IRQ pending, possibly injecting it.
+ * Must be called with the its_lock mutex held.
+ * Returns 0 on success, a positive error value for any ITS mapping
+ * related errors and negative error values for generic errors.
+ */
+static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
+ u32 devid, u32 eventid)
+{
+ struct vgic_irq *irq = NULL;
+ unsigned long flags;
+ int err;
+
+ err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
+ if (err)
+ return err;
+
+ if (irq->hw)
+ return irq_set_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING, true);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ irq->pending_latch = true;
+ vgic_queue_irq_unlock(kvm, irq, flags);
+
+ return 0;
+}
+
+int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
+{
+ struct vgic_irq *irq;
+ unsigned long flags;
+ phys_addr_t db;
+
+ db = (u64)msi->address_hi << 32 | msi->address_lo;
+ irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
+
+ if (!irq)
+ return -1;
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ irq->pending_latch = true;
+ vgic_queue_irq_unlock(kvm, irq, flags);
+
+ return 0;
+}
+
+/*
+ * Queries the KVM IO bus framework to get the ITS pointer from the given
+ * doorbell address.
+ * We then call vgic_its_trigger_msi() with the decoded data.
+ * According to the KVM_SIGNAL_MSI API description returns 1 on success.
+ */
+int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
+{
+ struct vgic_its *its;
+ int ret;
+
+ if (!vgic_its_inject_cached_translation(kvm, msi))
+ return 1;
+
+ its = vgic_msi_to_its(kvm, msi);
+ if (IS_ERR(its))
+ return PTR_ERR(its);
+
+ mutex_lock(&its->its_lock);
+ ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
+ mutex_unlock(&its->its_lock);
+
+ if (ret < 0)
+ return ret;
+
+ /*
+ * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
+ * if the guest has blocked the MSI. So we map any LPI mapping
+ * related error to that.
+ */
+ if (ret)
+ return 0;
+ else
+ return 1;
+}
+
+/* Requires the its_lock to be held. */
+static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
+{
+ list_del(&ite->ite_list);
+
+ /* This put matches the get in vgic_add_lpi. */
+ if (ite->irq) {
+ if (ite->irq->hw)
+ WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
+
+ vgic_put_irq(kvm, ite->irq);
+ }
+
+ kfree(ite);
+}
+
+static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
+{
+ return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
+}
+
+#define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
+#define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
+#define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1)
+#define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
+#define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
+#define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
+#define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8)
+#define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
+#define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
+
+/*
+ * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
+ * Must be called with the its_lock mutex held.
+ */
+static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
+ u64 *its_cmd)
+{
+ u32 device_id = its_cmd_get_deviceid(its_cmd);
+ u32 event_id = its_cmd_get_id(its_cmd);
+ struct its_ite *ite;
+
+ ite = find_ite(its, device_id, event_id);
+ if (ite && its_is_collection_mapped(ite->collection)) {
+ /*
+ * Though the spec talks about removing the pending state, we
+ * don't bother here since we clear the ITTE anyway and the
+ * pending state is a property of the ITTE struct.
+ */
+ vgic_its_invalidate_cache(kvm);
+
+ its_free_ite(kvm, ite);
+ return 0;
+ }
+
+ return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
+}
+
+/*
+ * The MOVI command moves an ITTE to a different collection.
+ * Must be called with the its_lock mutex held.
+ */
+static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
+ u64 *its_cmd)
+{
+ u32 device_id = its_cmd_get_deviceid(its_cmd);
+ u32 event_id = its_cmd_get_id(its_cmd);
+ u32 coll_id = its_cmd_get_collection(its_cmd);
+ struct kvm_vcpu *vcpu;
+ struct its_ite *ite;
+ struct its_collection *collection;
+
+ ite = find_ite(its, device_id, event_id);
+ if (!ite)
+ return E_ITS_MOVI_UNMAPPED_INTERRUPT;
+
+ if (!its_is_collection_mapped(ite->collection))
+ return E_ITS_MOVI_UNMAPPED_COLLECTION;
+
+ collection = find_collection(its, coll_id);
+ if (!its_is_collection_mapped(collection))
+ return E_ITS_MOVI_UNMAPPED_COLLECTION;
+
+ ite->collection = collection;
+ vcpu = kvm_get_vcpu(kvm, collection->target_addr);
+
+ vgic_its_invalidate_cache(kvm);
+
+ return update_affinity(ite->irq, vcpu);
+}
+
+/*
+ * Check whether an ID can be stored into the corresponding guest table.
+ * For a direct table this is pretty easy, but gets a bit nasty for
+ * indirect tables. We check whether the resulting guest physical address
+ * is actually valid (covered by a memslot and guest accessible).
+ * For this we have to read the respective first level entry.
+ */
+static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
+ gpa_t *eaddr)
+{
+ int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
+ u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
+ phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
+ int esz = GITS_BASER_ENTRY_SIZE(baser);
+ int index, idx;
+ gfn_t gfn;
+ bool ret;
+
+ switch (type) {
+ case GITS_BASER_TYPE_DEVICE:
+ if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
+ return false;
+ break;
+ case GITS_BASER_TYPE_COLLECTION:
+ /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
+ if (id >= BIT_ULL(16))
+ return false;
+ break;
+ default:
+ return false;
+ }
+
+ if (!(baser & GITS_BASER_INDIRECT)) {
+ phys_addr_t addr;
+
+ if (id >= (l1_tbl_size / esz))
+ return false;
+
+ addr = base + id * esz;
+ gfn = addr >> PAGE_SHIFT;
+
+ if (eaddr)
+ *eaddr = addr;
+
+ goto out;
+ }
+
+ /* calculate and check the index into the 1st level */
+ index = id / (SZ_64K / esz);
+ if (index >= (l1_tbl_size / sizeof(u64)))
+ return false;
+
+ /* Each 1st level entry is represented by a 64-bit value. */
+ if (kvm_read_guest_lock(its->dev->kvm,
+ base + index * sizeof(indirect_ptr),
+ &indirect_ptr, sizeof(indirect_ptr)))
+ return false;
+
+ indirect_ptr = le64_to_cpu(indirect_ptr);
+
+ /* check the valid bit of the first level entry */
+ if (!(indirect_ptr & BIT_ULL(63)))
+ return false;
+
+ /* Mask the guest physical address and calculate the frame number. */
+ indirect_ptr &= GENMASK_ULL(51, 16);
+
+ /* Find the address of the actual entry */
+ index = id % (SZ_64K / esz);
+ indirect_ptr += index * esz;
+ gfn = indirect_ptr >> PAGE_SHIFT;
+
+ if (eaddr)
+ *eaddr = indirect_ptr;
+
+out:
+ idx = srcu_read_lock(&its->dev->kvm->srcu);
+ ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
+ srcu_read_unlock(&its->dev->kvm->srcu, idx);
+ return ret;
+}
+
+static int vgic_its_alloc_collection(struct vgic_its *its,
+ struct its_collection **colp,
+ u32 coll_id)
+{
+ struct its_collection *collection;
+
+ if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
+ return E_ITS_MAPC_COLLECTION_OOR;
+
+ collection = kzalloc(sizeof(*collection), GFP_KERNEL);
+ if (!collection)
+ return -ENOMEM;
+
+ collection->collection_id = coll_id;
+ collection->target_addr = COLLECTION_NOT_MAPPED;
+
+ list_add_tail(&collection->coll_list, &its->collection_list);
+ *colp = collection;
+
+ return 0;
+}
+
+static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
+{
+ struct its_collection *collection;
+ struct its_device *device;
+ struct its_ite *ite;
+
+ /*
+ * Clearing the mapping for that collection ID removes the
+ * entry from the list. If there wasn't any before, we can
+ * go home early.
+ */
+ collection = find_collection(its, coll_id);
+ if (!collection)
+ return;
+
+ for_each_lpi_its(device, ite, its)
+ if (ite->collection &&
+ ite->collection->collection_id == coll_id)
+ ite->collection = NULL;
+
+ list_del(&collection->coll_list);
+ kfree(collection);
+}
+
+/* Must be called with its_lock mutex held */
+static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
+ struct its_collection *collection,
+ u32 event_id)
+{
+ struct its_ite *ite;
+
+ ite = kzalloc(sizeof(*ite), GFP_KERNEL);
+ if (!ite)
+ return ERR_PTR(-ENOMEM);
+
+ ite->event_id = event_id;
+ ite->collection = collection;
+
+ list_add_tail(&ite->ite_list, &device->itt_head);
+ return ite;
+}
+
+/*
+ * The MAPTI and MAPI commands map LPIs to ITTEs.
+ * Must be called with its_lock mutex held.
+ */
+static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
+ u64 *its_cmd)
+{
+ u32 device_id = its_cmd_get_deviceid(its_cmd);
+ u32 event_id = its_cmd_get_id(its_cmd);
+ u32 coll_id = its_cmd_get_collection(its_cmd);
+ struct its_ite *ite;
+ struct kvm_vcpu *vcpu = NULL;
+ struct its_device *device;
+ struct its_collection *collection, *new_coll = NULL;
+ struct vgic_irq *irq;
+ int lpi_nr;
+
+ device = find_its_device(its, device_id);
+ if (!device)
+ return E_ITS_MAPTI_UNMAPPED_DEVICE;
+
+ if (event_id >= BIT_ULL(device->num_eventid_bits))
+ return E_ITS_MAPTI_ID_OOR;
+
+ if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
+ lpi_nr = its_cmd_get_physical_id(its_cmd);
+ else
+ lpi_nr = event_id;
+ if (lpi_nr < GIC_LPI_OFFSET ||
+ lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
+ return E_ITS_MAPTI_PHYSICALID_OOR;
+
+ /* If there is an existing mapping, behavior is UNPREDICTABLE. */
+ if (find_ite(its, device_id, event_id))
+ return 0;
+
+ collection = find_collection(its, coll_id);
+ if (!collection) {
+ int ret = vgic_its_alloc_collection(its, &collection, coll_id);
+ if (ret)
+ return ret;
+ new_coll = collection;
+ }
+
+ ite = vgic_its_alloc_ite(device, collection, event_id);
+ if (IS_ERR(ite)) {
+ if (new_coll)
+ vgic_its_free_collection(its, coll_id);
+ return PTR_ERR(ite);
+ }
+
+ if (its_is_collection_mapped(collection))
+ vcpu = kvm_get_vcpu(kvm, collection->target_addr);
+
+ irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
+ if (IS_ERR(irq)) {
+ if (new_coll)
+ vgic_its_free_collection(its, coll_id);
+ its_free_ite(kvm, ite);
+ return PTR_ERR(irq);
+ }
+ ite->irq = irq;
+
+ return 0;
+}
+
+/* Requires the its_lock to be held. */
+static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
+{
+ struct its_ite *ite, *temp;
+
+ /*
+ * The spec says that unmapping a device with still valid
+ * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
+ * since we cannot leave the memory unreferenced.
+ */
+ list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
+ its_free_ite(kvm, ite);
+
+ vgic_its_invalidate_cache(kvm);
+
+ list_del(&device->dev_list);
+ kfree(device);
+}
+
+/* its lock must be held */
+static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
+{
+ struct its_device *cur, *temp;
+
+ list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
+ vgic_its_free_device(kvm, cur);
+}
+
+/* its lock must be held */
+static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
+{
+ struct its_collection *cur, *temp;
+
+ list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
+ vgic_its_free_collection(its, cur->collection_id);
+}
+
+/* Must be called with its_lock mutex held */
+static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
+ u32 device_id, gpa_t itt_addr,
+ u8 num_eventid_bits)
+{
+ struct its_device *device;
+
+ device = kzalloc(sizeof(*device), GFP_KERNEL);
+ if (!device)
+ return ERR_PTR(-ENOMEM);
+
+ device->device_id = device_id;
+ device->itt_addr = itt_addr;
+ device->num_eventid_bits = num_eventid_bits;
+ INIT_LIST_HEAD(&device->itt_head);
+
+ list_add_tail(&device->dev_list, &its->device_list);
+ return device;
+}
+
+/*
+ * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
+ * Must be called with the its_lock mutex held.
+ */
+static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
+ u64 *its_cmd)
+{
+ u32 device_id = its_cmd_get_deviceid(its_cmd);
+ bool valid = its_cmd_get_validbit(its_cmd);
+ u8 num_eventid_bits = its_cmd_get_size(its_cmd);
+ gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
+ struct its_device *device;
+
+ if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
+ return E_ITS_MAPD_DEVICE_OOR;
+
+ if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
+ return E_ITS_MAPD_ITTSIZE_OOR;
+
+ device = find_its_device(its, device_id);
+
+ /*
+ * The spec says that calling MAPD on an already mapped device
+ * invalidates all cached data for this device. We implement this
+ * by removing the mapping and re-establishing it.
+ */
+ if (device)
+ vgic_its_free_device(kvm, device);
+
+ /*
+ * The spec does not say whether unmapping a not-mapped device
+ * is an error, so we are done in any case.
+ */
+ if (!valid)
+ return 0;
+
+ device = vgic_its_alloc_device(its, device_id, itt_addr,
+ num_eventid_bits);
+
+ return PTR_ERR_OR_ZERO(device);
+}
+
+/*
+ * The MAPC command maps collection IDs to redistributors.
+ * Must be called with the its_lock mutex held.
+ */
+static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
+ u64 *its_cmd)
+{
+ u16 coll_id;
+ u32 target_addr;
+ struct its_collection *collection;
+ bool valid;
+
+ valid = its_cmd_get_validbit(its_cmd);
+ coll_id = its_cmd_get_collection(its_cmd);
+ target_addr = its_cmd_get_target_addr(its_cmd);
+
+ if (target_addr >= atomic_read(&kvm->online_vcpus))
+ return E_ITS_MAPC_PROCNUM_OOR;
+
+ if (!valid) {
+ vgic_its_free_collection(its, coll_id);
+ vgic_its_invalidate_cache(kvm);
+ } else {
+ collection = find_collection(its, coll_id);
+
+ if (!collection) {
+ int ret;
+
+ ret = vgic_its_alloc_collection(its, &collection,
+ coll_id);
+ if (ret)
+ return ret;
+ collection->target_addr = target_addr;
+ } else {
+ collection->target_addr = target_addr;
+ update_affinity_collection(kvm, its, collection);
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * The CLEAR command removes the pending state for a particular LPI.
+ * Must be called with the its_lock mutex held.
+ */
+static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
+ u64 *its_cmd)
+{
+ u32 device_id = its_cmd_get_deviceid(its_cmd);
+ u32 event_id = its_cmd_get_id(its_cmd);
+ struct its_ite *ite;
+
+
+ ite = find_ite(its, device_id, event_id);
+ if (!ite)
+ return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
+
+ ite->irq->pending_latch = false;
+
+ if (ite->irq->hw)
+ return irq_set_irqchip_state(ite->irq->host_irq,
+ IRQCHIP_STATE_PENDING, false);
+
+ return 0;
+}
+
+/*
+ * The INV command syncs the configuration bits from the memory table.
+ * Must be called with the its_lock mutex held.
+ */
+static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
+ u64 *its_cmd)
+{
+ u32 device_id = its_cmd_get_deviceid(its_cmd);
+ u32 event_id = its_cmd_get_id(its_cmd);
+ struct its_ite *ite;
+
+
+ ite = find_ite(its, device_id, event_id);
+ if (!ite)
+ return E_ITS_INV_UNMAPPED_INTERRUPT;
+
+ return update_lpi_config(kvm, ite->irq, NULL, true);
+}
+
+/*
+ * The INVALL command requests flushing of all IRQ data in this collection.
+ * Find the VCPU mapped to that collection, then iterate over the VM's list
+ * of mapped LPIs and update the configuration for each IRQ which targets
+ * the specified vcpu. The configuration will be read from the in-memory
+ * configuration table.
+ * Must be called with the its_lock mutex held.
+ */
+static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
+ u64 *its_cmd)
+{
+ u32 coll_id = its_cmd_get_collection(its_cmd);
+ struct its_collection *collection;
+ struct kvm_vcpu *vcpu;
+ struct vgic_irq *irq;
+ u32 *intids;
+ int irq_count, i;
+
+ collection = find_collection(its, coll_id);
+ if (!its_is_collection_mapped(collection))
+ return E_ITS_INVALL_UNMAPPED_COLLECTION;
+
+ vcpu = kvm_get_vcpu(kvm, collection->target_addr);
+
+ irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
+ if (irq_count < 0)
+ return irq_count;
+
+ for (i = 0; i < irq_count; i++) {
+ irq = vgic_get_irq(kvm, NULL, intids[i]);
+ if (!irq)
+ continue;
+ update_lpi_config(kvm, irq, vcpu, false);
+ vgic_put_irq(kvm, irq);
+ }
+
+ kfree(intids);
+
+ if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
+ its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
+
+ return 0;
+}
+
+/*
+ * The MOVALL command moves the pending state of all IRQs targeting one
+ * redistributor to another. We don't hold the pending state in the VCPUs,
+ * but in the IRQs instead, so there is really not much to do for us here.
+ * However the spec says that no IRQ must target the old redistributor
+ * afterwards, so we make sure that no LPI is using the associated target_vcpu.
+ * This command affects all LPIs in the system that target that redistributor.
+ */
+static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
+ u64 *its_cmd)
+{
+ u32 target1_addr = its_cmd_get_target_addr(its_cmd);
+ u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
+ struct kvm_vcpu *vcpu1, *vcpu2;
+ struct vgic_irq *irq;
+ u32 *intids;
+ int irq_count, i;
+
+ if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
+ target2_addr >= atomic_read(&kvm->online_vcpus))
+ return E_ITS_MOVALL_PROCNUM_OOR;
+
+ if (target1_addr == target2_addr)
+ return 0;
+
+ vcpu1 = kvm_get_vcpu(kvm, target1_addr);
+ vcpu2 = kvm_get_vcpu(kvm, target2_addr);
+
+ irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
+ if (irq_count < 0)
+ return irq_count;
+
+ for (i = 0; i < irq_count; i++) {
+ irq = vgic_get_irq(kvm, NULL, intids[i]);
+
+ update_affinity(irq, vcpu2);
+
+ vgic_put_irq(kvm, irq);
+ }
+
+ vgic_its_invalidate_cache(kvm);
+
+ kfree(intids);
+ return 0;
+}
+
+/*
+ * The INT command injects the LPI associated with that DevID/EvID pair.
+ * Must be called with the its_lock mutex held.
+ */
+static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
+ u64 *its_cmd)
+{
+ u32 msi_data = its_cmd_get_id(its_cmd);
+ u64 msi_devid = its_cmd_get_deviceid(its_cmd);
+
+ return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
+}
+
+/*
+ * This function is called with the its_cmd lock held, but the ITS data
+ * structure lock dropped.
+ */
+static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
+ u64 *its_cmd)
+{
+ int ret = -ENODEV;
+
+ mutex_lock(&its->its_lock);
+ switch (its_cmd_get_command(its_cmd)) {
+ case GITS_CMD_MAPD:
+ ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
+ break;
+ case GITS_CMD_MAPC:
+ ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
+ break;
+ case GITS_CMD_MAPI:
+ ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
+ break;
+ case GITS_CMD_MAPTI:
+ ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
+ break;
+ case GITS_CMD_MOVI:
+ ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
+ break;
+ case GITS_CMD_DISCARD:
+ ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
+ break;
+ case GITS_CMD_CLEAR:
+ ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
+ break;
+ case GITS_CMD_MOVALL:
+ ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
+ break;
+ case GITS_CMD_INT:
+ ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
+ break;
+ case GITS_CMD_INV:
+ ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
+ break;
+ case GITS_CMD_INVALL:
+ ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
+ break;
+ case GITS_CMD_SYNC:
+ /* we ignore this command: we are in sync all of the time */
+ ret = 0;
+ break;
+ }
+ mutex_unlock(&its->its_lock);
+
+ return ret;
+}
+
+static u64 vgic_sanitise_its_baser(u64 reg)
+{
+ reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
+ GITS_BASER_SHAREABILITY_SHIFT,
+ vgic_sanitise_shareability);
+ reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
+ GITS_BASER_INNER_CACHEABILITY_SHIFT,
+ vgic_sanitise_inner_cacheability);
+ reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
+ GITS_BASER_OUTER_CACHEABILITY_SHIFT,
+ vgic_sanitise_outer_cacheability);
+
+ /* We support only one (ITS) page size: 64K */
+ reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
+
+ return reg;
+}
+
+static u64 vgic_sanitise_its_cbaser(u64 reg)
+{
+ reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
+ GITS_CBASER_SHAREABILITY_SHIFT,
+ vgic_sanitise_shareability);
+ reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
+ GITS_CBASER_INNER_CACHEABILITY_SHIFT,
+ vgic_sanitise_inner_cacheability);
+ reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
+ GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
+ vgic_sanitise_outer_cacheability);
+
+ /* Sanitise the physical address to be 64k aligned. */
+ reg &= ~GENMASK_ULL(15, 12);
+
+ return reg;
+}
+
+static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len)
+{
+ return extract_bytes(its->cbaser, addr & 7, len);
+}
+
+static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ /* When GITS_CTLR.Enable is 1, this register is RO. */
+ if (its->enabled)
+ return;
+
+ mutex_lock(&its->cmd_lock);
+ its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
+ its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
+ its->creadr = 0;
+ /*
+ * CWRITER is architecturally UNKNOWN on reset, but we need to reset
+ * it to CREADR to make sure we start with an empty command buffer.
+ */
+ its->cwriter = its->creadr;
+ mutex_unlock(&its->cmd_lock);
+}
+
+#define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
+#define ITS_CMD_SIZE 32
+#define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
+
+/* Must be called with the cmd_lock held. */
+static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
+{
+ gpa_t cbaser;
+ u64 cmd_buf[4];
+
+ /* Commands are only processed when the ITS is enabled. */
+ if (!its->enabled)
+ return;
+
+ cbaser = GITS_CBASER_ADDRESS(its->cbaser);
+
+ while (its->cwriter != its->creadr) {
+ int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
+ cmd_buf, ITS_CMD_SIZE);
+ /*
+ * If kvm_read_guest() fails, this could be due to the guest
+ * programming a bogus value in CBASER or something else going
+ * wrong from which we cannot easily recover.
+ * According to section 6.3.2 in the GICv3 spec we can just
+ * ignore that command then.
+ */
+ if (!ret)
+ vgic_its_handle_command(kvm, its, cmd_buf);
+
+ its->creadr += ITS_CMD_SIZE;
+ if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
+ its->creadr = 0;
+ }
+}
+
+/*
+ * By writing to CWRITER the guest announces new commands to be processed.
+ * To avoid any races in the first place, we take the its_cmd lock, which
+ * protects our ring buffer variables, so that there is only one user
+ * per ITS handling commands at a given time.
+ */
+static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u64 reg;
+
+ if (!its)
+ return;
+
+ mutex_lock(&its->cmd_lock);
+
+ reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
+ reg = ITS_CMD_OFFSET(reg);
+ if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
+ mutex_unlock(&its->cmd_lock);
+ return;
+ }
+ its->cwriter = reg;
+
+ vgic_its_process_commands(kvm, its);
+
+ mutex_unlock(&its->cmd_lock);
+}
+
+static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len)
+{
+ return extract_bytes(its->cwriter, addr & 0x7, len);
+}
+
+static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len)
+{
+ return extract_bytes(its->creadr, addr & 0x7, len);
+}
+
+static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 cmd_offset;
+ int ret = 0;
+
+ mutex_lock(&its->cmd_lock);
+
+ if (its->enabled) {
+ ret = -EBUSY;
+ goto out;
+ }
+
+ cmd_offset = ITS_CMD_OFFSET(val);
+ if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ its->creadr = cmd_offset;
+out:
+ mutex_unlock(&its->cmd_lock);
+ return ret;
+}
+
+#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
+static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len)
+{
+ u64 reg;
+
+ switch (BASER_INDEX(addr)) {
+ case 0:
+ reg = its->baser_device_table;
+ break;
+ case 1:
+ reg = its->baser_coll_table;
+ break;
+ default:
+ reg = 0;
+ break;
+ }
+
+ return extract_bytes(reg, addr & 7, len);
+}
+
+#define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
+static void vgic_mmio_write_its_baser(struct kvm *kvm,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ u64 entry_size, table_type;
+ u64 reg, *regptr, clearbits = 0;
+
+ /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
+ if (its->enabled)
+ return;
+
+ switch (BASER_INDEX(addr)) {
+ case 0:
+ regptr = &its->baser_device_table;
+ entry_size = abi->dte_esz;
+ table_type = GITS_BASER_TYPE_DEVICE;
+ break;
+ case 1:
+ regptr = &its->baser_coll_table;
+ entry_size = abi->cte_esz;
+ table_type = GITS_BASER_TYPE_COLLECTION;
+ clearbits = GITS_BASER_INDIRECT;
+ break;
+ default:
+ return;
+ }
+
+ reg = update_64bit_reg(*regptr, addr & 7, len, val);
+ reg &= ~GITS_BASER_RO_MASK;
+ reg &= ~clearbits;
+
+ reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
+ reg |= table_type << GITS_BASER_TYPE_SHIFT;
+ reg = vgic_sanitise_its_baser(reg);
+
+ *regptr = reg;
+
+ if (!(reg & GITS_BASER_VALID)) {
+ /* Take the its_lock to prevent a race with a save/restore */
+ mutex_lock(&its->its_lock);
+ switch (table_type) {
+ case GITS_BASER_TYPE_DEVICE:
+ vgic_its_free_device_list(kvm, its);
+ break;
+ case GITS_BASER_TYPE_COLLECTION:
+ vgic_its_free_collection_list(kvm, its);
+ break;
+ }
+ mutex_unlock(&its->its_lock);
+ }
+}
+
+static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len)
+{
+ u32 reg = 0;
+
+ mutex_lock(&its->cmd_lock);
+ if (its->creadr == its->cwriter)
+ reg |= GITS_CTLR_QUIESCENT;
+ if (its->enabled)
+ reg |= GITS_CTLR_ENABLE;
+ mutex_unlock(&its->cmd_lock);
+
+ return reg;
+}
+
+static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ mutex_lock(&its->cmd_lock);
+
+ /*
+ * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
+ * device/collection BASER are invalid
+ */
+ if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
+ (!(its->baser_device_table & GITS_BASER_VALID) ||
+ !(its->baser_coll_table & GITS_BASER_VALID) ||
+ !(its->cbaser & GITS_CBASER_VALID)))
+ goto out;
+
+ its->enabled = !!(val & GITS_CTLR_ENABLE);
+ if (!its->enabled)
+ vgic_its_invalidate_cache(kvm);
+
+ /*
+ * Try to process any pending commands. This function bails out early
+ * if the ITS is disabled or no commands have been queued.
+ */
+ vgic_its_process_commands(kvm, its);
+
+out:
+ mutex_unlock(&its->cmd_lock);
+}
+
+#define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
+{ \
+ .reg_offset = off, \
+ .len = length, \
+ .access_flags = acc, \
+ .its_read = rd, \
+ .its_write = wr, \
+}
+
+#define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
+{ \
+ .reg_offset = off, \
+ .len = length, \
+ .access_flags = acc, \
+ .its_read = rd, \
+ .its_write = wr, \
+ .uaccess_its_write = uwr, \
+}
+
+static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
+ gpa_t addr, unsigned int len, unsigned long val)
+{
+ /* Ignore */
+}
+
+static struct vgic_register_region its_registers[] = {
+ REGISTER_ITS_DESC(GITS_CTLR,
+ vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
+ vgic_mmio_read_its_iidr, its_mmio_write_wi,
+ vgic_mmio_uaccess_write_its_iidr, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_ITS_DESC(GITS_TYPER,
+ vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
+ VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
+ REGISTER_ITS_DESC(GITS_CBASER,
+ vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
+ VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
+ REGISTER_ITS_DESC(GITS_CWRITER,
+ vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
+ VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
+ REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
+ vgic_mmio_read_its_creadr, its_mmio_write_wi,
+ vgic_mmio_uaccess_write_its_creadr, 8,
+ VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
+ REGISTER_ITS_DESC(GITS_BASER,
+ vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
+ VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
+ REGISTER_ITS_DESC(GITS_IDREGS_BASE,
+ vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
+ VGIC_ACCESS_32bit),
+};
+
+/* This is called on setting the LPI enable bit in the redistributor. */
+void vgic_enable_lpis(struct kvm_vcpu *vcpu)
+{
+ if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
+ its_sync_lpi_pending_table(vcpu);
+}
+
+static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
+ u64 addr)
+{
+ struct vgic_io_device *iodev = &its->iodev;
+ int ret;
+
+ mutex_lock(&kvm->slots_lock);
+ if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
+ ret = -EBUSY;
+ goto out;
+ }
+
+ its->vgic_its_base = addr;
+ iodev->regions = its_registers;
+ iodev->nr_regions = ARRAY_SIZE(its_registers);
+ kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
+
+ iodev->base_addr = its->vgic_its_base;
+ iodev->iodev_type = IODEV_ITS;
+ iodev->its = its;
+ ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
+ KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
+out:
+ mutex_unlock(&kvm->slots_lock);
+
+ return ret;
+}
+
+/* Default is 16 cached LPIs per vcpu */
+#define LPI_DEFAULT_PCPU_CACHE_SIZE 16
+
+void vgic_lpi_translation_cache_init(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ unsigned int sz;
+ int i;
+
+ if (!list_empty(&dist->lpi_translation_cache))
+ return;
+
+ sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
+
+ for (i = 0; i < sz; i++) {
+ struct vgic_translation_cache_entry *cte;
+
+ /* An allocation failure is not fatal */
+ cte = kzalloc(sizeof(*cte), GFP_KERNEL);
+ if (WARN_ON(!cte))
+ break;
+
+ INIT_LIST_HEAD(&cte->entry);
+ list_add(&cte->entry, &dist->lpi_translation_cache);
+ }
+}
+
+void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct vgic_translation_cache_entry *cte, *tmp;
+
+ vgic_its_invalidate_cache(kvm);
+
+ list_for_each_entry_safe(cte, tmp,
+ &dist->lpi_translation_cache, entry) {
+ list_del(&cte->entry);
+ kfree(cte);
+ }
+}
+
+#define INITIAL_BASER_VALUE \
+ (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
+ GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
+ GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
+ GITS_BASER_PAGE_SIZE_64K)
+
+#define INITIAL_PROPBASER_VALUE \
+ (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
+ GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
+ GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
+
+static int vgic_its_create(struct kvm_device *dev, u32 type)
+{
+ struct vgic_its *its;
+
+ if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
+ return -ENODEV;
+
+ its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
+ if (!its)
+ return -ENOMEM;
+
+ if (vgic_initialized(dev->kvm)) {
+ int ret = vgic_v4_init(dev->kvm);
+ if (ret < 0) {
+ kfree(its);
+ return ret;
+ }
+
+ vgic_lpi_translation_cache_init(dev->kvm);
+ }
+
+ mutex_init(&its->its_lock);
+ mutex_init(&its->cmd_lock);
+
+ its->vgic_its_base = VGIC_ADDR_UNDEF;
+
+ INIT_LIST_HEAD(&its->device_list);
+ INIT_LIST_HEAD(&its->collection_list);
+
+ dev->kvm->arch.vgic.msis_require_devid = true;
+ dev->kvm->arch.vgic.has_its = true;
+ its->enabled = false;
+ its->dev = dev;
+
+ its->baser_device_table = INITIAL_BASER_VALUE |
+ ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
+ its->baser_coll_table = INITIAL_BASER_VALUE |
+ ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
+ dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
+
+ dev->private = its;
+
+ return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
+}
+
+static void vgic_its_destroy(struct kvm_device *kvm_dev)
+{
+ struct kvm *kvm = kvm_dev->kvm;
+ struct vgic_its *its = kvm_dev->private;
+
+ mutex_lock(&its->its_lock);
+
+ vgic_its_free_device_list(kvm, its);
+ vgic_its_free_collection_list(kvm, its);
+
+ mutex_unlock(&its->its_lock);
+ kfree(its);
+ kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
+}
+
+static int vgic_its_has_attr_regs(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ const struct vgic_register_region *region;
+ gpa_t offset = attr->attr;
+ int align;
+
+ align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
+
+ if (offset & align)
+ return -EINVAL;
+
+ region = vgic_find_mmio_region(its_registers,
+ ARRAY_SIZE(its_registers),
+ offset);
+ if (!region)
+ return -ENXIO;
+
+ return 0;
+}
+
+static int vgic_its_attr_regs_access(struct kvm_device *dev,
+ struct kvm_device_attr *attr,
+ u64 *reg, bool is_write)
+{
+ const struct vgic_register_region *region;
+ struct vgic_its *its;
+ gpa_t addr, offset;
+ unsigned int len;
+ int align, ret = 0;
+
+ its = dev->private;
+ offset = attr->attr;
+
+ /*
+ * Although the spec supports upper/lower 32-bit accesses to
+ * 64-bit ITS registers, the userspace ABI requires 64-bit
+ * accesses to all 64-bit wide registers. We therefore only
+ * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
+ * registers
+ */
+ if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
+ align = 0x3;
+ else
+ align = 0x7;
+
+ if (offset & align)
+ return -EINVAL;
+
+ mutex_lock(&dev->kvm->lock);
+
+ if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
+ ret = -ENXIO;
+ goto out;
+ }
+
+ region = vgic_find_mmio_region(its_registers,
+ ARRAY_SIZE(its_registers),
+ offset);
+ if (!region) {
+ ret = -ENXIO;
+ goto out;
+ }
+
+ if (!lock_all_vcpus(dev->kvm)) {
+ ret = -EBUSY;
+ goto out;
+ }
+
+ addr = its->vgic_its_base + offset;
+
+ len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
+
+ if (is_write) {
+ if (region->uaccess_its_write)
+ ret = region->uaccess_its_write(dev->kvm, its, addr,
+ len, *reg);
+ else
+ region->its_write(dev->kvm, its, addr, len, *reg);
+ } else {
+ *reg = region->its_read(dev->kvm, its, addr, len);
+ }
+ unlock_all_vcpus(dev->kvm);
+out:
+ mutex_unlock(&dev->kvm->lock);
+ return ret;
+}
+
+static u32 compute_next_devid_offset(struct list_head *h,
+ struct its_device *dev)
+{
+ struct its_device *next;
+ u32 next_offset;
+
+ if (list_is_last(&dev->dev_list, h))
+ return 0;
+ next = list_next_entry(dev, dev_list);
+ next_offset = next->device_id - dev->device_id;
+
+ return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
+}
+
+static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
+{
+ struct its_ite *next;
+ u32 next_offset;
+
+ if (list_is_last(&ite->ite_list, h))
+ return 0;
+ next = list_next_entry(ite, ite_list);
+ next_offset = next->event_id - ite->event_id;
+
+ return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
+}
+
+/**
+ * entry_fn_t - Callback called on a table entry restore path
+ * @its: its handle
+ * @id: id of the entry
+ * @entry: pointer to the entry
+ * @opaque: pointer to an opaque data
+ *
+ * Return: < 0 on error, 0 if last element was identified, id offset to next
+ * element otherwise
+ */
+typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
+ void *opaque);
+
+/**
+ * scan_its_table - Scan a contiguous table in guest RAM and applies a function
+ * to each entry
+ *
+ * @its: its handle
+ * @base: base gpa of the table
+ * @size: size of the table in bytes
+ * @esz: entry size in bytes
+ * @start_id: the ID of the first entry in the table
+ * (non zero for 2d level tables)
+ * @fn: function to apply on each entry
+ *
+ * Return: < 0 on error, 0 if last element was identified, 1 otherwise
+ * (the last element may not be found on second level tables)
+ */
+static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
+ int start_id, entry_fn_t fn, void *opaque)
+{
+ struct kvm *kvm = its->dev->kvm;
+ unsigned long len = size;
+ int id = start_id;
+ gpa_t gpa = base;
+ char entry[ESZ_MAX];
+ int ret;
+
+ memset(entry, 0, esz);
+
+ while (len > 0) {
+ int next_offset;
+ size_t byte_offset;
+
+ ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
+ if (ret)
+ return ret;
+
+ next_offset = fn(its, id, entry, opaque);
+ if (next_offset <= 0)
+ return next_offset;
+
+ byte_offset = next_offset * esz;
+ id += next_offset;
+ gpa += byte_offset;
+ len -= byte_offset;
+ }
+ return 1;
+}
+
+/**
+ * vgic_its_save_ite - Save an interrupt translation entry at @gpa
+ */
+static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
+ struct its_ite *ite, gpa_t gpa, int ite_esz)
+{
+ struct kvm *kvm = its->dev->kvm;
+ u32 next_offset;
+ u64 val;
+
+ next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
+ val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
+ ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
+ ite->collection->collection_id;
+ val = cpu_to_le64(val);
+ return kvm_write_guest_lock(kvm, gpa, &val, ite_esz);
+}
+
+/**
+ * vgic_its_restore_ite - restore an interrupt translation entry
+ * @event_id: id used for indexing
+ * @ptr: pointer to the ITE entry
+ * @opaque: pointer to the its_device
+ */
+static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
+ void *ptr, void *opaque)
+{
+ struct its_device *dev = (struct its_device *)opaque;
+ struct its_collection *collection;
+ struct kvm *kvm = its->dev->kvm;
+ struct kvm_vcpu *vcpu = NULL;
+ u64 val;
+ u64 *p = (u64 *)ptr;
+ struct vgic_irq *irq;
+ u32 coll_id, lpi_id;
+ struct its_ite *ite;
+ u32 offset;
+
+ val = *p;
+
+ val = le64_to_cpu(val);
+
+ coll_id = val & KVM_ITS_ITE_ICID_MASK;
+ lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
+
+ if (!lpi_id)
+ return 1; /* invalid entry, no choice but to scan next entry */
+
+ if (lpi_id < VGIC_MIN_LPI)
+ return -EINVAL;
+
+ offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
+ if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
+ return -EINVAL;
+
+ collection = find_collection(its, coll_id);
+ if (!collection)
+ return -EINVAL;
+
+ ite = vgic_its_alloc_ite(dev, collection, event_id);
+ if (IS_ERR(ite))
+ return PTR_ERR(ite);
+
+ if (its_is_collection_mapped(collection))
+ vcpu = kvm_get_vcpu(kvm, collection->target_addr);
+
+ irq = vgic_add_lpi(kvm, lpi_id, vcpu);
+ if (IS_ERR(irq))
+ return PTR_ERR(irq);
+ ite->irq = irq;
+
+ return offset;
+}
+
+static int vgic_its_ite_cmp(void *priv, struct list_head *a,
+ struct list_head *b)
+{
+ struct its_ite *itea = container_of(a, struct its_ite, ite_list);
+ struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
+
+ if (itea->event_id < iteb->event_id)
+ return -1;
+ else
+ return 1;
+}
+
+static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ gpa_t base = device->itt_addr;
+ struct its_ite *ite;
+ int ret;
+ int ite_esz = abi->ite_esz;
+
+ list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
+
+ list_for_each_entry(ite, &device->itt_head, ite_list) {
+ gpa_t gpa = base + ite->event_id * ite_esz;
+
+ /*
+ * If an LPI carries the HW bit, this means that this
+ * interrupt is controlled by GICv4, and we do not
+ * have direct access to that state. Let's simply fail
+ * the save operation...
+ */
+ if (ite->irq->hw)
+ return -EACCES;
+
+ ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
+ if (ret)
+ return ret;
+ }
+ return 0;
+}
+
+/**
+ * vgic_its_restore_itt - restore the ITT of a device
+ *
+ * @its: its handle
+ * @dev: device handle
+ *
+ * Return 0 on success, < 0 on error
+ */
+static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ gpa_t base = dev->itt_addr;
+ int ret;
+ int ite_esz = abi->ite_esz;
+ size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
+
+ ret = scan_its_table(its, base, max_size, ite_esz, 0,
+ vgic_its_restore_ite, dev);
+
+ /* scan_its_table returns +1 if all ITEs are invalid */
+ if (ret > 0)
+ ret = 0;
+
+ return ret;
+}
+
+/**
+ * vgic_its_save_dte - Save a device table entry at a given GPA
+ *
+ * @its: ITS handle
+ * @dev: ITS device
+ * @ptr: GPA
+ */
+static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
+ gpa_t ptr, int dte_esz)
+{
+ struct kvm *kvm = its->dev->kvm;
+ u64 val, itt_addr_field;
+ u32 next_offset;
+
+ itt_addr_field = dev->itt_addr >> 8;
+ next_offset = compute_next_devid_offset(&its->device_list, dev);
+ val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
+ ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
+ (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
+ (dev->num_eventid_bits - 1));
+ val = cpu_to_le64(val);
+ return kvm_write_guest_lock(kvm, ptr, &val, dte_esz);
+}
+
+/**
+ * vgic_its_restore_dte - restore a device table entry
+ *
+ * @its: its handle
+ * @id: device id the DTE corresponds to
+ * @ptr: kernel VA where the 8 byte DTE is located
+ * @opaque: unused
+ *
+ * Return: < 0 on error, 0 if the dte is the last one, id offset to the
+ * next dte otherwise
+ */
+static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
+ void *ptr, void *opaque)
+{
+ struct its_device *dev;
+ gpa_t itt_addr;
+ u8 num_eventid_bits;
+ u64 entry = *(u64 *)ptr;
+ bool valid;
+ u32 offset;
+ int ret;
+
+ entry = le64_to_cpu(entry);
+
+ valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
+ num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
+ itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
+ >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
+
+ if (!valid)
+ return 1;
+
+ /* dte entry is valid */
+ offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
+
+ dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
+ if (IS_ERR(dev))
+ return PTR_ERR(dev);
+
+ ret = vgic_its_restore_itt(its, dev);
+ if (ret) {
+ vgic_its_free_device(its->dev->kvm, dev);
+ return ret;
+ }
+
+ return offset;
+}
+
+static int vgic_its_device_cmp(void *priv, struct list_head *a,
+ struct list_head *b)
+{
+ struct its_device *deva = container_of(a, struct its_device, dev_list);
+ struct its_device *devb = container_of(b, struct its_device, dev_list);
+
+ if (deva->device_id < devb->device_id)
+ return -1;
+ else
+ return 1;
+}
+
+/**
+ * vgic_its_save_device_tables - Save the device table and all ITT
+ * into guest RAM
+ *
+ * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
+ * returns the GPA of the device entry
+ */
+static int vgic_its_save_device_tables(struct vgic_its *its)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ u64 baser = its->baser_device_table;
+ struct its_device *dev;
+ int dte_esz = abi->dte_esz;
+
+ if (!(baser & GITS_BASER_VALID))
+ return 0;
+
+ list_sort(NULL, &its->device_list, vgic_its_device_cmp);
+
+ list_for_each_entry(dev, &its->device_list, dev_list) {
+ int ret;
+ gpa_t eaddr;
+
+ if (!vgic_its_check_id(its, baser,
+ dev->device_id, &eaddr))
+ return -EINVAL;
+
+ ret = vgic_its_save_itt(its, dev);
+ if (ret)
+ return ret;
+
+ ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
+ if (ret)
+ return ret;
+ }
+ return 0;
+}
+
+/**
+ * handle_l1_dte - callback used for L1 device table entries (2 stage case)
+ *
+ * @its: its handle
+ * @id: index of the entry in the L1 table
+ * @addr: kernel VA
+ * @opaque: unused
+ *
+ * L1 table entries are scanned by steps of 1 entry
+ * Return < 0 if error, 0 if last dte was found when scanning the L2
+ * table, +1 otherwise (meaning next L1 entry must be scanned)
+ */
+static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
+ void *opaque)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ int l2_start_id = id * (SZ_64K / abi->dte_esz);
+ u64 entry = *(u64 *)addr;
+ int dte_esz = abi->dte_esz;
+ gpa_t gpa;
+ int ret;
+
+ entry = le64_to_cpu(entry);
+
+ if (!(entry & KVM_ITS_L1E_VALID_MASK))
+ return 1;
+
+ gpa = entry & KVM_ITS_L1E_ADDR_MASK;
+
+ ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
+ l2_start_id, vgic_its_restore_dte, NULL);
+
+ return ret;
+}
+
+/**
+ * vgic_its_restore_device_tables - Restore the device table and all ITT
+ * from guest RAM to internal data structs
+ */
+static int vgic_its_restore_device_tables(struct vgic_its *its)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ u64 baser = its->baser_device_table;
+ int l1_esz, ret;
+ int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
+ gpa_t l1_gpa;
+
+ if (!(baser & GITS_BASER_VALID))
+ return 0;
+
+ l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
+
+ if (baser & GITS_BASER_INDIRECT) {
+ l1_esz = GITS_LVL1_ENTRY_SIZE;
+ ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
+ handle_l1_dte, NULL);
+ } else {
+ l1_esz = abi->dte_esz;
+ ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
+ vgic_its_restore_dte, NULL);
+ }
+
+ /* scan_its_table returns +1 if all entries are invalid */
+ if (ret > 0)
+ ret = 0;
+
+ return ret;
+}
+
+static int vgic_its_save_cte(struct vgic_its *its,
+ struct its_collection *collection,
+ gpa_t gpa, int esz)
+{
+ u64 val;
+
+ val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
+ ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
+ collection->collection_id);
+ val = cpu_to_le64(val);
+ return kvm_write_guest_lock(its->dev->kvm, gpa, &val, esz);
+}
+
+static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
+{
+ struct its_collection *collection;
+ struct kvm *kvm = its->dev->kvm;
+ u32 target_addr, coll_id;
+ u64 val;
+ int ret;
+
+ BUG_ON(esz > sizeof(val));
+ ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
+ if (ret)
+ return ret;
+ val = le64_to_cpu(val);
+ if (!(val & KVM_ITS_CTE_VALID_MASK))
+ return 0;
+
+ target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
+ coll_id = val & KVM_ITS_CTE_ICID_MASK;
+
+ if (target_addr != COLLECTION_NOT_MAPPED &&
+ target_addr >= atomic_read(&kvm->online_vcpus))
+ return -EINVAL;
+
+ collection = find_collection(its, coll_id);
+ if (collection)
+ return -EEXIST;
+ ret = vgic_its_alloc_collection(its, &collection, coll_id);
+ if (ret)
+ return ret;
+ collection->target_addr = target_addr;
+ return 1;
+}
+
+/**
+ * vgic_its_save_collection_table - Save the collection table into
+ * guest RAM
+ */
+static int vgic_its_save_collection_table(struct vgic_its *its)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ u64 baser = its->baser_coll_table;
+ gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
+ struct its_collection *collection;
+ u64 val;
+ size_t max_size, filled = 0;
+ int ret, cte_esz = abi->cte_esz;
+
+ if (!(baser & GITS_BASER_VALID))
+ return 0;
+
+ max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
+
+ list_for_each_entry(collection, &its->collection_list, coll_list) {
+ ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
+ if (ret)
+ return ret;
+ gpa += cte_esz;
+ filled += cte_esz;
+ }
+
+ if (filled == max_size)
+ return 0;
+
+ /*
+ * table is not fully filled, add a last dummy element
+ * with valid bit unset
+ */
+ val = 0;
+ BUG_ON(cte_esz > sizeof(val));
+ ret = kvm_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
+ return ret;
+}
+
+/**
+ * vgic_its_restore_collection_table - reads the collection table
+ * in guest memory and restores the ITS internal state. Requires the
+ * BASER registers to be restored before.
+ */
+static int vgic_its_restore_collection_table(struct vgic_its *its)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ u64 baser = its->baser_coll_table;
+ int cte_esz = abi->cte_esz;
+ size_t max_size, read = 0;
+ gpa_t gpa;
+ int ret;
+
+ if (!(baser & GITS_BASER_VALID))
+ return 0;
+
+ gpa = GITS_BASER_ADDR_48_to_52(baser);
+
+ max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
+
+ while (read < max_size) {
+ ret = vgic_its_restore_cte(its, gpa, cte_esz);
+ if (ret <= 0)
+ break;
+ gpa += cte_esz;
+ read += cte_esz;
+ }
+
+ if (ret > 0)
+ return 0;
+
+ return ret;
+}
+
+/**
+ * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
+ * according to v0 ABI
+ */
+static int vgic_its_save_tables_v0(struct vgic_its *its)
+{
+ int ret;
+
+ ret = vgic_its_save_device_tables(its);
+ if (ret)
+ return ret;
+
+ return vgic_its_save_collection_table(its);
+}
+
+/**
+ * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
+ * to internal data structs according to V0 ABI
+ *
+ */
+static int vgic_its_restore_tables_v0(struct vgic_its *its)
+{
+ int ret;
+
+ ret = vgic_its_restore_collection_table(its);
+ if (ret)
+ return ret;
+
+ return vgic_its_restore_device_tables(its);
+}
+
+static int vgic_its_commit_v0(struct vgic_its *its)
+{
+ const struct vgic_its_abi *abi;
+
+ abi = vgic_its_get_abi(its);
+ its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
+ its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
+
+ its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
+ << GITS_BASER_ENTRY_SIZE_SHIFT);
+
+ its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
+ << GITS_BASER_ENTRY_SIZE_SHIFT);
+ return 0;
+}
+
+static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
+{
+ /* We need to keep the ABI specific field values */
+ its->baser_coll_table &= ~GITS_BASER_VALID;
+ its->baser_device_table &= ~GITS_BASER_VALID;
+ its->cbaser = 0;
+ its->creadr = 0;
+ its->cwriter = 0;
+ its->enabled = 0;
+ vgic_its_free_device_list(kvm, its);
+ vgic_its_free_collection_list(kvm, its);
+}
+
+static int vgic_its_has_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_ADDR:
+ switch (attr->attr) {
+ case KVM_VGIC_ITS_ADDR_TYPE:
+ return 0;
+ }
+ break;
+ case KVM_DEV_ARM_VGIC_GRP_CTRL:
+ switch (attr->attr) {
+ case KVM_DEV_ARM_VGIC_CTRL_INIT:
+ return 0;
+ case KVM_DEV_ARM_ITS_CTRL_RESET:
+ return 0;
+ case KVM_DEV_ARM_ITS_SAVE_TABLES:
+ return 0;
+ case KVM_DEV_ARM_ITS_RESTORE_TABLES:
+ return 0;
+ }
+ break;
+ case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
+ return vgic_its_has_attr_regs(dev, attr);
+ }
+ return -ENXIO;
+}
+
+static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ int ret = 0;
+
+ if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
+ return 0;
+
+ mutex_lock(&kvm->lock);
+ mutex_lock(&its->its_lock);
+
+ if (!lock_all_vcpus(kvm)) {
+ mutex_unlock(&its->its_lock);
+ mutex_unlock(&kvm->lock);
+ return -EBUSY;
+ }
+
+ switch (attr) {
+ case KVM_DEV_ARM_ITS_CTRL_RESET:
+ vgic_its_reset(kvm, its);
+ break;
+ case KVM_DEV_ARM_ITS_SAVE_TABLES:
+ ret = abi->save_tables(its);
+ break;
+ case KVM_DEV_ARM_ITS_RESTORE_TABLES:
+ ret = abi->restore_tables(its);
+ break;
+ }
+
+ unlock_all_vcpus(kvm);
+ mutex_unlock(&its->its_lock);
+ mutex_unlock(&kvm->lock);
+ return ret;
+}
+
+static int vgic_its_set_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ struct vgic_its *its = dev->private;
+ int ret;
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_ADDR: {
+ u64 __user *uaddr = (u64 __user *)(long)attr->addr;
+ unsigned long type = (unsigned long)attr->attr;
+ u64 addr;
+
+ if (type != KVM_VGIC_ITS_ADDR_TYPE)
+ return -ENODEV;
+
+ if (copy_from_user(&addr, uaddr, sizeof(addr)))
+ return -EFAULT;
+
+ ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
+ addr, SZ_64K);
+ if (ret)
+ return ret;
+
+ return vgic_register_its_iodev(dev->kvm, its, addr);
+ }
+ case KVM_DEV_ARM_VGIC_GRP_CTRL:
+ return vgic_its_ctrl(dev->kvm, its, attr->attr);
+ case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
+ u64 __user *uaddr = (u64 __user *)(long)attr->addr;
+ u64 reg;
+
+ if (get_user(reg, uaddr))
+ return -EFAULT;
+
+ return vgic_its_attr_regs_access(dev, attr, &reg, true);
+ }
+ }
+ return -ENXIO;
+}
+
+static int vgic_its_get_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_ADDR: {
+ struct vgic_its *its = dev->private;
+ u64 addr = its->vgic_its_base;
+ u64 __user *uaddr = (u64 __user *)(long)attr->addr;
+ unsigned long type = (unsigned long)attr->attr;
+
+ if (type != KVM_VGIC_ITS_ADDR_TYPE)
+ return -ENODEV;
+
+ if (copy_to_user(uaddr, &addr, sizeof(addr)))
+ return -EFAULT;
+ break;
+ }
+ case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
+ u64 __user *uaddr = (u64 __user *)(long)attr->addr;
+ u64 reg;
+ int ret;
+
+ ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
+ if (ret)
+ return ret;
+ return put_user(reg, uaddr);
+ }
+ default:
+ return -ENXIO;
+ }
+
+ return 0;
+}
+
+static struct kvm_device_ops kvm_arm_vgic_its_ops = {
+ .name = "kvm-arm-vgic-its",
+ .create = vgic_its_create,
+ .destroy = vgic_its_destroy,
+ .set_attr = vgic_its_set_attr,
+ .get_attr = vgic_its_get_attr,
+ .has_attr = vgic_its_has_attr,
+};
+
+int kvm_vgic_register_its_device(void)
+{
+ return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
+ KVM_DEV_TYPE_ARM_VGIC_ITS);
+}
diff --git a/arch/arm64/kvm/vgic/vgic-kvm-device.c b/arch/arm64/kvm/vgic/vgic-kvm-device.c
new file mode 100644
index 000000000000..44419679f91a
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-kvm-device.c
@@ -0,0 +1,741 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * VGIC: KVM DEVICE API
+ *
+ * Copyright (C) 2015 ARM Ltd.
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+#include <linux/kvm_host.h>
+#include <kvm/arm_vgic.h>
+#include <linux/uaccess.h>
+#include <asm/kvm_mmu.h>
+#include <asm/cputype.h>
+#include "vgic.h"
+
+/* common helpers */
+
+int vgic_check_ioaddr(struct kvm *kvm, phys_addr_t *ioaddr,
+ phys_addr_t addr, phys_addr_t alignment)
+{
+ if (addr & ~kvm_phys_mask(kvm))
+ return -E2BIG;
+
+ if (!IS_ALIGNED(addr, alignment))
+ return -EINVAL;
+
+ if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
+ return -EEXIST;
+
+ return 0;
+}
+
+static int vgic_check_type(struct kvm *kvm, int type_needed)
+{
+ if (kvm->arch.vgic.vgic_model != type_needed)
+ return -ENODEV;
+ else
+ return 0;
+}
+
+/**
+ * kvm_vgic_addr - set or get vgic VM base addresses
+ * @kvm: pointer to the vm struct
+ * @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
+ * @addr: pointer to address value
+ * @write: if true set the address in the VM address space, if false read the
+ * address
+ *
+ * Set or get the vgic base addresses for the distributor and the virtual CPU
+ * interface in the VM physical address space. These addresses are properties
+ * of the emulated core/SoC and therefore user space initially knows this
+ * information.
+ * Check them for sanity (alignment, double assignment). We can't check for
+ * overlapping regions in case of a virtual GICv3 here, since we don't know
+ * the number of VCPUs yet, so we defer this check to map_resources().
+ */
+int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
+{
+ int r = 0;
+ struct vgic_dist *vgic = &kvm->arch.vgic;
+ phys_addr_t *addr_ptr, alignment;
+ u64 undef_value = VGIC_ADDR_UNDEF;
+
+ mutex_lock(&kvm->lock);
+ switch (type) {
+ case KVM_VGIC_V2_ADDR_TYPE_DIST:
+ r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
+ addr_ptr = &vgic->vgic_dist_base;
+ alignment = SZ_4K;
+ break;
+ case KVM_VGIC_V2_ADDR_TYPE_CPU:
+ r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
+ addr_ptr = &vgic->vgic_cpu_base;
+ alignment = SZ_4K;
+ break;
+ case KVM_VGIC_V3_ADDR_TYPE_DIST:
+ r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3);
+ addr_ptr = &vgic->vgic_dist_base;
+ alignment = SZ_64K;
+ break;
+ case KVM_VGIC_V3_ADDR_TYPE_REDIST: {
+ struct vgic_redist_region *rdreg;
+
+ r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3);
+ if (r)
+ break;
+ if (write) {
+ r = vgic_v3_set_redist_base(kvm, 0, *addr, 0);
+ goto out;
+ }
+ rdreg = list_first_entry(&vgic->rd_regions,
+ struct vgic_redist_region, list);
+ if (!rdreg)
+ addr_ptr = &undef_value;
+ else
+ addr_ptr = &rdreg->base;
+ break;
+ }
+ case KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION:
+ {
+ struct vgic_redist_region *rdreg;
+ u8 index;
+
+ r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3);
+ if (r)
+ break;
+
+ index = *addr & KVM_VGIC_V3_RDIST_INDEX_MASK;
+
+ if (write) {
+ gpa_t base = *addr & KVM_VGIC_V3_RDIST_BASE_MASK;
+ u32 count = (*addr & KVM_VGIC_V3_RDIST_COUNT_MASK)
+ >> KVM_VGIC_V3_RDIST_COUNT_SHIFT;
+ u8 flags = (*addr & KVM_VGIC_V3_RDIST_FLAGS_MASK)
+ >> KVM_VGIC_V3_RDIST_FLAGS_SHIFT;
+
+ if (!count || flags)
+ r = -EINVAL;
+ else
+ r = vgic_v3_set_redist_base(kvm, index,
+ base, count);
+ goto out;
+ }
+
+ rdreg = vgic_v3_rdist_region_from_index(kvm, index);
+ if (!rdreg) {
+ r = -ENOENT;
+ goto out;
+ }
+
+ *addr = index;
+ *addr |= rdreg->base;
+ *addr |= (u64)rdreg->count << KVM_VGIC_V3_RDIST_COUNT_SHIFT;
+ goto out;
+ }
+ default:
+ r = -ENODEV;
+ }
+
+ if (r)
+ goto out;
+
+ if (write) {
+ r = vgic_check_ioaddr(kvm, addr_ptr, *addr, alignment);
+ if (!r)
+ *addr_ptr = *addr;
+ } else {
+ *addr = *addr_ptr;
+ }
+
+out:
+ mutex_unlock(&kvm->lock);
+ return r;
+}
+
+static int vgic_set_common_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ int r;
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_ADDR: {
+ u64 __user *uaddr = (u64 __user *)(long)attr->addr;
+ u64 addr;
+ unsigned long type = (unsigned long)attr->attr;
+
+ if (copy_from_user(&addr, uaddr, sizeof(addr)))
+ return -EFAULT;
+
+ r = kvm_vgic_addr(dev->kvm, type, &addr, true);
+ return (r == -ENODEV) ? -ENXIO : r;
+ }
+ case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
+ u32 __user *uaddr = (u32 __user *)(long)attr->addr;
+ u32 val;
+ int ret = 0;
+
+ if (get_user(val, uaddr))
+ return -EFAULT;
+
+ /*
+ * We require:
+ * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
+ * - at most 1024 interrupts
+ * - a multiple of 32 interrupts
+ */
+ if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
+ val > VGIC_MAX_RESERVED ||
+ (val & 31))
+ return -EINVAL;
+
+ mutex_lock(&dev->kvm->lock);
+
+ if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_spis)
+ ret = -EBUSY;
+ else
+ dev->kvm->arch.vgic.nr_spis =
+ val - VGIC_NR_PRIVATE_IRQS;
+
+ mutex_unlock(&dev->kvm->lock);
+
+ return ret;
+ }
+ case KVM_DEV_ARM_VGIC_GRP_CTRL: {
+ switch (attr->attr) {
+ case KVM_DEV_ARM_VGIC_CTRL_INIT:
+ mutex_lock(&dev->kvm->lock);
+ r = vgic_init(dev->kvm);
+ mutex_unlock(&dev->kvm->lock);
+ return r;
+ }
+ break;
+ }
+ }
+
+ return -ENXIO;
+}
+
+static int vgic_get_common_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ int r = -ENXIO;
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_ADDR: {
+ u64 __user *uaddr = (u64 __user *)(long)attr->addr;
+ u64 addr;
+ unsigned long type = (unsigned long)attr->attr;
+
+ r = kvm_vgic_addr(dev->kvm, type, &addr, false);
+ if (r)
+ return (r == -ENODEV) ? -ENXIO : r;
+
+ if (copy_to_user(uaddr, &addr, sizeof(addr)))
+ return -EFAULT;
+ break;
+ }
+ case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
+ u32 __user *uaddr = (u32 __user *)(long)attr->addr;
+
+ r = put_user(dev->kvm->arch.vgic.nr_spis +
+ VGIC_NR_PRIVATE_IRQS, uaddr);
+ break;
+ }
+ }
+
+ return r;
+}
+
+static int vgic_create(struct kvm_device *dev, u32 type)
+{
+ return kvm_vgic_create(dev->kvm, type);
+}
+
+static void vgic_destroy(struct kvm_device *dev)
+{
+ kfree(dev);
+}
+
+int kvm_register_vgic_device(unsigned long type)
+{
+ int ret = -ENODEV;
+
+ switch (type) {
+ case KVM_DEV_TYPE_ARM_VGIC_V2:
+ ret = kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
+ KVM_DEV_TYPE_ARM_VGIC_V2);
+ break;
+ case KVM_DEV_TYPE_ARM_VGIC_V3:
+ ret = kvm_register_device_ops(&kvm_arm_vgic_v3_ops,
+ KVM_DEV_TYPE_ARM_VGIC_V3);
+
+ if (ret)
+ break;
+ ret = kvm_vgic_register_its_device();
+ break;
+ }
+
+ return ret;
+}
+
+int vgic_v2_parse_attr(struct kvm_device *dev, struct kvm_device_attr *attr,
+ struct vgic_reg_attr *reg_attr)
+{
+ int cpuid;
+
+ cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
+ KVM_DEV_ARM_VGIC_CPUID_SHIFT;
+
+ if (cpuid >= atomic_read(&dev->kvm->online_vcpus))
+ return -EINVAL;
+
+ reg_attr->vcpu = kvm_get_vcpu(dev->kvm, cpuid);
+ reg_attr->addr = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
+
+ return 0;
+}
+
+/* unlocks vcpus from @vcpu_lock_idx and smaller */
+static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
+{
+ struct kvm_vcpu *tmp_vcpu;
+
+ for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
+ tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
+ mutex_unlock(&tmp_vcpu->mutex);
+ }
+}
+
+void unlock_all_vcpus(struct kvm *kvm)
+{
+ unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
+}
+
+/* Returns true if all vcpus were locked, false otherwise */
+bool lock_all_vcpus(struct kvm *kvm)
+{
+ struct kvm_vcpu *tmp_vcpu;
+ int c;
+
+ /*
+ * Any time a vcpu is run, vcpu_load is called which tries to grab the
+ * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
+ * that no other VCPUs are run and fiddle with the vgic state while we
+ * access it.
+ */
+ kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
+ if (!mutex_trylock(&tmp_vcpu->mutex)) {
+ unlock_vcpus(kvm, c - 1);
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/**
+ * vgic_v2_attr_regs_access - allows user space to access VGIC v2 state
+ *
+ * @dev: kvm device handle
+ * @attr: kvm device attribute
+ * @reg: address the value is read or written
+ * @is_write: true if userspace is writing a register
+ */
+static int vgic_v2_attr_regs_access(struct kvm_device *dev,
+ struct kvm_device_attr *attr,
+ u32 *reg, bool is_write)
+{
+ struct vgic_reg_attr reg_attr;
+ gpa_t addr;
+ struct kvm_vcpu *vcpu;
+ int ret;
+
+ ret = vgic_v2_parse_attr(dev, attr, &reg_attr);
+ if (ret)
+ return ret;
+
+ vcpu = reg_attr.vcpu;
+ addr = reg_attr.addr;
+
+ mutex_lock(&dev->kvm->lock);
+
+ ret = vgic_init(dev->kvm);
+ if (ret)
+ goto out;
+
+ if (!lock_all_vcpus(dev->kvm)) {
+ ret = -EBUSY;
+ goto out;
+ }
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
+ ret = vgic_v2_cpuif_uaccess(vcpu, is_write, addr, reg);
+ break;
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ ret = vgic_v2_dist_uaccess(vcpu, is_write, addr, reg);
+ break;
+ default:
+ ret = -EINVAL;
+ break;
+ }
+
+ unlock_all_vcpus(dev->kvm);
+out:
+ mutex_unlock(&dev->kvm->lock);
+ return ret;
+}
+
+static int vgic_v2_set_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ int ret;
+
+ ret = vgic_set_common_attr(dev, attr);
+ if (ret != -ENXIO)
+ return ret;
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
+ u32 __user *uaddr = (u32 __user *)(long)attr->addr;
+ u32 reg;
+
+ if (get_user(reg, uaddr))
+ return -EFAULT;
+
+ return vgic_v2_attr_regs_access(dev, attr, &reg, true);
+ }
+ }
+
+ return -ENXIO;
+}
+
+static int vgic_v2_get_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ int ret;
+
+ ret = vgic_get_common_attr(dev, attr);
+ if (ret != -ENXIO)
+ return ret;
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
+ u32 __user *uaddr = (u32 __user *)(long)attr->addr;
+ u32 reg = 0;
+
+ ret = vgic_v2_attr_regs_access(dev, attr, &reg, false);
+ if (ret)
+ return ret;
+ return put_user(reg, uaddr);
+ }
+ }
+
+ return -ENXIO;
+}
+
+static int vgic_v2_has_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_ADDR:
+ switch (attr->attr) {
+ case KVM_VGIC_V2_ADDR_TYPE_DIST:
+ case KVM_VGIC_V2_ADDR_TYPE_CPU:
+ return 0;
+ }
+ break;
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
+ return vgic_v2_has_attr_regs(dev, attr);
+ case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
+ return 0;
+ case KVM_DEV_ARM_VGIC_GRP_CTRL:
+ switch (attr->attr) {
+ case KVM_DEV_ARM_VGIC_CTRL_INIT:
+ return 0;
+ }
+ }
+ return -ENXIO;
+}
+
+struct kvm_device_ops kvm_arm_vgic_v2_ops = {
+ .name = "kvm-arm-vgic-v2",
+ .create = vgic_create,
+ .destroy = vgic_destroy,
+ .set_attr = vgic_v2_set_attr,
+ .get_attr = vgic_v2_get_attr,
+ .has_attr = vgic_v2_has_attr,
+};
+
+int vgic_v3_parse_attr(struct kvm_device *dev, struct kvm_device_attr *attr,
+ struct vgic_reg_attr *reg_attr)
+{
+ unsigned long vgic_mpidr, mpidr_reg;
+
+ /*
+ * For KVM_DEV_ARM_VGIC_GRP_DIST_REGS group,
+ * attr might not hold MPIDR. Hence assume vcpu0.
+ */
+ if (attr->group != KVM_DEV_ARM_VGIC_GRP_DIST_REGS) {
+ vgic_mpidr = (attr->attr & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) >>
+ KVM_DEV_ARM_VGIC_V3_MPIDR_SHIFT;
+
+ mpidr_reg = VGIC_TO_MPIDR(vgic_mpidr);
+ reg_attr->vcpu = kvm_mpidr_to_vcpu(dev->kvm, mpidr_reg);
+ } else {
+ reg_attr->vcpu = kvm_get_vcpu(dev->kvm, 0);
+ }
+
+ if (!reg_attr->vcpu)
+ return -EINVAL;
+
+ reg_attr->addr = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
+
+ return 0;
+}
+
+/*
+ * vgic_v3_attr_regs_access - allows user space to access VGIC v3 state
+ *
+ * @dev: kvm device handle
+ * @attr: kvm device attribute
+ * @reg: address the value is read or written
+ * @is_write: true if userspace is writing a register
+ */
+static int vgic_v3_attr_regs_access(struct kvm_device *dev,
+ struct kvm_device_attr *attr,
+ u64 *reg, bool is_write)
+{
+ struct vgic_reg_attr reg_attr;
+ gpa_t addr;
+ struct kvm_vcpu *vcpu;
+ int ret;
+ u32 tmp32;
+
+ ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
+ if (ret)
+ return ret;
+
+ vcpu = reg_attr.vcpu;
+ addr = reg_attr.addr;
+
+ mutex_lock(&dev->kvm->lock);
+
+ if (unlikely(!vgic_initialized(dev->kvm))) {
+ ret = -EBUSY;
+ goto out;
+ }
+
+ if (!lock_all_vcpus(dev->kvm)) {
+ ret = -EBUSY;
+ goto out;
+ }
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ if (is_write)
+ tmp32 = *reg;
+
+ ret = vgic_v3_dist_uaccess(vcpu, is_write, addr, &tmp32);
+ if (!is_write)
+ *reg = tmp32;
+ break;
+ case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:
+ if (is_write)
+ tmp32 = *reg;
+
+ ret = vgic_v3_redist_uaccess(vcpu, is_write, addr, &tmp32);
+ if (!is_write)
+ *reg = tmp32;
+ break;
+ case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
+ u64 regid;
+
+ regid = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
+ ret = vgic_v3_cpu_sysregs_uaccess(vcpu, is_write,
+ regid, reg);
+ break;
+ }
+ case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO: {
+ unsigned int info, intid;
+
+ info = (attr->attr & KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_MASK) >>
+ KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT;
+ if (info == VGIC_LEVEL_INFO_LINE_LEVEL) {
+ intid = attr->attr &
+ KVM_DEV_ARM_VGIC_LINE_LEVEL_INTID_MASK;
+ ret = vgic_v3_line_level_info_uaccess(vcpu, is_write,
+ intid, reg);
+ } else {
+ ret = -EINVAL;
+ }
+ break;
+ }
+ default:
+ ret = -EINVAL;
+ break;
+ }
+
+ unlock_all_vcpus(dev->kvm);
+out:
+ mutex_unlock(&dev->kvm->lock);
+ return ret;
+}
+
+static int vgic_v3_set_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ int ret;
+
+ ret = vgic_set_common_attr(dev, attr);
+ if (ret != -ENXIO)
+ return ret;
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS: {
+ u32 __user *uaddr = (u32 __user *)(long)attr->addr;
+ u32 tmp32;
+ u64 reg;
+
+ if (get_user(tmp32, uaddr))
+ return -EFAULT;
+
+ reg = tmp32;
+ return vgic_v3_attr_regs_access(dev, attr, &reg, true);
+ }
+ case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
+ u64 __user *uaddr = (u64 __user *)(long)attr->addr;
+ u64 reg;
+
+ if (get_user(reg, uaddr))
+ return -EFAULT;
+
+ return vgic_v3_attr_regs_access(dev, attr, &reg, true);
+ }
+ case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO: {
+ u32 __user *uaddr = (u32 __user *)(long)attr->addr;
+ u64 reg;
+ u32 tmp32;
+
+ if (get_user(tmp32, uaddr))
+ return -EFAULT;
+
+ reg = tmp32;
+ return vgic_v3_attr_regs_access(dev, attr, &reg, true);
+ }
+ case KVM_DEV_ARM_VGIC_GRP_CTRL: {
+ int ret;
+
+ switch (attr->attr) {
+ case KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES:
+ mutex_lock(&dev->kvm->lock);
+
+ if (!lock_all_vcpus(dev->kvm)) {
+ mutex_unlock(&dev->kvm->lock);
+ return -EBUSY;
+ }
+ ret = vgic_v3_save_pending_tables(dev->kvm);
+ unlock_all_vcpus(dev->kvm);
+ mutex_unlock(&dev->kvm->lock);
+ return ret;
+ }
+ break;
+ }
+ }
+ return -ENXIO;
+}
+
+static int vgic_v3_get_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ int ret;
+
+ ret = vgic_get_common_attr(dev, attr);
+ if (ret != -ENXIO)
+ return ret;
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS: {
+ u32 __user *uaddr = (u32 __user *)(long)attr->addr;
+ u64 reg;
+ u32 tmp32;
+
+ ret = vgic_v3_attr_regs_access(dev, attr, &reg, false);
+ if (ret)
+ return ret;
+ tmp32 = reg;
+ return put_user(tmp32, uaddr);
+ }
+ case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
+ u64 __user *uaddr = (u64 __user *)(long)attr->addr;
+ u64 reg;
+
+ ret = vgic_v3_attr_regs_access(dev, attr, &reg, false);
+ if (ret)
+ return ret;
+ return put_user(reg, uaddr);
+ }
+ case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO: {
+ u32 __user *uaddr = (u32 __user *)(long)attr->addr;
+ u64 reg;
+ u32 tmp32;
+
+ ret = vgic_v3_attr_regs_access(dev, attr, &reg, false);
+ if (ret)
+ return ret;
+ tmp32 = reg;
+ return put_user(tmp32, uaddr);
+ }
+ }
+ return -ENXIO;
+}
+
+static int vgic_v3_has_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_ADDR:
+ switch (attr->attr) {
+ case KVM_VGIC_V3_ADDR_TYPE_DIST:
+ case KVM_VGIC_V3_ADDR_TYPE_REDIST:
+ case KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION:
+ return 0;
+ }
+ break;
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:
+ case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
+ return vgic_v3_has_attr_regs(dev, attr);
+ case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
+ return 0;
+ case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO: {
+ if (((attr->attr & KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_MASK) >>
+ KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT) ==
+ VGIC_LEVEL_INFO_LINE_LEVEL)
+ return 0;
+ break;
+ }
+ case KVM_DEV_ARM_VGIC_GRP_CTRL:
+ switch (attr->attr) {
+ case KVM_DEV_ARM_VGIC_CTRL_INIT:
+ return 0;
+ case KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES:
+ return 0;
+ }
+ }
+ return -ENXIO;
+}
+
+struct kvm_device_ops kvm_arm_vgic_v3_ops = {
+ .name = "kvm-arm-vgic-v3",
+ .create = vgic_create,
+ .destroy = vgic_destroy,
+ .set_attr = vgic_v3_set_attr,
+ .get_attr = vgic_v3_get_attr,
+ .has_attr = vgic_v3_has_attr,
+};
diff --git a/arch/arm64/kvm/vgic/vgic-mmio-v2.c b/arch/arm64/kvm/vgic/vgic-mmio-v2.c
new file mode 100644
index 000000000000..a016f07adc28
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-mmio-v2.c
@@ -0,0 +1,550 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * VGICv2 MMIO handling functions
+ */
+
+#include <linux/irqchip/arm-gic.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/nospec.h>
+
+#include <kvm/iodev.h>
+#include <kvm/arm_vgic.h>
+
+#include "vgic.h"
+#include "vgic-mmio.h"
+
+/*
+ * The Revision field in the IIDR have the following meanings:
+ *
+ * Revision 1: Report GICv2 interrupts as group 0 instead of group 1
+ * Revision 2: Interrupt groups are guest-configurable and signaled using
+ * their configured groups.
+ */
+
+static unsigned long vgic_mmio_read_v2_misc(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
+ u32 value;
+
+ switch (addr & 0x0c) {
+ case GIC_DIST_CTRL:
+ value = vgic->enabled ? GICD_ENABLE : 0;
+ break;
+ case GIC_DIST_CTR:
+ value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
+ value = (value >> 5) - 1;
+ value |= (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
+ break;
+ case GIC_DIST_IIDR:
+ value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
+ (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
+ (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
+ break;
+ default:
+ return 0;
+ }
+
+ return value;
+}
+
+static void vgic_mmio_write_v2_misc(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
+ bool was_enabled = dist->enabled;
+
+ switch (addr & 0x0c) {
+ case GIC_DIST_CTRL:
+ dist->enabled = val & GICD_ENABLE;
+ if (!was_enabled && dist->enabled)
+ vgic_kick_vcpus(vcpu->kvm);
+ break;
+ case GIC_DIST_CTR:
+ case GIC_DIST_IIDR:
+ /* Nothing to do */
+ return;
+ }
+}
+
+static int vgic_mmio_uaccess_write_v2_misc(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ switch (addr & 0x0c) {
+ case GIC_DIST_IIDR:
+ if (val != vgic_mmio_read_v2_misc(vcpu, addr, len))
+ return -EINVAL;
+
+ /*
+ * If we observe a write to GICD_IIDR we know that userspace
+ * has been updated and has had a chance to cope with older
+ * kernels (VGICv2 IIDR.Revision == 0) incorrectly reporting
+ * interrupts as group 1, and therefore we now allow groups to
+ * be user writable. Doing this by default would break
+ * migration from old kernels to new kernels with legacy
+ * userspace.
+ */
+ vcpu->kvm->arch.vgic.v2_groups_user_writable = true;
+ return 0;
+ }
+
+ vgic_mmio_write_v2_misc(vcpu, addr, len, val);
+ return 0;
+}
+
+static int vgic_mmio_uaccess_write_v2_group(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ if (vcpu->kvm->arch.vgic.v2_groups_user_writable)
+ vgic_mmio_write_group(vcpu, addr, len, val);
+
+ return 0;
+}
+
+static void vgic_mmio_write_sgir(struct kvm_vcpu *source_vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ int nr_vcpus = atomic_read(&source_vcpu->kvm->online_vcpus);
+ int intid = val & 0xf;
+ int targets = (val >> 16) & 0xff;
+ int mode = (val >> 24) & 0x03;
+ int c;
+ struct kvm_vcpu *vcpu;
+ unsigned long flags;
+
+ switch (mode) {
+ case 0x0: /* as specified by targets */
+ break;
+ case 0x1:
+ targets = (1U << nr_vcpus) - 1; /* all, ... */
+ targets &= ~(1U << source_vcpu->vcpu_id); /* but self */
+ break;
+ case 0x2: /* this very vCPU only */
+ targets = (1U << source_vcpu->vcpu_id);
+ break;
+ case 0x3: /* reserved */
+ return;
+ }
+
+ kvm_for_each_vcpu(c, vcpu, source_vcpu->kvm) {
+ struct vgic_irq *irq;
+
+ if (!(targets & (1U << c)))
+ continue;
+
+ irq = vgic_get_irq(source_vcpu->kvm, vcpu, intid);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ irq->pending_latch = true;
+ irq->source |= 1U << source_vcpu->vcpu_id;
+
+ vgic_queue_irq_unlock(source_vcpu->kvm, irq, flags);
+ vgic_put_irq(source_vcpu->kvm, irq);
+ }
+}
+
+static unsigned long vgic_mmio_read_target(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
+ int i;
+ u64 val = 0;
+
+ for (i = 0; i < len; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ val |= (u64)irq->targets << (i * 8);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return val;
+}
+
+static void vgic_mmio_write_target(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
+ u8 cpu_mask = GENMASK(atomic_read(&vcpu->kvm->online_vcpus) - 1, 0);
+ int i;
+ unsigned long flags;
+
+ /* GICD_ITARGETSR[0-7] are read-only */
+ if (intid < VGIC_NR_PRIVATE_IRQS)
+ return;
+
+ for (i = 0; i < len; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid + i);
+ int target;
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ irq->targets = (val >> (i * 8)) & cpu_mask;
+ target = irq->targets ? __ffs(irq->targets) : 0;
+ irq->target_vcpu = kvm_get_vcpu(vcpu->kvm, target);
+
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+static unsigned long vgic_mmio_read_sgipend(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ u32 intid = addr & 0x0f;
+ int i;
+ u64 val = 0;
+
+ for (i = 0; i < len; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ val |= (u64)irq->source << (i * 8);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+ return val;
+}
+
+static void vgic_mmio_write_sgipendc(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = addr & 0x0f;
+ int i;
+ unsigned long flags;
+
+ for (i = 0; i < len; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ irq->source &= ~((val >> (i * 8)) & 0xff);
+ if (!irq->source)
+ irq->pending_latch = false;
+
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+static void vgic_mmio_write_sgipends(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = addr & 0x0f;
+ int i;
+ unsigned long flags;
+
+ for (i = 0; i < len; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ irq->source |= (val >> (i * 8)) & 0xff;
+
+ if (irq->source) {
+ irq->pending_latch = true;
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+ } else {
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ }
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+#define GICC_ARCH_VERSION_V2 0x2
+
+/* These are for userland accesses only, there is no guest-facing emulation. */
+static unsigned long vgic_mmio_read_vcpuif(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ struct vgic_vmcr vmcr;
+ u32 val;
+
+ vgic_get_vmcr(vcpu, &vmcr);
+
+ switch (addr & 0xff) {
+ case GIC_CPU_CTRL:
+ val = vmcr.grpen0 << GIC_CPU_CTRL_EnableGrp0_SHIFT;
+ val |= vmcr.grpen1 << GIC_CPU_CTRL_EnableGrp1_SHIFT;
+ val |= vmcr.ackctl << GIC_CPU_CTRL_AckCtl_SHIFT;
+ val |= vmcr.fiqen << GIC_CPU_CTRL_FIQEn_SHIFT;
+ val |= vmcr.cbpr << GIC_CPU_CTRL_CBPR_SHIFT;
+ val |= vmcr.eoim << GIC_CPU_CTRL_EOImodeNS_SHIFT;
+
+ break;
+ case GIC_CPU_PRIMASK:
+ /*
+ * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
+ * the PMR field as GICH_VMCR.VMPriMask rather than
+ * GICC_PMR.Priority, so we expose the upper five bits of
+ * priority mask to userspace using the lower bits in the
+ * unsigned long.
+ */
+ val = (vmcr.pmr & GICV_PMR_PRIORITY_MASK) >>
+ GICV_PMR_PRIORITY_SHIFT;
+ break;
+ case GIC_CPU_BINPOINT:
+ val = vmcr.bpr;
+ break;
+ case GIC_CPU_ALIAS_BINPOINT:
+ val = vmcr.abpr;
+ break;
+ case GIC_CPU_IDENT:
+ val = ((PRODUCT_ID_KVM << 20) |
+ (GICC_ARCH_VERSION_V2 << 16) |
+ IMPLEMENTER_ARM);
+ break;
+ default:
+ return 0;
+ }
+
+ return val;
+}
+
+static void vgic_mmio_write_vcpuif(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ struct vgic_vmcr vmcr;
+
+ vgic_get_vmcr(vcpu, &vmcr);
+
+ switch (addr & 0xff) {
+ case GIC_CPU_CTRL:
+ vmcr.grpen0 = !!(val & GIC_CPU_CTRL_EnableGrp0);
+ vmcr.grpen1 = !!(val & GIC_CPU_CTRL_EnableGrp1);
+ vmcr.ackctl = !!(val & GIC_CPU_CTRL_AckCtl);
+ vmcr.fiqen = !!(val & GIC_CPU_CTRL_FIQEn);
+ vmcr.cbpr = !!(val & GIC_CPU_CTRL_CBPR);
+ vmcr.eoim = !!(val & GIC_CPU_CTRL_EOImodeNS);
+
+ break;
+ case GIC_CPU_PRIMASK:
+ /*
+ * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
+ * the PMR field as GICH_VMCR.VMPriMask rather than
+ * GICC_PMR.Priority, so we expose the upper five bits of
+ * priority mask to userspace using the lower bits in the
+ * unsigned long.
+ */
+ vmcr.pmr = (val << GICV_PMR_PRIORITY_SHIFT) &
+ GICV_PMR_PRIORITY_MASK;
+ break;
+ case GIC_CPU_BINPOINT:
+ vmcr.bpr = val;
+ break;
+ case GIC_CPU_ALIAS_BINPOINT:
+ vmcr.abpr = val;
+ break;
+ }
+
+ vgic_set_vmcr(vcpu, &vmcr);
+}
+
+static unsigned long vgic_mmio_read_apr(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ int n; /* which APRn is this */
+
+ n = (addr >> 2) & 0x3;
+
+ if (kvm_vgic_global_state.type == VGIC_V2) {
+ /* GICv2 hardware systems support max. 32 groups */
+ if (n != 0)
+ return 0;
+ return vcpu->arch.vgic_cpu.vgic_v2.vgic_apr;
+ } else {
+ struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
+
+ if (n > vgic_v3_max_apr_idx(vcpu))
+ return 0;
+
+ n = array_index_nospec(n, 4);
+
+ /* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
+ return vgicv3->vgic_ap1r[n];
+ }
+}
+
+static void vgic_mmio_write_apr(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ int n; /* which APRn is this */
+
+ n = (addr >> 2) & 0x3;
+
+ if (kvm_vgic_global_state.type == VGIC_V2) {
+ /* GICv2 hardware systems support max. 32 groups */
+ if (n != 0)
+ return;
+ vcpu->arch.vgic_cpu.vgic_v2.vgic_apr = val;
+ } else {
+ struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
+
+ if (n > vgic_v3_max_apr_idx(vcpu))
+ return;
+
+ n = array_index_nospec(n, 4);
+
+ /* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
+ vgicv3->vgic_ap1r[n] = val;
+ }
+}
+
+static const struct vgic_register_region vgic_v2_dist_registers[] = {
+ REGISTER_DESC_WITH_LENGTH_UACCESS(GIC_DIST_CTRL,
+ vgic_mmio_read_v2_misc, vgic_mmio_write_v2_misc,
+ NULL, vgic_mmio_uaccess_write_v2_misc,
+ 12, VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_IGROUP,
+ vgic_mmio_read_group, vgic_mmio_write_group,
+ NULL, vgic_mmio_uaccess_write_v2_group, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_SET,
+ vgic_mmio_read_enable, vgic_mmio_write_senable,
+ NULL, vgic_uaccess_write_senable, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_CLEAR,
+ vgic_mmio_read_enable, vgic_mmio_write_cenable,
+ NULL, vgic_uaccess_write_cenable, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_SET,
+ vgic_mmio_read_pending, vgic_mmio_write_spending,
+ NULL, vgic_uaccess_write_spending, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_CLEAR,
+ vgic_mmio_read_pending, vgic_mmio_write_cpending,
+ NULL, vgic_uaccess_write_cpending, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_SET,
+ vgic_mmio_read_active, vgic_mmio_write_sactive,
+ vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_CLEAR,
+ vgic_mmio_read_active, vgic_mmio_write_cactive,
+ vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PRI,
+ vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
+ 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_TARGET,
+ vgic_mmio_read_target, vgic_mmio_write_target, NULL, NULL, 8,
+ VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_CONFIG,
+ vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GIC_DIST_SOFTINT,
+ vgic_mmio_read_raz, vgic_mmio_write_sgir, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_CLEAR,
+ vgic_mmio_read_sgipend, vgic_mmio_write_sgipendc, 16,
+ VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
+ REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_SET,
+ vgic_mmio_read_sgipend, vgic_mmio_write_sgipends, 16,
+ VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
+};
+
+static const struct vgic_register_region vgic_v2_cpu_registers[] = {
+ REGISTER_DESC_WITH_LENGTH(GIC_CPU_CTRL,
+ vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GIC_CPU_PRIMASK,
+ vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GIC_CPU_BINPOINT,
+ vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GIC_CPU_ALIAS_BINPOINT,
+ vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GIC_CPU_ACTIVEPRIO,
+ vgic_mmio_read_apr, vgic_mmio_write_apr, 16,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GIC_CPU_IDENT,
+ vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
+ VGIC_ACCESS_32bit),
+};
+
+unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev)
+{
+ dev->regions = vgic_v2_dist_registers;
+ dev->nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
+
+ kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
+
+ return SZ_4K;
+}
+
+int vgic_v2_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
+{
+ const struct vgic_register_region *region;
+ struct vgic_io_device iodev;
+ struct vgic_reg_attr reg_attr;
+ struct kvm_vcpu *vcpu;
+ gpa_t addr;
+ int ret;
+
+ ret = vgic_v2_parse_attr(dev, attr, &reg_attr);
+ if (ret)
+ return ret;
+
+ vcpu = reg_attr.vcpu;
+ addr = reg_attr.addr;
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ iodev.regions = vgic_v2_dist_registers;
+ iodev.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
+ iodev.base_addr = 0;
+ break;
+ case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
+ iodev.regions = vgic_v2_cpu_registers;
+ iodev.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers);
+ iodev.base_addr = 0;
+ break;
+ default:
+ return -ENXIO;
+ }
+
+ /* We only support aligned 32-bit accesses. */
+ if (addr & 3)
+ return -ENXIO;
+
+ region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
+ if (!region)
+ return -ENXIO;
+
+ return 0;
+}
+
+int vgic_v2_cpuif_uaccess(struct kvm_vcpu *vcpu, bool is_write,
+ int offset, u32 *val)
+{
+ struct vgic_io_device dev = {
+ .regions = vgic_v2_cpu_registers,
+ .nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers),
+ .iodev_type = IODEV_CPUIF,
+ };
+
+ return vgic_uaccess(vcpu, &dev, is_write, offset, val);
+}
+
+int vgic_v2_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
+ int offset, u32 *val)
+{
+ struct vgic_io_device dev = {
+ .regions = vgic_v2_dist_registers,
+ .nr_regions = ARRAY_SIZE(vgic_v2_dist_registers),
+ .iodev_type = IODEV_DIST,
+ };
+
+ return vgic_uaccess(vcpu, &dev, is_write, offset, val);
+}
diff --git a/arch/arm64/kvm/vgic/vgic-mmio-v3.c b/arch/arm64/kvm/vgic/vgic-mmio-v3.c
new file mode 100644
index 000000000000..d2339a2b9fb9
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-mmio-v3.c
@@ -0,0 +1,1063 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * VGICv3 MMIO handling functions
+ */
+
+#include <linux/bitfield.h>
+#include <linux/irqchip/arm-gic-v3.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/interrupt.h>
+#include <kvm/iodev.h>
+#include <kvm/arm_vgic.h>
+
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_mmu.h>
+
+#include "vgic.h"
+#include "vgic-mmio.h"
+
+/* extract @num bytes at @offset bytes offset in data */
+unsigned long extract_bytes(u64 data, unsigned int offset,
+ unsigned int num)
+{
+ return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
+}
+
+/* allows updates of any half of a 64-bit register (or the whole thing) */
+u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
+ unsigned long val)
+{
+ int lower = (offset & 4) * 8;
+ int upper = lower + 8 * len - 1;
+
+ reg &= ~GENMASK_ULL(upper, lower);
+ val &= GENMASK_ULL(len * 8 - 1, 0);
+
+ return reg | ((u64)val << lower);
+}
+
+bool vgic_has_its(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+
+ if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
+ return false;
+
+ return dist->has_its;
+}
+
+bool vgic_supports_direct_msis(struct kvm *kvm)
+{
+ return (kvm_vgic_global_state.has_gicv4_1 ||
+ (kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
+}
+
+/*
+ * The Revision field in the IIDR have the following meanings:
+ *
+ * Revision 2: Interrupt groups are guest-configurable and signaled using
+ * their configured groups.
+ */
+
+static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
+ u32 value = 0;
+
+ switch (addr & 0x0c) {
+ case GICD_CTLR:
+ if (vgic->enabled)
+ value |= GICD_CTLR_ENABLE_SS_G1;
+ value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
+ if (vgic->nassgireq)
+ value |= GICD_CTLR_nASSGIreq;
+ break;
+ case GICD_TYPER:
+ value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
+ value = (value >> 5) - 1;
+ if (vgic_has_its(vcpu->kvm)) {
+ value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
+ value |= GICD_TYPER_LPIS;
+ } else {
+ value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
+ }
+ break;
+ case GICD_TYPER2:
+ if (kvm_vgic_global_state.has_gicv4_1)
+ value = GICD_TYPER2_nASSGIcap;
+ break;
+ case GICD_IIDR:
+ value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
+ (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
+ (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
+ break;
+ default:
+ return 0;
+ }
+
+ return value;
+}
+
+static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
+
+ switch (addr & 0x0c) {
+ case GICD_CTLR: {
+ bool was_enabled, is_hwsgi;
+
+ mutex_lock(&vcpu->kvm->lock);
+
+ was_enabled = dist->enabled;
+ is_hwsgi = dist->nassgireq;
+
+ dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
+
+ /* Not a GICv4.1? No HW SGIs */
+ if (!kvm_vgic_global_state.has_gicv4_1)
+ val &= ~GICD_CTLR_nASSGIreq;
+
+ /* Dist stays enabled? nASSGIreq is RO */
+ if (was_enabled && dist->enabled) {
+ val &= ~GICD_CTLR_nASSGIreq;
+ val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
+ }
+
+ /* Switching HW SGIs? */
+ dist->nassgireq = val & GICD_CTLR_nASSGIreq;
+ if (is_hwsgi != dist->nassgireq)
+ vgic_v4_configure_vsgis(vcpu->kvm);
+
+ if (kvm_vgic_global_state.has_gicv4_1 &&
+ was_enabled != dist->enabled)
+ kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
+ else if (!was_enabled && dist->enabled)
+ vgic_kick_vcpus(vcpu->kvm);
+
+ mutex_unlock(&vcpu->kvm->lock);
+ break;
+ }
+ case GICD_TYPER:
+ case GICD_TYPER2:
+ case GICD_IIDR:
+ /* This is at best for documentation purposes... */
+ return;
+ }
+}
+
+static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
+
+ switch (addr & 0x0c) {
+ case GICD_TYPER2:
+ case GICD_IIDR:
+ if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
+ return -EINVAL;
+ return 0;
+ case GICD_CTLR:
+ /* Not a GICv4.1? No HW SGIs */
+ if (!kvm_vgic_global_state.has_gicv4_1)
+ val &= ~GICD_CTLR_nASSGIreq;
+
+ dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
+ dist->nassgireq = val & GICD_CTLR_nASSGIreq;
+ return 0;
+ }
+
+ vgic_mmio_write_v3_misc(vcpu, addr, len, val);
+ return 0;
+}
+
+static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ int intid = VGIC_ADDR_TO_INTID(addr, 64);
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
+ unsigned long ret = 0;
+
+ if (!irq)
+ return 0;
+
+ /* The upper word is RAZ for us. */
+ if (!(addr & 4))
+ ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ return ret;
+}
+
+static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ int intid = VGIC_ADDR_TO_INTID(addr, 64);
+ struct vgic_irq *irq;
+ unsigned long flags;
+
+ /* The upper word is WI for us since we don't implement Aff3. */
+ if (addr & 4)
+ return;
+
+ irq = vgic_get_irq(vcpu->kvm, NULL, intid);
+
+ if (!irq)
+ return;
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ /* We only care about and preserve Aff0, Aff1 and Aff2. */
+ irq->mpidr = val & GENMASK(23, 0);
+ irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
+
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+}
+
+static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+
+ return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
+}
+
+
+static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ bool was_enabled = vgic_cpu->lpis_enabled;
+
+ if (!vgic_has_its(vcpu->kvm))
+ return;
+
+ vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
+
+ if (was_enabled && !vgic_cpu->lpis_enabled) {
+ vgic_flush_pending_lpis(vcpu);
+ vgic_its_invalidate_cache(vcpu->kvm);
+ }
+
+ if (!was_enabled && vgic_cpu->lpis_enabled)
+ vgic_enable_lpis(vcpu);
+}
+
+static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ struct vgic_redist_region *rdreg = vgic_cpu->rdreg;
+ int target_vcpu_id = vcpu->vcpu_id;
+ gpa_t last_rdist_typer = rdreg->base + GICR_TYPER +
+ (rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE;
+ u64 value;
+
+ value = (u64)(mpidr & GENMASK(23, 0)) << 32;
+ value |= ((target_vcpu_id & 0xffff) << 8);
+
+ if (addr == last_rdist_typer)
+ value |= GICR_TYPER_LAST;
+ if (vgic_has_its(vcpu->kvm))
+ value |= GICR_TYPER_PLPIS;
+
+ return extract_bytes(value, addr & 7, len);
+}
+
+static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
+}
+
+static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ switch (addr & 0xffff) {
+ case GICD_PIDR2:
+ /* report a GICv3 compliant implementation */
+ return 0x3b;
+ }
+
+ return 0;
+}
+
+static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ u32 value = 0;
+ int i;
+
+ /*
+ * pending state of interrupt is latched in pending_latch variable.
+ * Userspace will save and restore pending state and line_level
+ * separately.
+ * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.rst
+ * for handling of ISPENDR and ICPENDR.
+ */
+ for (i = 0; i < len * 8; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+ bool state = irq->pending_latch;
+
+ if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
+ int err;
+
+ err = irq_get_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING,
+ &state);
+ WARN_ON(err);
+ }
+
+ if (state)
+ value |= (1U << i);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return value;
+}
+
+static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+ unsigned long flags;
+
+ for (i = 0; i < len * 8; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ if (test_bit(i, &val)) {
+ /*
+ * pending_latch is set irrespective of irq type
+ * (level or edge) to avoid dependency that VM should
+ * restore irq config before pending info.
+ */
+ irq->pending_latch = true;
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+ } else {
+ irq->pending_latch = false;
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ }
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return 0;
+}
+
+/* We want to avoid outer shareable. */
+u64 vgic_sanitise_shareability(u64 field)
+{
+ switch (field) {
+ case GIC_BASER_OuterShareable:
+ return GIC_BASER_InnerShareable;
+ default:
+ return field;
+ }
+}
+
+/* Avoid any inner non-cacheable mapping. */
+u64 vgic_sanitise_inner_cacheability(u64 field)
+{
+ switch (field) {
+ case GIC_BASER_CACHE_nCnB:
+ case GIC_BASER_CACHE_nC:
+ return GIC_BASER_CACHE_RaWb;
+ default:
+ return field;
+ }
+}
+
+/* Non-cacheable or same-as-inner are OK. */
+u64 vgic_sanitise_outer_cacheability(u64 field)
+{
+ switch (field) {
+ case GIC_BASER_CACHE_SameAsInner:
+ case GIC_BASER_CACHE_nC:
+ return field;
+ default:
+ return GIC_BASER_CACHE_nC;
+ }
+}
+
+u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
+ u64 (*sanitise_fn)(u64))
+{
+ u64 field = (reg & field_mask) >> field_shift;
+
+ field = sanitise_fn(field) << field_shift;
+ return (reg & ~field_mask) | field;
+}
+
+#define PROPBASER_RES0_MASK \
+ (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
+#define PENDBASER_RES0_MASK \
+ (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
+ GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
+
+static u64 vgic_sanitise_pendbaser(u64 reg)
+{
+ reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
+ GICR_PENDBASER_SHAREABILITY_SHIFT,
+ vgic_sanitise_shareability);
+ reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
+ GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
+ vgic_sanitise_inner_cacheability);
+ reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
+ GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
+ vgic_sanitise_outer_cacheability);
+
+ reg &= ~PENDBASER_RES0_MASK;
+
+ return reg;
+}
+
+static u64 vgic_sanitise_propbaser(u64 reg)
+{
+ reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
+ GICR_PROPBASER_SHAREABILITY_SHIFT,
+ vgic_sanitise_shareability);
+ reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
+ GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
+ vgic_sanitise_inner_cacheability);
+ reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
+ GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
+ vgic_sanitise_outer_cacheability);
+
+ reg &= ~PROPBASER_RES0_MASK;
+ return reg;
+}
+
+static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
+
+ return extract_bytes(dist->propbaser, addr & 7, len);
+}
+
+static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ u64 old_propbaser, propbaser;
+
+ /* Storing a value with LPIs already enabled is undefined */
+ if (vgic_cpu->lpis_enabled)
+ return;
+
+ do {
+ old_propbaser = READ_ONCE(dist->propbaser);
+ propbaser = old_propbaser;
+ propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
+ propbaser = vgic_sanitise_propbaser(propbaser);
+ } while (cmpxchg64(&dist->propbaser, old_propbaser,
+ propbaser) != old_propbaser);
+}
+
+static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ u64 value = vgic_cpu->pendbaser;
+
+ value &= ~GICR_PENDBASER_PTZ;
+
+ return extract_bytes(value, addr & 7, len);
+}
+
+static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ u64 old_pendbaser, pendbaser;
+
+ /* Storing a value with LPIs already enabled is undefined */
+ if (vgic_cpu->lpis_enabled)
+ return;
+
+ do {
+ old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
+ pendbaser = old_pendbaser;
+ pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
+ pendbaser = vgic_sanitise_pendbaser(pendbaser);
+ } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
+ pendbaser) != old_pendbaser);
+}
+
+/*
+ * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
+ * redistributors, while SPIs are covered by registers in the distributor
+ * block. Trying to set private IRQs in this block gets ignored.
+ * We take some special care here to fix the calculation of the register
+ * offset.
+ */
+#define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
+ { \
+ .reg_offset = off, \
+ .bits_per_irq = bpi, \
+ .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
+ .access_flags = acc, \
+ .read = vgic_mmio_read_raz, \
+ .write = vgic_mmio_write_wi, \
+ }, { \
+ .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
+ .bits_per_irq = bpi, \
+ .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
+ .access_flags = acc, \
+ .read = rd, \
+ .write = wr, \
+ .uaccess_read = ur, \
+ .uaccess_write = uw, \
+ }
+
+static const struct vgic_register_region vgic_v3_dist_registers[] = {
+ REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
+ vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
+ NULL, vgic_mmio_uaccess_write_v3_misc,
+ 16, VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
+ vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
+ vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
+ vgic_mmio_read_enable, vgic_mmio_write_senable,
+ NULL, vgic_uaccess_write_senable, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
+ vgic_mmio_read_enable, vgic_mmio_write_cenable,
+ NULL, vgic_uaccess_write_cenable, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
+ vgic_mmio_read_pending, vgic_mmio_write_spending,
+ vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
+ vgic_mmio_read_pending, vgic_mmio_write_cpending,
+ vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
+ vgic_mmio_read_active, vgic_mmio_write_sactive,
+ vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
+ vgic_mmio_read_active, vgic_mmio_write_cactive,
+ vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
+ 1, VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
+ vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
+ 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
+ vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
+ VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
+ vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
+ vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
+ vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
+ VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
+ vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
+ VGIC_ACCESS_32bit),
+};
+
+static const struct vgic_register_region vgic_v3_rd_registers[] = {
+ /* RD_base registers */
+ REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
+ vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
+ vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
+ vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
+ vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
+ VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
+ vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
+ vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
+ VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
+ vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
+ VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
+ vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
+ VGIC_ACCESS_32bit),
+ /* SGI_base registers */
+ REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
+ vgic_mmio_read_group, vgic_mmio_write_group, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
+ vgic_mmio_read_enable, vgic_mmio_write_senable,
+ NULL, vgic_uaccess_write_senable, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
+ vgic_mmio_read_enable, vgic_mmio_write_cenable,
+ NULL, vgic_uaccess_write_cenable, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
+ vgic_mmio_read_pending, vgic_mmio_write_spending,
+ vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
+ vgic_mmio_read_pending, vgic_mmio_write_cpending,
+ vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
+ vgic_mmio_read_active, vgic_mmio_write_sactive,
+ vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
+ vgic_mmio_read_active, vgic_mmio_write_cactive,
+ vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
+ vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
+ VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
+ REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
+ vgic_mmio_read_config, vgic_mmio_write_config, 8,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
+ vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
+ vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
+ VGIC_ACCESS_32bit),
+};
+
+unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
+{
+ dev->regions = vgic_v3_dist_registers;
+ dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
+
+ kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
+
+ return SZ_64K;
+}
+
+/**
+ * vgic_register_redist_iodev - register a single redist iodev
+ * @vcpu: The VCPU to which the redistributor belongs
+ *
+ * Register a KVM iodev for this VCPU's redistributor using the address
+ * provided.
+ *
+ * Return 0 on success, -ERRNO otherwise.
+ */
+int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct vgic_dist *vgic = &kvm->arch.vgic;
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
+ struct vgic_redist_region *rdreg;
+ gpa_t rd_base;
+ int ret;
+
+ if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
+ return 0;
+
+ /*
+ * We may be creating VCPUs before having set the base address for the
+ * redistributor region, in which case we will come back to this
+ * function for all VCPUs when the base address is set. Just return
+ * without doing any work for now.
+ */
+ rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
+ if (!rdreg)
+ return 0;
+
+ if (!vgic_v3_check_base(kvm))
+ return -EINVAL;
+
+ vgic_cpu->rdreg = rdreg;
+
+ rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
+
+ kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
+ rd_dev->base_addr = rd_base;
+ rd_dev->iodev_type = IODEV_REDIST;
+ rd_dev->regions = vgic_v3_rd_registers;
+ rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
+ rd_dev->redist_vcpu = vcpu;
+
+ mutex_lock(&kvm->slots_lock);
+ ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
+ 2 * SZ_64K, &rd_dev->dev);
+ mutex_unlock(&kvm->slots_lock);
+
+ if (ret)
+ return ret;
+
+ rdreg->free_index++;
+ return 0;
+}
+
+static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
+{
+ struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
+
+ kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
+}
+
+static int vgic_register_all_redist_iodevs(struct kvm *kvm)
+{
+ struct kvm_vcpu *vcpu;
+ int c, ret = 0;
+
+ kvm_for_each_vcpu(c, vcpu, kvm) {
+ ret = vgic_register_redist_iodev(vcpu);
+ if (ret)
+ break;
+ }
+
+ if (ret) {
+ /* The current c failed, so we start with the previous one. */
+ mutex_lock(&kvm->slots_lock);
+ for (c--; c >= 0; c--) {
+ vcpu = kvm_get_vcpu(kvm, c);
+ vgic_unregister_redist_iodev(vcpu);
+ }
+ mutex_unlock(&kvm->slots_lock);
+ }
+
+ return ret;
+}
+
+/**
+ * vgic_v3_insert_redist_region - Insert a new redistributor region
+ *
+ * Performs various checks before inserting the rdist region in the list.
+ * Those tests depend on whether the size of the rdist region is known
+ * (ie. count != 0). The list is sorted by rdist region index.
+ *
+ * @kvm: kvm handle
+ * @index: redist region index
+ * @base: base of the new rdist region
+ * @count: number of redistributors the region is made of (0 in the old style
+ * single region, whose size is induced from the number of vcpus)
+ *
+ * Return 0 on success, < 0 otherwise
+ */
+static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index,
+ gpa_t base, uint32_t count)
+{
+ struct vgic_dist *d = &kvm->arch.vgic;
+ struct vgic_redist_region *rdreg;
+ struct list_head *rd_regions = &d->rd_regions;
+ size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
+ int ret;
+
+ /* single rdist region already set ?*/
+ if (!count && !list_empty(rd_regions))
+ return -EINVAL;
+
+ /* cross the end of memory ? */
+ if (base + size < base)
+ return -EINVAL;
+
+ if (list_empty(rd_regions)) {
+ if (index != 0)
+ return -EINVAL;
+ } else {
+ rdreg = list_last_entry(rd_regions,
+ struct vgic_redist_region, list);
+ if (index != rdreg->index + 1)
+ return -EINVAL;
+
+ /* Cannot add an explicitly sized regions after legacy region */
+ if (!rdreg->count)
+ return -EINVAL;
+ }
+
+ /*
+ * For legacy single-region redistributor regions (!count),
+ * check that the redistributor region does not overlap with the
+ * distributor's address space.
+ */
+ if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
+ vgic_dist_overlap(kvm, base, size))
+ return -EINVAL;
+
+ /* collision with any other rdist region? */
+ if (vgic_v3_rdist_overlap(kvm, base, size))
+ return -EINVAL;
+
+ rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
+ if (!rdreg)
+ return -ENOMEM;
+
+ rdreg->base = VGIC_ADDR_UNDEF;
+
+ ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
+ if (ret)
+ goto free;
+
+ rdreg->base = base;
+ rdreg->count = count;
+ rdreg->free_index = 0;
+ rdreg->index = index;
+
+ list_add_tail(&rdreg->list, rd_regions);
+ return 0;
+free:
+ kfree(rdreg);
+ return ret;
+}
+
+int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
+{
+ int ret;
+
+ ret = vgic_v3_insert_redist_region(kvm, index, addr, count);
+ if (ret)
+ return ret;
+
+ /*
+ * Register iodevs for each existing VCPU. Adding more VCPUs
+ * afterwards will register the iodevs when needed.
+ */
+ ret = vgic_register_all_redist_iodevs(kvm);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
+{
+ const struct vgic_register_region *region;
+ struct vgic_io_device iodev;
+ struct vgic_reg_attr reg_attr;
+ struct kvm_vcpu *vcpu;
+ gpa_t addr;
+ int ret;
+
+ ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
+ if (ret)
+ return ret;
+
+ vcpu = reg_attr.vcpu;
+ addr = reg_attr.addr;
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ iodev.regions = vgic_v3_dist_registers;
+ iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
+ iodev.base_addr = 0;
+ break;
+ case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
+ iodev.regions = vgic_v3_rd_registers;
+ iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
+ iodev.base_addr = 0;
+ break;
+ }
+ case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
+ u64 reg, id;
+
+ id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
+ return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
+ }
+ default:
+ return -ENXIO;
+ }
+
+ /* We only support aligned 32-bit accesses. */
+ if (addr & 3)
+ return -ENXIO;
+
+ region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
+ if (!region)
+ return -ENXIO;
+
+ return 0;
+}
+/*
+ * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
+ * generation register ICC_SGI1R_EL1) with a given VCPU.
+ * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
+ * return -1.
+ */
+static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
+{
+ unsigned long affinity;
+ int level0;
+
+ /*
+ * Split the current VCPU's MPIDR into affinity level 0 and the
+ * rest as this is what we have to compare against.
+ */
+ affinity = kvm_vcpu_get_mpidr_aff(vcpu);
+ level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
+ affinity &= ~MPIDR_LEVEL_MASK;
+
+ /* bail out if the upper three levels don't match */
+ if (sgi_aff != affinity)
+ return -1;
+
+ /* Is this VCPU's bit set in the mask ? */
+ if (!(sgi_cpu_mask & BIT(level0)))
+ return -1;
+
+ return level0;
+}
+
+/*
+ * The ICC_SGI* registers encode the affinity differently from the MPIDR,
+ * so provide a wrapper to use the existing defines to isolate a certain
+ * affinity level.
+ */
+#define SGI_AFFINITY_LEVEL(reg, level) \
+ ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
+ >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
+
+/**
+ * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
+ * @vcpu: The VCPU requesting a SGI
+ * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
+ * @allow_group1: Does the sysreg access allow generation of G1 SGIs
+ *
+ * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
+ * This will trap in sys_regs.c and call this function.
+ * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
+ * target processors as well as a bitmask of 16 Aff0 CPUs.
+ * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
+ * check for matching ones. If this bit is set, we signal all, but not the
+ * calling VCPU.
+ */
+void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_vcpu *c_vcpu;
+ u16 target_cpus;
+ u64 mpidr;
+ int sgi, c;
+ int vcpu_id = vcpu->vcpu_id;
+ bool broadcast;
+ unsigned long flags;
+
+ sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
+ broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
+ target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
+ mpidr = SGI_AFFINITY_LEVEL(reg, 3);
+ mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
+ mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
+
+ /*
+ * We iterate over all VCPUs to find the MPIDRs matching the request.
+ * If we have handled one CPU, we clear its bit to detect early
+ * if we are already finished. This avoids iterating through all
+ * VCPUs when most of the times we just signal a single VCPU.
+ */
+ kvm_for_each_vcpu(c, c_vcpu, kvm) {
+ struct vgic_irq *irq;
+
+ /* Exit early if we have dealt with all requested CPUs */
+ if (!broadcast && target_cpus == 0)
+ break;
+
+ /* Don't signal the calling VCPU */
+ if (broadcast && c == vcpu_id)
+ continue;
+
+ if (!broadcast) {
+ int level0;
+
+ level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
+ if (level0 == -1)
+ continue;
+
+ /* remove this matching VCPU from the mask */
+ target_cpus &= ~BIT(level0);
+ }
+
+ irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ /*
+ * An access targetting Group0 SGIs can only generate
+ * those, while an access targetting Group1 SGIs can
+ * generate interrupts of either group.
+ */
+ if (!irq->group || allow_group1) {
+ if (!irq->hw) {
+ irq->pending_latch = true;
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+ } else {
+ /* HW SGI? Ask the GIC to inject it */
+ int err;
+ err = irq_set_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING,
+ true);
+ WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ }
+ } else {
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ }
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
+ int offset, u32 *val)
+{
+ struct vgic_io_device dev = {
+ .regions = vgic_v3_dist_registers,
+ .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
+ };
+
+ return vgic_uaccess(vcpu, &dev, is_write, offset, val);
+}
+
+int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
+ int offset, u32 *val)
+{
+ struct vgic_io_device rd_dev = {
+ .regions = vgic_v3_rd_registers,
+ .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
+ };
+
+ return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
+}
+
+int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
+ u32 intid, u64 *val)
+{
+ if (intid % 32)
+ return -EINVAL;
+
+ if (is_write)
+ vgic_write_irq_line_level_info(vcpu, intid, *val);
+ else
+ *val = vgic_read_irq_line_level_info(vcpu, intid);
+
+ return 0;
+}
diff --git a/arch/arm64/kvm/vgic/vgic-mmio.c b/arch/arm64/kvm/vgic/vgic-mmio.c
new file mode 100644
index 000000000000..b2d73fc0d1ef
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-mmio.c
@@ -0,0 +1,1088 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * VGIC MMIO handling functions
+ */
+
+#include <linux/bitops.h>
+#include <linux/bsearch.h>
+#include <linux/interrupt.h>
+#include <linux/irq.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <kvm/iodev.h>
+#include <kvm/arm_arch_timer.h>
+#include <kvm/arm_vgic.h>
+
+#include "vgic.h"
+#include "vgic-mmio.h"
+
+unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ return 0;
+}
+
+unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ return -1UL;
+}
+
+void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len, unsigned long val)
+{
+ /* Ignore */
+}
+
+int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len, unsigned long val)
+{
+ /* Ignore */
+ return 0;
+}
+
+unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ u32 value = 0;
+ int i;
+
+ /* Loop over all IRQs affected by this read */
+ for (i = 0; i < len * 8; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ if (irq->group)
+ value |= BIT(i);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return value;
+}
+
+static void vgic_update_vsgi(struct vgic_irq *irq)
+{
+ WARN_ON(its_prop_update_vsgi(irq->host_irq, irq->priority, irq->group));
+}
+
+void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len, unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+ unsigned long flags;
+
+ for (i = 0; i < len * 8; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ irq->group = !!(val & BIT(i));
+ if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
+ vgic_update_vsgi(irq);
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ } else {
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+ }
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+/*
+ * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
+ * of the enabled bit, so there is only one function for both here.
+ */
+unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ u32 value = 0;
+ int i;
+
+ /* Loop over all IRQs affected by this read */
+ for (i = 0; i < len * 8; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ if (irq->enabled)
+ value |= (1U << i);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return value;
+}
+
+void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+ unsigned long flags;
+
+ for_each_set_bit(i, &val, len * 8) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
+ if (!irq->enabled) {
+ struct irq_data *data;
+
+ irq->enabled = true;
+ data = &irq_to_desc(irq->host_irq)->irq_data;
+ while (irqd_irq_disabled(data))
+ enable_irq(irq->host_irq);
+ }
+
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+
+ continue;
+ } else if (vgic_irq_is_mapped_level(irq)) {
+ bool was_high = irq->line_level;
+
+ /*
+ * We need to update the state of the interrupt because
+ * the guest might have changed the state of the device
+ * while the interrupt was disabled at the VGIC level.
+ */
+ irq->line_level = vgic_get_phys_line_level(irq);
+ /*
+ * Deactivate the physical interrupt so the GIC will let
+ * us know when it is asserted again.
+ */
+ if (!irq->active && was_high && !irq->line_level)
+ vgic_irq_set_phys_active(irq, false);
+ }
+ irq->enabled = true;
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+ unsigned long flags;
+
+ for_each_set_bit(i, &val, len * 8) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ if (irq->hw && vgic_irq_is_sgi(irq->intid) && irq->enabled)
+ disable_irq_nosync(irq->host_irq);
+
+ irq->enabled = false;
+
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+int vgic_uaccess_write_senable(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+ unsigned long flags;
+
+ for_each_set_bit(i, &val, len * 8) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ irq->enabled = true;
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return 0;
+}
+
+int vgic_uaccess_write_cenable(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+ unsigned long flags;
+
+ for_each_set_bit(i, &val, len * 8) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ irq->enabled = false;
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return 0;
+}
+
+unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ u32 value = 0;
+ int i;
+
+ /* Loop over all IRQs affected by this read */
+ for (i = 0; i < len * 8; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+ unsigned long flags;
+ bool val;
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
+ int err;
+
+ val = false;
+ err = irq_get_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING,
+ &val);
+ WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
+ } else {
+ val = irq_is_pending(irq);
+ }
+
+ value |= ((u32)val << i);
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return value;
+}
+
+static bool is_vgic_v2_sgi(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
+{
+ return (vgic_irq_is_sgi(irq->intid) &&
+ vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2);
+}
+
+void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+ unsigned long flags;
+
+ for_each_set_bit(i, &val, len * 8) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ /* GICD_ISPENDR0 SGI bits are WI */
+ if (is_vgic_v2_sgi(vcpu, irq)) {
+ vgic_put_irq(vcpu->kvm, irq);
+ continue;
+ }
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
+ /* HW SGI? Ask the GIC to inject it */
+ int err;
+ err = irq_set_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING,
+ true);
+ WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
+
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+
+ continue;
+ }
+
+ irq->pending_latch = true;
+ if (irq->hw)
+ vgic_irq_set_phys_active(irq, true);
+
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+int vgic_uaccess_write_spending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+ unsigned long flags;
+
+ for_each_set_bit(i, &val, len * 8) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ irq->pending_latch = true;
+
+ /*
+ * GICv2 SGIs are terribly broken. We can't restore
+ * the source of the interrupt, so just pick the vcpu
+ * itself as the source...
+ */
+ if (is_vgic_v2_sgi(vcpu, irq))
+ irq->source |= BIT(vcpu->vcpu_id);
+
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return 0;
+}
+
+/* Must be called with irq->irq_lock held */
+static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
+{
+ irq->pending_latch = false;
+
+ /*
+ * We don't want the guest to effectively mask the physical
+ * interrupt by doing a write to SPENDR followed by a write to
+ * CPENDR for HW interrupts, so we clear the active state on
+ * the physical side if the virtual interrupt is not active.
+ * This may lead to taking an additional interrupt on the
+ * host, but that should not be a problem as the worst that
+ * can happen is an additional vgic injection. We also clear
+ * the pending state to maintain proper semantics for edge HW
+ * interrupts.
+ */
+ vgic_irq_set_phys_pending(irq, false);
+ if (!irq->active)
+ vgic_irq_set_phys_active(irq, false);
+}
+
+void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+ unsigned long flags;
+
+ for_each_set_bit(i, &val, len * 8) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ /* GICD_ICPENDR0 SGI bits are WI */
+ if (is_vgic_v2_sgi(vcpu, irq)) {
+ vgic_put_irq(vcpu->kvm, irq);
+ continue;
+ }
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
+ /* HW SGI? Ask the GIC to clear its pending bit */
+ int err;
+ err = irq_set_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING,
+ false);
+ WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
+
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+
+ continue;
+ }
+
+ if (irq->hw)
+ vgic_hw_irq_cpending(vcpu, irq);
+ else
+ irq->pending_latch = false;
+
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+int vgic_uaccess_write_cpending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+ unsigned long flags;
+
+ for_each_set_bit(i, &val, len * 8) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ /*
+ * More fun with GICv2 SGIs! If we're clearing one of them
+ * from userspace, which source vcpu to clear? Let's not
+ * even think of it, and blow the whole set.
+ */
+ if (is_vgic_v2_sgi(vcpu, irq))
+ irq->source = 0;
+
+ irq->pending_latch = false;
+
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return 0;
+}
+
+/*
+ * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
+ * is not queued on some running VCPU's LRs, because then the change to the
+ * active state can be overwritten when the VCPU's state is synced coming back
+ * from the guest.
+ *
+ * For shared interrupts as well as GICv3 private interrupts, we have to
+ * stop all the VCPUs because interrupts can be migrated while we don't hold
+ * the IRQ locks and we don't want to be chasing moving targets.
+ *
+ * For GICv2 private interrupts we don't have to do anything because
+ * userspace accesses to the VGIC state already require all VCPUs to be
+ * stopped, and only the VCPU itself can modify its private interrupts
+ * active state, which guarantees that the VCPU is not running.
+ */
+static void vgic_access_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
+{
+ if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
+ intid >= VGIC_NR_PRIVATE_IRQS)
+ kvm_arm_halt_guest(vcpu->kvm);
+}
+
+/* See vgic_access_active_prepare */
+static void vgic_access_active_finish(struct kvm_vcpu *vcpu, u32 intid)
+{
+ if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
+ intid >= VGIC_NR_PRIVATE_IRQS)
+ kvm_arm_resume_guest(vcpu->kvm);
+}
+
+static unsigned long __vgic_mmio_read_active(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ u32 value = 0;
+ int i;
+
+ /* Loop over all IRQs affected by this read */
+ for (i = 0; i < len * 8; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ /*
+ * Even for HW interrupts, don't evaluate the HW state as
+ * all the guest is interested in is the virtual state.
+ */
+ if (irq->active)
+ value |= (1U << i);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return value;
+}
+
+unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ u32 val;
+
+ mutex_lock(&vcpu->kvm->lock);
+ vgic_access_active_prepare(vcpu, intid);
+
+ val = __vgic_mmio_read_active(vcpu, addr, len);
+
+ vgic_access_active_finish(vcpu, intid);
+ mutex_unlock(&vcpu->kvm->lock);
+
+ return val;
+}
+
+unsigned long vgic_uaccess_read_active(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ return __vgic_mmio_read_active(vcpu, addr, len);
+}
+
+/* Must be called with irq->irq_lock held */
+static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
+ bool active, bool is_uaccess)
+{
+ if (is_uaccess)
+ return;
+
+ irq->active = active;
+ vgic_irq_set_phys_active(irq, active);
+}
+
+static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
+ bool active)
+{
+ unsigned long flags;
+ struct kvm_vcpu *requester_vcpu = kvm_get_running_vcpu();
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ if (irq->hw && !vgic_irq_is_sgi(irq->intid)) {
+ vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
+ } else if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
+ /*
+ * GICv4.1 VSGI feature doesn't track an active state,
+ * so let's not kid ourselves, there is nothing we can
+ * do here.
+ */
+ irq->active = false;
+ } else {
+ u32 model = vcpu->kvm->arch.vgic.vgic_model;
+ u8 active_source;
+
+ irq->active = active;
+
+ /*
+ * The GICv2 architecture indicates that the source CPUID for
+ * an SGI should be provided during an EOI which implies that
+ * the active state is stored somewhere, but at the same time
+ * this state is not architecturally exposed anywhere and we
+ * have no way of knowing the right source.
+ *
+ * This may lead to a VCPU not being able to receive
+ * additional instances of a particular SGI after migration
+ * for a GICv2 VM on some GIC implementations. Oh well.
+ */
+ active_source = (requester_vcpu) ? requester_vcpu->vcpu_id : 0;
+
+ if (model == KVM_DEV_TYPE_ARM_VGIC_V2 &&
+ active && vgic_irq_is_sgi(irq->intid))
+ irq->active_source = active_source;
+ }
+
+ if (irq->active)
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+ else
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+}
+
+static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+
+ for_each_set_bit(i, &val, len * 8) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+ vgic_mmio_change_active(vcpu, irq, false);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+
+ mutex_lock(&vcpu->kvm->lock);
+ vgic_access_active_prepare(vcpu, intid);
+
+ __vgic_mmio_write_cactive(vcpu, addr, len, val);
+
+ vgic_access_active_finish(vcpu, intid);
+ mutex_unlock(&vcpu->kvm->lock);
+}
+
+int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ __vgic_mmio_write_cactive(vcpu, addr, len, val);
+ return 0;
+}
+
+static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+
+ for_each_set_bit(i, &val, len * 8) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+ vgic_mmio_change_active(vcpu, irq, true);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+
+ mutex_lock(&vcpu->kvm->lock);
+ vgic_access_active_prepare(vcpu, intid);
+
+ __vgic_mmio_write_sactive(vcpu, addr, len, val);
+
+ vgic_access_active_finish(vcpu, intid);
+ mutex_unlock(&vcpu->kvm->lock);
+}
+
+int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ __vgic_mmio_write_sactive(vcpu, addr, len, val);
+ return 0;
+}
+
+unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
+ int i;
+ u64 val = 0;
+
+ for (i = 0; i < len; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ val |= (u64)irq->priority << (i * 8);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return val;
+}
+
+/*
+ * We currently don't handle changing the priority of an interrupt that
+ * is already pending on a VCPU. If there is a need for this, we would
+ * need to make this VCPU exit and re-evaluate the priorities, potentially
+ * leading to this interrupt getting presented now to the guest (if it has
+ * been masked by the priority mask before).
+ */
+void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
+ int i;
+ unsigned long flags;
+
+ for (i = 0; i < len; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ /* Narrow the priority range to what we actually support */
+ irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
+ if (irq->hw && vgic_irq_is_sgi(irq->intid))
+ vgic_update_vsgi(irq);
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
+ u32 value = 0;
+ int i;
+
+ for (i = 0; i < len * 4; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ if (irq->config == VGIC_CONFIG_EDGE)
+ value |= (2U << (i * 2));
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return value;
+}
+
+void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
+ int i;
+ unsigned long flags;
+
+ for (i = 0; i < len * 4; i++) {
+ struct vgic_irq *irq;
+
+ /*
+ * The configuration cannot be changed for SGIs in general,
+ * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
+ * code relies on PPIs being level triggered, so we also
+ * make them read-only here.
+ */
+ if (intid + i < VGIC_NR_PRIVATE_IRQS)
+ continue;
+
+ irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ if (test_bit(i * 2 + 1, &val))
+ irq->config = VGIC_CONFIG_EDGE;
+ else
+ irq->config = VGIC_CONFIG_LEVEL;
+
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+u64 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
+{
+ int i;
+ u64 val = 0;
+ int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
+
+ for (i = 0; i < 32; i++) {
+ struct vgic_irq *irq;
+
+ if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
+ continue;
+
+ irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+ if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
+ val |= (1U << i);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return val;
+}
+
+void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
+ const u64 val)
+{
+ int i;
+ int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
+ unsigned long flags;
+
+ for (i = 0; i < 32; i++) {
+ struct vgic_irq *irq;
+ bool new_level;
+
+ if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
+ continue;
+
+ irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ /*
+ * Line level is set irrespective of irq type
+ * (level or edge) to avoid dependency that VM should
+ * restore irq config before line level.
+ */
+ new_level = !!(val & (1U << i));
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ irq->line_level = new_level;
+ if (new_level)
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+ else
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+static int match_region(const void *key, const void *elt)
+{
+ const unsigned int offset = (unsigned long)key;
+ const struct vgic_register_region *region = elt;
+
+ if (offset < region->reg_offset)
+ return -1;
+
+ if (offset >= region->reg_offset + region->len)
+ return 1;
+
+ return 0;
+}
+
+const struct vgic_register_region *
+vgic_find_mmio_region(const struct vgic_register_region *regions,
+ int nr_regions, unsigned int offset)
+{
+ return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
+ sizeof(regions[0]), match_region);
+}
+
+void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
+{
+ if (kvm_vgic_global_state.type == VGIC_V2)
+ vgic_v2_set_vmcr(vcpu, vmcr);
+ else
+ vgic_v3_set_vmcr(vcpu, vmcr);
+}
+
+void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
+{
+ if (kvm_vgic_global_state.type == VGIC_V2)
+ vgic_v2_get_vmcr(vcpu, vmcr);
+ else
+ vgic_v3_get_vmcr(vcpu, vmcr);
+}
+
+/*
+ * kvm_mmio_read_buf() returns a value in a format where it can be converted
+ * to a byte array and be directly observed as the guest wanted it to appear
+ * in memory if it had done the store itself, which is LE for the GIC, as the
+ * guest knows the GIC is always LE.
+ *
+ * We convert this value to the CPUs native format to deal with it as a data
+ * value.
+ */
+unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
+{
+ unsigned long data = kvm_mmio_read_buf(val, len);
+
+ switch (len) {
+ case 1:
+ return data;
+ case 2:
+ return le16_to_cpu(data);
+ case 4:
+ return le32_to_cpu(data);
+ default:
+ return le64_to_cpu(data);
+ }
+}
+
+/*
+ * kvm_mmio_write_buf() expects a value in a format such that if converted to
+ * a byte array it is observed as the guest would see it if it could perform
+ * the load directly. Since the GIC is LE, and the guest knows this, the
+ * guest expects a value in little endian format.
+ *
+ * We convert the data value from the CPUs native format to LE so that the
+ * value is returned in the proper format.
+ */
+void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
+ unsigned long data)
+{
+ switch (len) {
+ case 1:
+ break;
+ case 2:
+ data = cpu_to_le16(data);
+ break;
+ case 4:
+ data = cpu_to_le32(data);
+ break;
+ default:
+ data = cpu_to_le64(data);
+ }
+
+ kvm_mmio_write_buf(buf, len, data);
+}
+
+static
+struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
+{
+ return container_of(dev, struct vgic_io_device, dev);
+}
+
+static bool check_region(const struct kvm *kvm,
+ const struct vgic_register_region *region,
+ gpa_t addr, int len)
+{
+ int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
+
+ switch (len) {
+ case sizeof(u8):
+ flags = VGIC_ACCESS_8bit;
+ break;
+ case sizeof(u32):
+ flags = VGIC_ACCESS_32bit;
+ break;
+ case sizeof(u64):
+ flags = VGIC_ACCESS_64bit;
+ break;
+ default:
+ return false;
+ }
+
+ if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
+ if (!region->bits_per_irq)
+ return true;
+
+ /* Do we access a non-allocated IRQ? */
+ return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
+ }
+
+ return false;
+}
+
+const struct vgic_register_region *
+vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
+ gpa_t addr, int len)
+{
+ const struct vgic_register_region *region;
+
+ region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
+ addr - iodev->base_addr);
+ if (!region || !check_region(vcpu->kvm, region, addr, len))
+ return NULL;
+
+ return region;
+}
+
+static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
+ gpa_t addr, u32 *val)
+{
+ struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
+ const struct vgic_register_region *region;
+ struct kvm_vcpu *r_vcpu;
+
+ region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
+ if (!region) {
+ *val = 0;
+ return 0;
+ }
+
+ r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
+ if (region->uaccess_read)
+ *val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
+ else
+ *val = region->read(r_vcpu, addr, sizeof(u32));
+
+ return 0;
+}
+
+static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
+ gpa_t addr, const u32 *val)
+{
+ struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
+ const struct vgic_register_region *region;
+ struct kvm_vcpu *r_vcpu;
+
+ region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
+ if (!region)
+ return 0;
+
+ r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
+ if (region->uaccess_write)
+ return region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
+
+ region->write(r_vcpu, addr, sizeof(u32), *val);
+ return 0;
+}
+
+/*
+ * Userland access to VGIC registers.
+ */
+int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
+ bool is_write, int offset, u32 *val)
+{
+ if (is_write)
+ return vgic_uaccess_write(vcpu, &dev->dev, offset, val);
+ else
+ return vgic_uaccess_read(vcpu, &dev->dev, offset, val);
+}
+
+static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
+ gpa_t addr, int len, void *val)
+{
+ struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
+ const struct vgic_register_region *region;
+ unsigned long data = 0;
+
+ region = vgic_get_mmio_region(vcpu, iodev, addr, len);
+ if (!region) {
+ memset(val, 0, len);
+ return 0;
+ }
+
+ switch (iodev->iodev_type) {
+ case IODEV_CPUIF:
+ data = region->read(vcpu, addr, len);
+ break;
+ case IODEV_DIST:
+ data = region->read(vcpu, addr, len);
+ break;
+ case IODEV_REDIST:
+ data = region->read(iodev->redist_vcpu, addr, len);
+ break;
+ case IODEV_ITS:
+ data = region->its_read(vcpu->kvm, iodev->its, addr, len);
+ break;
+ }
+
+ vgic_data_host_to_mmio_bus(val, len, data);
+ return 0;
+}
+
+static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
+ gpa_t addr, int len, const void *val)
+{
+ struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
+ const struct vgic_register_region *region;
+ unsigned long data = vgic_data_mmio_bus_to_host(val, len);
+
+ region = vgic_get_mmio_region(vcpu, iodev, addr, len);
+ if (!region)
+ return 0;
+
+ switch (iodev->iodev_type) {
+ case IODEV_CPUIF:
+ region->write(vcpu, addr, len, data);
+ break;
+ case IODEV_DIST:
+ region->write(vcpu, addr, len, data);
+ break;
+ case IODEV_REDIST:
+ region->write(iodev->redist_vcpu, addr, len, data);
+ break;
+ case IODEV_ITS:
+ region->its_write(vcpu->kvm, iodev->its, addr, len, data);
+ break;
+ }
+
+ return 0;
+}
+
+struct kvm_io_device_ops kvm_io_gic_ops = {
+ .read = dispatch_mmio_read,
+ .write = dispatch_mmio_write,
+};
+
+int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
+ enum vgic_type type)
+{
+ struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
+ int ret = 0;
+ unsigned int len;
+
+ switch (type) {
+ case VGIC_V2:
+ len = vgic_v2_init_dist_iodev(io_device);
+ break;
+ case VGIC_V3:
+ len = vgic_v3_init_dist_iodev(io_device);
+ break;
+ default:
+ BUG_ON(1);
+ }
+
+ io_device->base_addr = dist_base_address;
+ io_device->iodev_type = IODEV_DIST;
+ io_device->redist_vcpu = NULL;
+
+ mutex_lock(&kvm->slots_lock);
+ ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
+ len, &io_device->dev);
+ mutex_unlock(&kvm->slots_lock);
+
+ return ret;
+}
diff --git a/arch/arm64/kvm/vgic/vgic-mmio.h b/arch/arm64/kvm/vgic/vgic-mmio.h
new file mode 100644
index 000000000000..fefcca2b14dc
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-mmio.h
@@ -0,0 +1,227 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2015, 2016 ARM Ltd.
+ */
+#ifndef __KVM_ARM_VGIC_MMIO_H__
+#define __KVM_ARM_VGIC_MMIO_H__
+
+struct vgic_register_region {
+ unsigned int reg_offset;
+ unsigned int len;
+ unsigned int bits_per_irq;
+ unsigned int access_flags;
+ union {
+ unsigned long (*read)(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len);
+ unsigned long (*its_read)(struct kvm *kvm, struct vgic_its *its,
+ gpa_t addr, unsigned int len);
+ };
+ union {
+ void (*write)(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len, unsigned long val);
+ void (*its_write)(struct kvm *kvm, struct vgic_its *its,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+ };
+ unsigned long (*uaccess_read)(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len);
+ union {
+ int (*uaccess_write)(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len, unsigned long val);
+ int (*uaccess_its_write)(struct kvm *kvm, struct vgic_its *its,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+ };
+};
+
+extern struct kvm_io_device_ops kvm_io_gic_ops;
+
+#define VGIC_ACCESS_8bit 1
+#define VGIC_ACCESS_32bit 2
+#define VGIC_ACCESS_64bit 4
+
+/*
+ * Generate a mask that covers the number of bytes required to address
+ * up to 1024 interrupts, each represented by <bits> bits. This assumes
+ * that <bits> is a power of two.
+ */
+#define VGIC_ADDR_IRQ_MASK(bits) (((bits) * 1024 / 8) - 1)
+
+/*
+ * (addr & mask) gives us the _byte_ offset for the INT ID.
+ * We multiply this by 8 the get the _bit_ offset, then divide this by
+ * the number of bits to learn the actual INT ID.
+ * But instead of a division (which requires a "long long div" implementation),
+ * we shift by the binary logarithm of <bits>.
+ * This assumes that <bits> is a power of two.
+ */
+#define VGIC_ADDR_TO_INTID(addr, bits) (((addr) & VGIC_ADDR_IRQ_MASK(bits)) * \
+ 8 >> ilog2(bits))
+
+/*
+ * Some VGIC registers store per-IRQ information, with a different number
+ * of bits per IRQ. For those registers this macro is used.
+ * The _WITH_LENGTH version instantiates registers with a fixed length
+ * and is mutually exclusive with the _PER_IRQ version.
+ */
+#define REGISTER_DESC_WITH_BITS_PER_IRQ(off, rd, wr, ur, uw, bpi, acc) \
+ { \
+ .reg_offset = off, \
+ .bits_per_irq = bpi, \
+ .len = bpi * 1024 / 8, \
+ .access_flags = acc, \
+ .read = rd, \
+ .write = wr, \
+ .uaccess_read = ur, \
+ .uaccess_write = uw, \
+ }
+
+#define REGISTER_DESC_WITH_LENGTH(off, rd, wr, length, acc) \
+ { \
+ .reg_offset = off, \
+ .bits_per_irq = 0, \
+ .len = length, \
+ .access_flags = acc, \
+ .read = rd, \
+ .write = wr, \
+ }
+
+#define REGISTER_DESC_WITH_LENGTH_UACCESS(off, rd, wr, urd, uwr, length, acc) \
+ { \
+ .reg_offset = off, \
+ .bits_per_irq = 0, \
+ .len = length, \
+ .access_flags = acc, \
+ .read = rd, \
+ .write = wr, \
+ .uaccess_read = urd, \
+ .uaccess_write = uwr, \
+ }
+
+unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len);
+
+void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
+ unsigned long data);
+
+unsigned long extract_bytes(u64 data, unsigned int offset,
+ unsigned int num);
+
+u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
+ unsigned long val);
+
+unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len);
+
+unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len);
+
+void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len, unsigned long val);
+
+int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len, unsigned long val);
+
+unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len);
+
+void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len, unsigned long val);
+
+unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len);
+
+void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+int vgic_uaccess_write_senable(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+int vgic_uaccess_write_cenable(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len);
+
+void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+int vgic_uaccess_write_spending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+int vgic_uaccess_write_cpending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len);
+
+unsigned long vgic_uaccess_read_active(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len);
+
+void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len);
+
+void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len);
+
+void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
+ bool is_write, int offset, u32 *val);
+
+u64 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid);
+
+void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
+ const u64 val);
+
+unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev);
+
+unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev);
+
+u64 vgic_sanitise_outer_cacheability(u64 reg);
+u64 vgic_sanitise_inner_cacheability(u64 reg);
+u64 vgic_sanitise_shareability(u64 reg);
+u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
+ u64 (*sanitise_fn)(u64));
+
+/* Find the proper register handler entry given a certain address offset */
+const struct vgic_register_region *
+vgic_find_mmio_region(const struct vgic_register_region *regions,
+ int nr_regions, unsigned int offset);
+
+#endif
diff --git a/arch/arm64/kvm/vgic/vgic-v2.c b/arch/arm64/kvm/vgic/vgic-v2.c
new file mode 100644
index 000000000000..ebf53a4e1296
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-v2.c
@@ -0,0 +1,504 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2015, 2016 ARM Ltd.
+ */
+
+#include <linux/irqchip/arm-gic.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <kvm/arm_vgic.h>
+#include <asm/kvm_mmu.h>
+
+#include "vgic.h"
+
+static inline void vgic_v2_write_lr(int lr, u32 val)
+{
+ void __iomem *base = kvm_vgic_global_state.vctrl_base;
+
+ writel_relaxed(val, base + GICH_LR0 + (lr * 4));
+}
+
+void vgic_v2_init_lrs(void)
+{
+ int i;
+
+ for (i = 0; i < kvm_vgic_global_state.nr_lr; i++)
+ vgic_v2_write_lr(i, 0);
+}
+
+void vgic_v2_set_underflow(struct kvm_vcpu *vcpu)
+{
+ struct vgic_v2_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v2;
+
+ cpuif->vgic_hcr |= GICH_HCR_UIE;
+}
+
+static bool lr_signals_eoi_mi(u32 lr_val)
+{
+ return !(lr_val & GICH_LR_STATE) && (lr_val & GICH_LR_EOI) &&
+ !(lr_val & GICH_LR_HW);
+}
+
+/*
+ * transfer the content of the LRs back into the corresponding ap_list:
+ * - active bit is transferred as is
+ * - pending bit is
+ * - transferred as is in case of edge sensitive IRQs
+ * - set to the line-level (resample time) for level sensitive IRQs
+ */
+void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ struct vgic_v2_cpu_if *cpuif = &vgic_cpu->vgic_v2;
+ int lr;
+
+ DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
+
+ cpuif->vgic_hcr &= ~GICH_HCR_UIE;
+
+ for (lr = 0; lr < vgic_cpu->vgic_v2.used_lrs; lr++) {
+ u32 val = cpuif->vgic_lr[lr];
+ u32 cpuid, intid = val & GICH_LR_VIRTUALID;
+ struct vgic_irq *irq;
+
+ /* Extract the source vCPU id from the LR */
+ cpuid = val & GICH_LR_PHYSID_CPUID;
+ cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
+ cpuid &= 7;
+
+ /* Notify fds when the guest EOI'ed a level-triggered SPI */
+ if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
+ kvm_notify_acked_irq(vcpu->kvm, 0,
+ intid - VGIC_NR_PRIVATE_IRQS);
+
+ irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
+
+ raw_spin_lock(&irq->irq_lock);
+
+ /* Always preserve the active bit */
+ irq->active = !!(val & GICH_LR_ACTIVE_BIT);
+
+ if (irq->active && vgic_irq_is_sgi(intid))
+ irq->active_source = cpuid;
+
+ /* Edge is the only case where we preserve the pending bit */
+ if (irq->config == VGIC_CONFIG_EDGE &&
+ (val & GICH_LR_PENDING_BIT)) {
+ irq->pending_latch = true;
+
+ if (vgic_irq_is_sgi(intid))
+ irq->source |= (1 << cpuid);
+ }
+
+ /*
+ * Clear soft pending state when level irqs have been acked.
+ */
+ if (irq->config == VGIC_CONFIG_LEVEL && !(val & GICH_LR_STATE))
+ irq->pending_latch = false;
+
+ /*
+ * Level-triggered mapped IRQs are special because we only
+ * observe rising edges as input to the VGIC.
+ *
+ * If the guest never acked the interrupt we have to sample
+ * the physical line and set the line level, because the
+ * device state could have changed or we simply need to
+ * process the still pending interrupt later.
+ *
+ * If this causes us to lower the level, we have to also clear
+ * the physical active state, since we will otherwise never be
+ * told when the interrupt becomes asserted again.
+ */
+ if (vgic_irq_is_mapped_level(irq) && (val & GICH_LR_PENDING_BIT)) {
+ irq->line_level = vgic_get_phys_line_level(irq);
+
+ if (!irq->line_level)
+ vgic_irq_set_phys_active(irq, false);
+ }
+
+ raw_spin_unlock(&irq->irq_lock);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ cpuif->used_lrs = 0;
+}
+
+/*
+ * Populates the particular LR with the state of a given IRQ:
+ * - for an edge sensitive IRQ the pending state is cleared in struct vgic_irq
+ * - for a level sensitive IRQ the pending state value is unchanged;
+ * it is dictated directly by the input level
+ *
+ * If @irq describes an SGI with multiple sources, we choose the
+ * lowest-numbered source VCPU and clear that bit in the source bitmap.
+ *
+ * The irq_lock must be held by the caller.
+ */
+void vgic_v2_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
+{
+ u32 val = irq->intid;
+ bool allow_pending = true;
+
+ if (irq->active) {
+ val |= GICH_LR_ACTIVE_BIT;
+ if (vgic_irq_is_sgi(irq->intid))
+ val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
+ if (vgic_irq_is_multi_sgi(irq)) {
+ allow_pending = false;
+ val |= GICH_LR_EOI;
+ }
+ }
+
+ if (irq->group)
+ val |= GICH_LR_GROUP1;
+
+ if (irq->hw) {
+ val |= GICH_LR_HW;
+ val |= irq->hwintid << GICH_LR_PHYSID_CPUID_SHIFT;
+ /*
+ * Never set pending+active on a HW interrupt, as the
+ * pending state is kept at the physical distributor
+ * level.
+ */
+ if (irq->active)
+ allow_pending = false;
+ } else {
+ if (irq->config == VGIC_CONFIG_LEVEL) {
+ val |= GICH_LR_EOI;
+
+ /*
+ * Software resampling doesn't work very well
+ * if we allow P+A, so let's not do that.
+ */
+ if (irq->active)
+ allow_pending = false;
+ }
+ }
+
+ if (allow_pending && irq_is_pending(irq)) {
+ val |= GICH_LR_PENDING_BIT;
+
+ if (irq->config == VGIC_CONFIG_EDGE)
+ irq->pending_latch = false;
+
+ if (vgic_irq_is_sgi(irq->intid)) {
+ u32 src = ffs(irq->source);
+
+ if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
+ irq->intid))
+ return;
+
+ val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
+ irq->source &= ~(1 << (src - 1));
+ if (irq->source) {
+ irq->pending_latch = true;
+ val |= GICH_LR_EOI;
+ }
+ }
+ }
+
+ /*
+ * Level-triggered mapped IRQs are special because we only observe
+ * rising edges as input to the VGIC. We therefore lower the line
+ * level here, so that we can take new virtual IRQs. See
+ * vgic_v2_fold_lr_state for more info.
+ */
+ if (vgic_irq_is_mapped_level(irq) && (val & GICH_LR_PENDING_BIT))
+ irq->line_level = false;
+
+ /* The GICv2 LR only holds five bits of priority. */
+ val |= (irq->priority >> 3) << GICH_LR_PRIORITY_SHIFT;
+
+ vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = val;
+}
+
+void vgic_v2_clear_lr(struct kvm_vcpu *vcpu, int lr)
+{
+ vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = 0;
+}
+
+void vgic_v2_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
+{
+ struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
+ u32 vmcr;
+
+ vmcr = (vmcrp->grpen0 << GICH_VMCR_ENABLE_GRP0_SHIFT) &
+ GICH_VMCR_ENABLE_GRP0_MASK;
+ vmcr |= (vmcrp->grpen1 << GICH_VMCR_ENABLE_GRP1_SHIFT) &
+ GICH_VMCR_ENABLE_GRP1_MASK;
+ vmcr |= (vmcrp->ackctl << GICH_VMCR_ACK_CTL_SHIFT) &
+ GICH_VMCR_ACK_CTL_MASK;
+ vmcr |= (vmcrp->fiqen << GICH_VMCR_FIQ_EN_SHIFT) &
+ GICH_VMCR_FIQ_EN_MASK;
+ vmcr |= (vmcrp->cbpr << GICH_VMCR_CBPR_SHIFT) &
+ GICH_VMCR_CBPR_MASK;
+ vmcr |= (vmcrp->eoim << GICH_VMCR_EOI_MODE_SHIFT) &
+ GICH_VMCR_EOI_MODE_MASK;
+ vmcr |= (vmcrp->abpr << GICH_VMCR_ALIAS_BINPOINT_SHIFT) &
+ GICH_VMCR_ALIAS_BINPOINT_MASK;
+ vmcr |= (vmcrp->bpr << GICH_VMCR_BINPOINT_SHIFT) &
+ GICH_VMCR_BINPOINT_MASK;
+ vmcr |= ((vmcrp->pmr >> GICV_PMR_PRIORITY_SHIFT) <<
+ GICH_VMCR_PRIMASK_SHIFT) & GICH_VMCR_PRIMASK_MASK;
+
+ cpu_if->vgic_vmcr = vmcr;
+}
+
+void vgic_v2_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
+{
+ struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
+ u32 vmcr;
+
+ vmcr = cpu_if->vgic_vmcr;
+
+ vmcrp->grpen0 = (vmcr & GICH_VMCR_ENABLE_GRP0_MASK) >>
+ GICH_VMCR_ENABLE_GRP0_SHIFT;
+ vmcrp->grpen1 = (vmcr & GICH_VMCR_ENABLE_GRP1_MASK) >>
+ GICH_VMCR_ENABLE_GRP1_SHIFT;
+ vmcrp->ackctl = (vmcr & GICH_VMCR_ACK_CTL_MASK) >>
+ GICH_VMCR_ACK_CTL_SHIFT;
+ vmcrp->fiqen = (vmcr & GICH_VMCR_FIQ_EN_MASK) >>
+ GICH_VMCR_FIQ_EN_SHIFT;
+ vmcrp->cbpr = (vmcr & GICH_VMCR_CBPR_MASK) >>
+ GICH_VMCR_CBPR_SHIFT;
+ vmcrp->eoim = (vmcr & GICH_VMCR_EOI_MODE_MASK) >>
+ GICH_VMCR_EOI_MODE_SHIFT;
+
+ vmcrp->abpr = (vmcr & GICH_VMCR_ALIAS_BINPOINT_MASK) >>
+ GICH_VMCR_ALIAS_BINPOINT_SHIFT;
+ vmcrp->bpr = (vmcr & GICH_VMCR_BINPOINT_MASK) >>
+ GICH_VMCR_BINPOINT_SHIFT;
+ vmcrp->pmr = ((vmcr & GICH_VMCR_PRIMASK_MASK) >>
+ GICH_VMCR_PRIMASK_SHIFT) << GICV_PMR_PRIORITY_SHIFT;
+}
+
+void vgic_v2_enable(struct kvm_vcpu *vcpu)
+{
+ /*
+ * By forcing VMCR to zero, the GIC will restore the binary
+ * points to their reset values. Anything else resets to zero
+ * anyway.
+ */
+ vcpu->arch.vgic_cpu.vgic_v2.vgic_vmcr = 0;
+
+ /* Get the show on the road... */
+ vcpu->arch.vgic_cpu.vgic_v2.vgic_hcr = GICH_HCR_EN;
+}
+
+/* check for overlapping regions and for regions crossing the end of memory */
+static bool vgic_v2_check_base(gpa_t dist_base, gpa_t cpu_base)
+{
+ if (dist_base + KVM_VGIC_V2_DIST_SIZE < dist_base)
+ return false;
+ if (cpu_base + KVM_VGIC_V2_CPU_SIZE < cpu_base)
+ return false;
+
+ if (dist_base + KVM_VGIC_V2_DIST_SIZE <= cpu_base)
+ return true;
+ if (cpu_base + KVM_VGIC_V2_CPU_SIZE <= dist_base)
+ return true;
+
+ return false;
+}
+
+int vgic_v2_map_resources(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ int ret = 0;
+
+ if (vgic_ready(kvm))
+ goto out;
+
+ if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) ||
+ IS_VGIC_ADDR_UNDEF(dist->vgic_cpu_base)) {
+ kvm_err("Need to set vgic cpu and dist addresses first\n");
+ ret = -ENXIO;
+ goto out;
+ }
+
+ if (!vgic_v2_check_base(dist->vgic_dist_base, dist->vgic_cpu_base)) {
+ kvm_err("VGIC CPU and dist frames overlap\n");
+ ret = -EINVAL;
+ goto out;
+ }
+
+ /*
+ * Initialize the vgic if this hasn't already been done on demand by
+ * accessing the vgic state from userspace.
+ */
+ ret = vgic_init(kvm);
+ if (ret) {
+ kvm_err("Unable to initialize VGIC dynamic data structures\n");
+ goto out;
+ }
+
+ ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V2);
+ if (ret) {
+ kvm_err("Unable to register VGIC MMIO regions\n");
+ goto out;
+ }
+
+ if (!static_branch_unlikely(&vgic_v2_cpuif_trap)) {
+ ret = kvm_phys_addr_ioremap(kvm, dist->vgic_cpu_base,
+ kvm_vgic_global_state.vcpu_base,
+ KVM_VGIC_V2_CPU_SIZE, true);
+ if (ret) {
+ kvm_err("Unable to remap VGIC CPU to VCPU\n");
+ goto out;
+ }
+ }
+
+ dist->ready = true;
+
+out:
+ return ret;
+}
+
+DEFINE_STATIC_KEY_FALSE(vgic_v2_cpuif_trap);
+
+/**
+ * vgic_v2_probe - probe for a VGICv2 compatible interrupt controller
+ * @info: pointer to the GIC description
+ *
+ * Returns 0 if the VGICv2 has been probed successfully, returns an error code
+ * otherwise
+ */
+int vgic_v2_probe(const struct gic_kvm_info *info)
+{
+ int ret;
+ u32 vtr;
+
+ if (!info->vctrl.start) {
+ kvm_err("GICH not present in the firmware table\n");
+ return -ENXIO;
+ }
+
+ if (!PAGE_ALIGNED(info->vcpu.start) ||
+ !PAGE_ALIGNED(resource_size(&info->vcpu))) {
+ kvm_info("GICV region size/alignment is unsafe, using trapping (reduced performance)\n");
+
+ ret = create_hyp_io_mappings(info->vcpu.start,
+ resource_size(&info->vcpu),
+ &kvm_vgic_global_state.vcpu_base_va,
+ &kvm_vgic_global_state.vcpu_hyp_va);
+ if (ret) {
+ kvm_err("Cannot map GICV into hyp\n");
+ goto out;
+ }
+
+ static_branch_enable(&vgic_v2_cpuif_trap);
+ }
+
+ ret = create_hyp_io_mappings(info->vctrl.start,
+ resource_size(&info->vctrl),
+ &kvm_vgic_global_state.vctrl_base,
+ &kvm_vgic_global_state.vctrl_hyp);
+ if (ret) {
+ kvm_err("Cannot map VCTRL into hyp\n");
+ goto out;
+ }
+
+ vtr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VTR);
+ kvm_vgic_global_state.nr_lr = (vtr & 0x3f) + 1;
+
+ ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
+ if (ret) {
+ kvm_err("Cannot register GICv2 KVM device\n");
+ goto out;
+ }
+
+ kvm_vgic_global_state.can_emulate_gicv2 = true;
+ kvm_vgic_global_state.vcpu_base = info->vcpu.start;
+ kvm_vgic_global_state.type = VGIC_V2;
+ kvm_vgic_global_state.max_gic_vcpus = VGIC_V2_MAX_CPUS;
+
+ kvm_debug("vgic-v2@%llx\n", info->vctrl.start);
+
+ return 0;
+out:
+ if (kvm_vgic_global_state.vctrl_base)
+ iounmap(kvm_vgic_global_state.vctrl_base);
+ if (kvm_vgic_global_state.vcpu_base_va)
+ iounmap(kvm_vgic_global_state.vcpu_base_va);
+
+ return ret;
+}
+
+static void save_lrs(struct kvm_vcpu *vcpu, void __iomem *base)
+{
+ struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
+ u64 used_lrs = cpu_if->used_lrs;
+ u64 elrsr;
+ int i;
+
+ elrsr = readl_relaxed(base + GICH_ELRSR0);
+ if (unlikely(used_lrs > 32))
+ elrsr |= ((u64)readl_relaxed(base + GICH_ELRSR1)) << 32;
+
+ for (i = 0; i < used_lrs; i++) {
+ if (elrsr & (1UL << i))
+ cpu_if->vgic_lr[i] &= ~GICH_LR_STATE;
+ else
+ cpu_if->vgic_lr[i] = readl_relaxed(base + GICH_LR0 + (i * 4));
+
+ writel_relaxed(0, base + GICH_LR0 + (i * 4));
+ }
+}
+
+void vgic_v2_save_state(struct kvm_vcpu *vcpu)
+{
+ void __iomem *base = kvm_vgic_global_state.vctrl_base;
+ u64 used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
+
+ if (!base)
+ return;
+
+ if (used_lrs) {
+ save_lrs(vcpu, base);
+ writel_relaxed(0, base + GICH_HCR);
+ }
+}
+
+void vgic_v2_restore_state(struct kvm_vcpu *vcpu)
+{
+ struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
+ void __iomem *base = kvm_vgic_global_state.vctrl_base;
+ u64 used_lrs = cpu_if->used_lrs;
+ int i;
+
+ if (!base)
+ return;
+
+ if (used_lrs) {
+ writel_relaxed(cpu_if->vgic_hcr, base + GICH_HCR);
+ for (i = 0; i < used_lrs; i++) {
+ writel_relaxed(cpu_if->vgic_lr[i],
+ base + GICH_LR0 + (i * 4));
+ }
+ }
+}
+
+void vgic_v2_load(struct kvm_vcpu *vcpu)
+{
+ struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
+
+ writel_relaxed(cpu_if->vgic_vmcr,
+ kvm_vgic_global_state.vctrl_base + GICH_VMCR);
+ writel_relaxed(cpu_if->vgic_apr,
+ kvm_vgic_global_state.vctrl_base + GICH_APR);
+}
+
+void vgic_v2_vmcr_sync(struct kvm_vcpu *vcpu)
+{
+ struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
+
+ cpu_if->vgic_vmcr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VMCR);
+}
+
+void vgic_v2_put(struct kvm_vcpu *vcpu)
+{
+ struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
+
+ vgic_v2_vmcr_sync(vcpu);
+ cpu_if->vgic_apr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_APR);
+}
diff --git a/arch/arm64/kvm/vgic/vgic-v3.c b/arch/arm64/kvm/vgic/vgic-v3.c
new file mode 100644
index 000000000000..76e2d85789ed
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-v3.c
@@ -0,0 +1,693 @@
+// SPDX-License-Identifier: GPL-2.0-only
+
+#include <linux/irqchip/arm-gic-v3.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <kvm/arm_vgic.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_asm.h>
+
+#include "vgic.h"
+
+static bool group0_trap;
+static bool group1_trap;
+static bool common_trap;
+static bool gicv4_enable;
+
+void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
+{
+ struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
+
+ cpuif->vgic_hcr |= ICH_HCR_UIE;
+}
+
+static bool lr_signals_eoi_mi(u64 lr_val)
+{
+ return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
+ !(lr_val & ICH_LR_HW);
+}
+
+void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
+ u32 model = vcpu->kvm->arch.vgic.vgic_model;
+ int lr;
+
+ DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
+
+ cpuif->vgic_hcr &= ~ICH_HCR_UIE;
+
+ for (lr = 0; lr < cpuif->used_lrs; lr++) {
+ u64 val = cpuif->vgic_lr[lr];
+ u32 intid, cpuid;
+ struct vgic_irq *irq;
+ bool is_v2_sgi = false;
+
+ cpuid = val & GICH_LR_PHYSID_CPUID;
+ cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
+
+ if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
+ intid = val & ICH_LR_VIRTUAL_ID_MASK;
+ } else {
+ intid = val & GICH_LR_VIRTUALID;
+ is_v2_sgi = vgic_irq_is_sgi(intid);
+ }
+
+ /* Notify fds when the guest EOI'ed a level-triggered IRQ */
+ if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
+ kvm_notify_acked_irq(vcpu->kvm, 0,
+ intid - VGIC_NR_PRIVATE_IRQS);
+
+ irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
+ if (!irq) /* An LPI could have been unmapped. */
+ continue;
+
+ raw_spin_lock(&irq->irq_lock);
+
+ /* Always preserve the active bit */
+ irq->active = !!(val & ICH_LR_ACTIVE_BIT);
+
+ if (irq->active && is_v2_sgi)
+ irq->active_source = cpuid;
+
+ /* Edge is the only case where we preserve the pending bit */
+ if (irq->config == VGIC_CONFIG_EDGE &&
+ (val & ICH_LR_PENDING_BIT)) {
+ irq->pending_latch = true;
+
+ if (is_v2_sgi)
+ irq->source |= (1 << cpuid);
+ }
+
+ /*
+ * Clear soft pending state when level irqs have been acked.
+ */
+ if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
+ irq->pending_latch = false;
+
+ /*
+ * Level-triggered mapped IRQs are special because we only
+ * observe rising edges as input to the VGIC.
+ *
+ * If the guest never acked the interrupt we have to sample
+ * the physical line and set the line level, because the
+ * device state could have changed or we simply need to
+ * process the still pending interrupt later.
+ *
+ * If this causes us to lower the level, we have to also clear
+ * the physical active state, since we will otherwise never be
+ * told when the interrupt becomes asserted again.
+ */
+ if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) {
+ irq->line_level = vgic_get_phys_line_level(irq);
+
+ if (!irq->line_level)
+ vgic_irq_set_phys_active(irq, false);
+ }
+
+ raw_spin_unlock(&irq->irq_lock);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ cpuif->used_lrs = 0;
+}
+
+/* Requires the irq to be locked already */
+void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
+{
+ u32 model = vcpu->kvm->arch.vgic.vgic_model;
+ u64 val = irq->intid;
+ bool allow_pending = true, is_v2_sgi;
+
+ is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
+ model == KVM_DEV_TYPE_ARM_VGIC_V2);
+
+ if (irq->active) {
+ val |= ICH_LR_ACTIVE_BIT;
+ if (is_v2_sgi)
+ val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
+ if (vgic_irq_is_multi_sgi(irq)) {
+ allow_pending = false;
+ val |= ICH_LR_EOI;
+ }
+ }
+
+ if (irq->hw) {
+ val |= ICH_LR_HW;
+ val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
+ /*
+ * Never set pending+active on a HW interrupt, as the
+ * pending state is kept at the physical distributor
+ * level.
+ */
+ if (irq->active)
+ allow_pending = false;
+ } else {
+ if (irq->config == VGIC_CONFIG_LEVEL) {
+ val |= ICH_LR_EOI;
+
+ /*
+ * Software resampling doesn't work very well
+ * if we allow P+A, so let's not do that.
+ */
+ if (irq->active)
+ allow_pending = false;
+ }
+ }
+
+ if (allow_pending && irq_is_pending(irq)) {
+ val |= ICH_LR_PENDING_BIT;
+
+ if (irq->config == VGIC_CONFIG_EDGE)
+ irq->pending_latch = false;
+
+ if (vgic_irq_is_sgi(irq->intid) &&
+ model == KVM_DEV_TYPE_ARM_VGIC_V2) {
+ u32 src = ffs(irq->source);
+
+ if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
+ irq->intid))
+ return;
+
+ val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
+ irq->source &= ~(1 << (src - 1));
+ if (irq->source) {
+ irq->pending_latch = true;
+ val |= ICH_LR_EOI;
+ }
+ }
+ }
+
+ /*
+ * Level-triggered mapped IRQs are special because we only observe
+ * rising edges as input to the VGIC. We therefore lower the line
+ * level here, so that we can take new virtual IRQs. See
+ * vgic_v3_fold_lr_state for more info.
+ */
+ if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
+ irq->line_level = false;
+
+ if (irq->group)
+ val |= ICH_LR_GROUP;
+
+ val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
+
+ vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
+}
+
+void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
+{
+ vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
+}
+
+void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
+{
+ struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
+ u32 model = vcpu->kvm->arch.vgic.vgic_model;
+ u32 vmcr;
+
+ if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
+ vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
+ ICH_VMCR_ACK_CTL_MASK;
+ vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
+ ICH_VMCR_FIQ_EN_MASK;
+ } else {
+ /*
+ * When emulating GICv3 on GICv3 with SRE=1 on the
+ * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
+ */
+ vmcr = ICH_VMCR_FIQ_EN_MASK;
+ }
+
+ vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
+ vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
+ vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
+ vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
+ vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
+ vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
+ vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
+
+ cpu_if->vgic_vmcr = vmcr;
+}
+
+void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
+{
+ struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
+ u32 model = vcpu->kvm->arch.vgic.vgic_model;
+ u32 vmcr;
+
+ vmcr = cpu_if->vgic_vmcr;
+
+ if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
+ vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
+ ICH_VMCR_ACK_CTL_SHIFT;
+ vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
+ ICH_VMCR_FIQ_EN_SHIFT;
+ } else {
+ /*
+ * When emulating GICv3 on GICv3 with SRE=1 on the
+ * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
+ */
+ vmcrp->fiqen = 1;
+ vmcrp->ackctl = 0;
+ }
+
+ vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
+ vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
+ vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
+ vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
+ vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
+ vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
+ vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
+}
+
+#define INITIAL_PENDBASER_VALUE \
+ (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \
+ GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \
+ GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
+
+void vgic_v3_enable(struct kvm_vcpu *vcpu)
+{
+ struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
+
+ /*
+ * By forcing VMCR to zero, the GIC will restore the binary
+ * points to their reset values. Anything else resets to zero
+ * anyway.
+ */
+ vgic_v3->vgic_vmcr = 0;
+
+ /*
+ * If we are emulating a GICv3, we do it in an non-GICv2-compatible
+ * way, so we force SRE to 1 to demonstrate this to the guest.
+ * Also, we don't support any form of IRQ/FIQ bypass.
+ * This goes with the spec allowing the value to be RAO/WI.
+ */
+ if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
+ vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
+ ICC_SRE_EL1_DFB |
+ ICC_SRE_EL1_SRE);
+ vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
+ } else {
+ vgic_v3->vgic_sre = 0;
+ }
+
+ vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
+ ICH_VTR_ID_BITS_MASK) >>
+ ICH_VTR_ID_BITS_SHIFT;
+ vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
+ ICH_VTR_PRI_BITS_MASK) >>
+ ICH_VTR_PRI_BITS_SHIFT) + 1;
+
+ /* Get the show on the road... */
+ vgic_v3->vgic_hcr = ICH_HCR_EN;
+ if (group0_trap)
+ vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
+ if (group1_trap)
+ vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
+ if (common_trap)
+ vgic_v3->vgic_hcr |= ICH_HCR_TC;
+}
+
+int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
+{
+ struct kvm_vcpu *vcpu;
+ int byte_offset, bit_nr;
+ gpa_t pendbase, ptr;
+ bool status;
+ u8 val;
+ int ret;
+ unsigned long flags;
+
+retry:
+ vcpu = irq->target_vcpu;
+ if (!vcpu)
+ return 0;
+
+ pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
+
+ byte_offset = irq->intid / BITS_PER_BYTE;
+ bit_nr = irq->intid % BITS_PER_BYTE;
+ ptr = pendbase + byte_offset;
+
+ ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
+ if (ret)
+ return ret;
+
+ status = val & (1 << bit_nr);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ if (irq->target_vcpu != vcpu) {
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ goto retry;
+ }
+ irq->pending_latch = status;
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+
+ if (status) {
+ /* clear consumed data */
+ val &= ~(1 << bit_nr);
+ ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
+ if (ret)
+ return ret;
+ }
+ return 0;
+}
+
+/**
+ * vgic_v3_save_pending_tables - Save the pending tables into guest RAM
+ * kvm lock and all vcpu lock must be held
+ */
+int vgic_v3_save_pending_tables(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct vgic_irq *irq;
+ gpa_t last_ptr = ~(gpa_t)0;
+ int ret;
+ u8 val;
+
+ list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
+ int byte_offset, bit_nr;
+ struct kvm_vcpu *vcpu;
+ gpa_t pendbase, ptr;
+ bool stored;
+
+ vcpu = irq->target_vcpu;
+ if (!vcpu)
+ continue;
+
+ pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
+
+ byte_offset = irq->intid / BITS_PER_BYTE;
+ bit_nr = irq->intid % BITS_PER_BYTE;
+ ptr = pendbase + byte_offset;
+
+ if (ptr != last_ptr) {
+ ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
+ if (ret)
+ return ret;
+ last_ptr = ptr;
+ }
+
+ stored = val & (1U << bit_nr);
+ if (stored == irq->pending_latch)
+ continue;
+
+ if (irq->pending_latch)
+ val |= 1 << bit_nr;
+ else
+ val &= ~(1 << bit_nr);
+
+ ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
+ if (ret)
+ return ret;
+ }
+ return 0;
+}
+
+/**
+ * vgic_v3_rdist_overlap - check if a region overlaps with any
+ * existing redistributor region
+ *
+ * @kvm: kvm handle
+ * @base: base of the region
+ * @size: size of region
+ *
+ * Return: true if there is an overlap
+ */
+bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
+{
+ struct vgic_dist *d = &kvm->arch.vgic;
+ struct vgic_redist_region *rdreg;
+
+ list_for_each_entry(rdreg, &d->rd_regions, list) {
+ if ((base + size > rdreg->base) &&
+ (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
+ return true;
+ }
+ return false;
+}
+
+/*
+ * Check for overlapping regions and for regions crossing the end of memory
+ * for base addresses which have already been set.
+ */
+bool vgic_v3_check_base(struct kvm *kvm)
+{
+ struct vgic_dist *d = &kvm->arch.vgic;
+ struct vgic_redist_region *rdreg;
+
+ if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
+ d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
+ return false;
+
+ list_for_each_entry(rdreg, &d->rd_regions, list) {
+ if (rdreg->base + vgic_v3_rd_region_size(kvm, rdreg) <
+ rdreg->base)
+ return false;
+ }
+
+ if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
+ return true;
+
+ return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
+ KVM_VGIC_V3_DIST_SIZE);
+}
+
+/**
+ * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
+ * which has free space to put a new rdist region.
+ *
+ * @rd_regions: redistributor region list head
+ *
+ * A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
+ * Stride between redistributors is 0 and regions are filled in the index order.
+ *
+ * Return: the redist region handle, if any, that has space to map a new rdist
+ * region.
+ */
+struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
+{
+ struct vgic_redist_region *rdreg;
+
+ list_for_each_entry(rdreg, rd_regions, list) {
+ if (!vgic_v3_redist_region_full(rdreg))
+ return rdreg;
+ }
+ return NULL;
+}
+
+struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
+ u32 index)
+{
+ struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
+ struct vgic_redist_region *rdreg;
+
+ list_for_each_entry(rdreg, rd_regions, list) {
+ if (rdreg->index == index)
+ return rdreg;
+ }
+ return NULL;
+}
+
+
+int vgic_v3_map_resources(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct kvm_vcpu *vcpu;
+ int ret = 0;
+ int c;
+
+ if (vgic_ready(kvm))
+ goto out;
+
+ kvm_for_each_vcpu(c, vcpu, kvm) {
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+
+ if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
+ kvm_debug("vcpu %d redistributor base not set\n", c);
+ ret = -ENXIO;
+ goto out;
+ }
+ }
+
+ if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
+ kvm_err("Need to set vgic distributor addresses first\n");
+ ret = -ENXIO;
+ goto out;
+ }
+
+ if (!vgic_v3_check_base(kvm)) {
+ kvm_err("VGIC redist and dist frames overlap\n");
+ ret = -EINVAL;
+ goto out;
+ }
+
+ /*
+ * For a VGICv3 we require the userland to explicitly initialize
+ * the VGIC before we need to use it.
+ */
+ if (!vgic_initialized(kvm)) {
+ ret = -EBUSY;
+ goto out;
+ }
+
+ ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
+ if (ret) {
+ kvm_err("Unable to register VGICv3 dist MMIO regions\n");
+ goto out;
+ }
+
+ if (kvm_vgic_global_state.has_gicv4_1)
+ vgic_v4_configure_vsgis(kvm);
+ dist->ready = true;
+
+out:
+ return ret;
+}
+
+DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
+
+static int __init early_group0_trap_cfg(char *buf)
+{
+ return strtobool(buf, &group0_trap);
+}
+early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
+
+static int __init early_group1_trap_cfg(char *buf)
+{
+ return strtobool(buf, &group1_trap);
+}
+early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
+
+static int __init early_common_trap_cfg(char *buf)
+{
+ return strtobool(buf, &common_trap);
+}
+early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
+
+static int __init early_gicv4_enable(char *buf)
+{
+ return strtobool(buf, &gicv4_enable);
+}
+early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
+
+/**
+ * vgic_v3_probe - probe for a VGICv3 compatible interrupt controller
+ * @info: pointer to the GIC description
+ *
+ * Returns 0 if the VGICv3 has been probed successfully, returns an error code
+ * otherwise
+ */
+int vgic_v3_probe(const struct gic_kvm_info *info)
+{
+ u32 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_ich_vtr_el2);
+ int ret;
+
+ /*
+ * The ListRegs field is 5 bits, but there is an architectural
+ * maximum of 16 list registers. Just ignore bit 4...
+ */
+ kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
+ kvm_vgic_global_state.can_emulate_gicv2 = false;
+ kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
+
+ /* GICv4 support? */
+ if (info->has_v4) {
+ kvm_vgic_global_state.has_gicv4 = gicv4_enable;
+ kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable;
+ kvm_info("GICv4%s support %sabled\n",
+ kvm_vgic_global_state.has_gicv4_1 ? ".1" : "",
+ gicv4_enable ? "en" : "dis");
+ }
+
+ if (!info->vcpu.start) {
+ kvm_info("GICv3: no GICV resource entry\n");
+ kvm_vgic_global_state.vcpu_base = 0;
+ } else if (!PAGE_ALIGNED(info->vcpu.start)) {
+ pr_warn("GICV physical address 0x%llx not page aligned\n",
+ (unsigned long long)info->vcpu.start);
+ kvm_vgic_global_state.vcpu_base = 0;
+ } else {
+ kvm_vgic_global_state.vcpu_base = info->vcpu.start;
+ kvm_vgic_global_state.can_emulate_gicv2 = true;
+ ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
+ if (ret) {
+ kvm_err("Cannot register GICv2 KVM device.\n");
+ return ret;
+ }
+ kvm_info("vgic-v2@%llx\n", info->vcpu.start);
+ }
+ ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
+ if (ret) {
+ kvm_err("Cannot register GICv3 KVM device.\n");
+ kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
+ return ret;
+ }
+
+ if (kvm_vgic_global_state.vcpu_base == 0)
+ kvm_info("disabling GICv2 emulation\n");
+
+ if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
+ group0_trap = true;
+ group1_trap = true;
+ }
+
+ if (group0_trap || group1_trap || common_trap) {
+ kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n",
+ group0_trap ? "G0" : "",
+ group1_trap ? "G1" : "",
+ common_trap ? "C" : "");
+ static_branch_enable(&vgic_v3_cpuif_trap);
+ }
+
+ kvm_vgic_global_state.vctrl_base = NULL;
+ kvm_vgic_global_state.type = VGIC_V3;
+ kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
+
+ return 0;
+}
+
+void vgic_v3_load(struct kvm_vcpu *vcpu)
+{
+ struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
+
+ /*
+ * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
+ * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
+ * VMCR_EL2 save/restore in the world switch.
+ */
+ if (likely(cpu_if->vgic_sre))
+ kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
+
+ kvm_call_hyp(__vgic_v3_restore_aprs, kern_hyp_va(cpu_if));
+
+ if (has_vhe())
+ __vgic_v3_activate_traps(cpu_if);
+
+ WARN_ON(vgic_v4_load(vcpu));
+}
+
+void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu)
+{
+ struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
+
+ if (likely(cpu_if->vgic_sre))
+ cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr);
+}
+
+void vgic_v3_put(struct kvm_vcpu *vcpu)
+{
+ struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
+
+ WARN_ON(vgic_v4_put(vcpu, false));
+
+ vgic_v3_vmcr_sync(vcpu);
+
+ kvm_call_hyp(__vgic_v3_save_aprs, kern_hyp_va(cpu_if));
+
+ if (has_vhe())
+ __vgic_v3_deactivate_traps(cpu_if);
+}
diff --git a/arch/arm64/kvm/vgic/vgic-v4.c b/arch/arm64/kvm/vgic/vgic-v4.c
new file mode 100644
index 000000000000..27ac833e5ec7
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-v4.c
@@ -0,0 +1,453 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2017 ARM Ltd.
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <linux/interrupt.h>
+#include <linux/irq.h>
+#include <linux/irqdomain.h>
+#include <linux/kvm_host.h>
+#include <linux/irqchip/arm-gic-v3.h>
+
+#include "vgic.h"
+
+/*
+ * How KVM uses GICv4 (insert rude comments here):
+ *
+ * The vgic-v4 layer acts as a bridge between several entities:
+ * - The GICv4 ITS representation offered by the ITS driver
+ * - VFIO, which is in charge of the PCI endpoint
+ * - The virtual ITS, which is the only thing the guest sees
+ *
+ * The configuration of VLPIs is triggered by a callback from VFIO,
+ * instructing KVM that a PCI device has been configured to deliver
+ * MSIs to a vITS.
+ *
+ * kvm_vgic_v4_set_forwarding() is thus called with the routing entry,
+ * and this is used to find the corresponding vITS data structures
+ * (ITS instance, device, event and irq) using a process that is
+ * extremely similar to the injection of an MSI.
+ *
+ * At this stage, we can link the guest's view of an LPI (uniquely
+ * identified by the routing entry) and the host irq, using the GICv4
+ * driver mapping operation. Should the mapping succeed, we've then
+ * successfully upgraded the guest's LPI to a VLPI. We can then start
+ * with updating GICv4's view of the property table and generating an
+ * INValidation in order to kickstart the delivery of this VLPI to the
+ * guest directly, without software intervention. Well, almost.
+ *
+ * When the PCI endpoint is deconfigured, this operation is reversed
+ * with VFIO calling kvm_vgic_v4_unset_forwarding().
+ *
+ * Once the VLPI has been mapped, it needs to follow any change the
+ * guest performs on its LPI through the vITS. For that, a number of
+ * command handlers have hooks to communicate these changes to the HW:
+ * - Any invalidation triggers a call to its_prop_update_vlpi()
+ * - The INT command results in a irq_set_irqchip_state(), which
+ * generates an INT on the corresponding VLPI.
+ * - The CLEAR command results in a irq_set_irqchip_state(), which
+ * generates an CLEAR on the corresponding VLPI.
+ * - DISCARD translates into an unmap, similar to a call to
+ * kvm_vgic_v4_unset_forwarding().
+ * - MOVI is translated by an update of the existing mapping, changing
+ * the target vcpu, resulting in a VMOVI being generated.
+ * - MOVALL is translated by a string of mapping updates (similar to
+ * the handling of MOVI). MOVALL is horrible.
+ *
+ * Note that a DISCARD/MAPTI sequence emitted from the guest without
+ * reprogramming the PCI endpoint after MAPTI does not result in a
+ * VLPI being mapped, as there is no callback from VFIO (the guest
+ * will get the interrupt via the normal SW injection). Fixing this is
+ * not trivial, and requires some horrible messing with the VFIO
+ * internals. Not fun. Don't do that.
+ *
+ * Then there is the scheduling. Each time a vcpu is about to run on a
+ * physical CPU, KVM must tell the corresponding redistributor about
+ * it. And if we've migrated our vcpu from one CPU to another, we must
+ * tell the ITS (so that the messages reach the right redistributor).
+ * This is done in two steps: first issue a irq_set_affinity() on the
+ * irq corresponding to the vcpu, then call its_make_vpe_resident().
+ * You must be in a non-preemptible context. On exit, a call to
+ * its_make_vpe_non_resident() tells the redistributor that we're done
+ * with the vcpu.
+ *
+ * Finally, the doorbell handling: Each vcpu is allocated an interrupt
+ * which will fire each time a VLPI is made pending whilst the vcpu is
+ * not running. Each time the vcpu gets blocked, the doorbell
+ * interrupt gets enabled. When the vcpu is unblocked (for whatever
+ * reason), the doorbell interrupt is disabled.
+ */
+
+#define DB_IRQ_FLAGS (IRQ_NOAUTOEN | IRQ_DISABLE_UNLAZY | IRQ_NO_BALANCING)
+
+static irqreturn_t vgic_v4_doorbell_handler(int irq, void *info)
+{
+ struct kvm_vcpu *vcpu = info;
+
+ /* We got the message, no need to fire again */
+ if (!kvm_vgic_global_state.has_gicv4_1 &&
+ !irqd_irq_disabled(&irq_to_desc(irq)->irq_data))
+ disable_irq_nosync(irq);
+
+ vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last = true;
+ kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
+ kvm_vcpu_kick(vcpu);
+
+ return IRQ_HANDLED;
+}
+
+static void vgic_v4_sync_sgi_config(struct its_vpe *vpe, struct vgic_irq *irq)
+{
+ vpe->sgi_config[irq->intid].enabled = irq->enabled;
+ vpe->sgi_config[irq->intid].group = irq->group;
+ vpe->sgi_config[irq->intid].priority = irq->priority;
+}
+
+static void vgic_v4_enable_vsgis(struct kvm_vcpu *vcpu)
+{
+ struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
+ int i;
+
+ /*
+ * With GICv4.1, every virtual SGI can be directly injected. So
+ * let's pretend that they are HW interrupts, tied to a host
+ * IRQ. The SGI code will do its magic.
+ */
+ for (i = 0; i < VGIC_NR_SGIS; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i);
+ struct irq_desc *desc;
+ unsigned long flags;
+ int ret;
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ if (irq->hw)
+ goto unlock;
+
+ irq->hw = true;
+ irq->host_irq = irq_find_mapping(vpe->sgi_domain, i);
+
+ /* Transfer the full irq state to the vPE */
+ vgic_v4_sync_sgi_config(vpe, irq);
+ desc = irq_to_desc(irq->host_irq);
+ ret = irq_domain_activate_irq(irq_desc_get_irq_data(desc),
+ false);
+ if (!WARN_ON(ret)) {
+ /* Transfer pending state */
+ ret = irq_set_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING,
+ irq->pending_latch);
+ WARN_ON(ret);
+ irq->pending_latch = false;
+ }
+ unlock:
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+static void vgic_v4_disable_vsgis(struct kvm_vcpu *vcpu)
+{
+ int i;
+
+ for (i = 0; i < VGIC_NR_SGIS; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i);
+ struct irq_desc *desc;
+ unsigned long flags;
+ int ret;
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ if (!irq->hw)
+ goto unlock;
+
+ irq->hw = false;
+ ret = irq_get_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING,
+ &irq->pending_latch);
+ WARN_ON(ret);
+
+ desc = irq_to_desc(irq->host_irq);
+ irq_domain_deactivate_irq(irq_desc_get_irq_data(desc));
+ unlock:
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+/* Must be called with the kvm lock held */
+void vgic_v4_configure_vsgis(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct kvm_vcpu *vcpu;
+ int i;
+
+ kvm_arm_halt_guest(kvm);
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (dist->nassgireq)
+ vgic_v4_enable_vsgis(vcpu);
+ else
+ vgic_v4_disable_vsgis(vcpu);
+ }
+
+ kvm_arm_resume_guest(kvm);
+}
+
+/**
+ * vgic_v4_init - Initialize the GICv4 data structures
+ * @kvm: Pointer to the VM being initialized
+ *
+ * We may be called each time a vITS is created, or when the
+ * vgic is initialized. This relies on kvm->lock to be
+ * held. In both cases, the number of vcpus should now be
+ * fixed.
+ */
+int vgic_v4_init(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct kvm_vcpu *vcpu;
+ int i, nr_vcpus, ret;
+
+ if (!kvm_vgic_global_state.has_gicv4)
+ return 0; /* Nothing to see here... move along. */
+
+ if (dist->its_vm.vpes)
+ return 0;
+
+ nr_vcpus = atomic_read(&kvm->online_vcpus);
+
+ dist->its_vm.vpes = kcalloc(nr_vcpus, sizeof(*dist->its_vm.vpes),
+ GFP_KERNEL);
+ if (!dist->its_vm.vpes)
+ return -ENOMEM;
+
+ dist->its_vm.nr_vpes = nr_vcpus;
+
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ dist->its_vm.vpes[i] = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
+
+ ret = its_alloc_vcpu_irqs(&dist->its_vm);
+ if (ret < 0) {
+ kvm_err("VPE IRQ allocation failure\n");
+ kfree(dist->its_vm.vpes);
+ dist->its_vm.nr_vpes = 0;
+ dist->its_vm.vpes = NULL;
+ return ret;
+ }
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ int irq = dist->its_vm.vpes[i]->irq;
+ unsigned long irq_flags = DB_IRQ_FLAGS;
+
+ /*
+ * Don't automatically enable the doorbell, as we're
+ * flipping it back and forth when the vcpu gets
+ * blocked. Also disable the lazy disabling, as the
+ * doorbell could kick us out of the guest too
+ * early...
+ *
+ * On GICv4.1, the doorbell is managed in HW and must
+ * be left enabled.
+ */
+ if (kvm_vgic_global_state.has_gicv4_1)
+ irq_flags &= ~IRQ_NOAUTOEN;
+ irq_set_status_flags(irq, irq_flags);
+
+ ret = request_irq(irq, vgic_v4_doorbell_handler,
+ 0, "vcpu", vcpu);
+ if (ret) {
+ kvm_err("failed to allocate vcpu IRQ%d\n", irq);
+ /*
+ * Trick: adjust the number of vpes so we know
+ * how many to nuke on teardown...
+ */
+ dist->its_vm.nr_vpes = i;
+ break;
+ }
+ }
+
+ if (ret)
+ vgic_v4_teardown(kvm);
+
+ return ret;
+}
+
+/**
+ * vgic_v4_teardown - Free the GICv4 data structures
+ * @kvm: Pointer to the VM being destroyed
+ *
+ * Relies on kvm->lock to be held.
+ */
+void vgic_v4_teardown(struct kvm *kvm)
+{
+ struct its_vm *its_vm = &kvm->arch.vgic.its_vm;
+ int i;
+
+ if (!its_vm->vpes)
+ return;
+
+ for (i = 0; i < its_vm->nr_vpes; i++) {
+ struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, i);
+ int irq = its_vm->vpes[i]->irq;
+
+ irq_clear_status_flags(irq, DB_IRQ_FLAGS);
+ free_irq(irq, vcpu);
+ }
+
+ its_free_vcpu_irqs(its_vm);
+ kfree(its_vm->vpes);
+ its_vm->nr_vpes = 0;
+ its_vm->vpes = NULL;
+}
+
+int vgic_v4_put(struct kvm_vcpu *vcpu, bool need_db)
+{
+ struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
+
+ if (!vgic_supports_direct_msis(vcpu->kvm) || !vpe->resident)
+ return 0;
+
+ return its_make_vpe_non_resident(vpe, need_db);
+}
+
+int vgic_v4_load(struct kvm_vcpu *vcpu)
+{
+ struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
+ int err;
+
+ if (!vgic_supports_direct_msis(vcpu->kvm) || vpe->resident)
+ return 0;
+
+ /*
+ * Before making the VPE resident, make sure the redistributor
+ * corresponding to our current CPU expects us here. See the
+ * doc in drivers/irqchip/irq-gic-v4.c to understand how this
+ * turns into a VMOVP command at the ITS level.
+ */
+ err = irq_set_affinity(vpe->irq, cpumask_of(smp_processor_id()));
+ if (err)
+ return err;
+
+ err = its_make_vpe_resident(vpe, false, vcpu->kvm->arch.vgic.enabled);
+ if (err)
+ return err;
+
+ /*
+ * Now that the VPE is resident, let's get rid of a potential
+ * doorbell interrupt that would still be pending. This is a
+ * GICv4.0 only "feature"...
+ */
+ if (!kvm_vgic_global_state.has_gicv4_1)
+ err = irq_set_irqchip_state(vpe->irq, IRQCHIP_STATE_PENDING, false);
+
+ return err;
+}
+
+static struct vgic_its *vgic_get_its(struct kvm *kvm,
+ struct kvm_kernel_irq_routing_entry *irq_entry)
+{
+ struct kvm_msi msi = (struct kvm_msi) {
+ .address_lo = irq_entry->msi.address_lo,
+ .address_hi = irq_entry->msi.address_hi,
+ .data = irq_entry->msi.data,
+ .flags = irq_entry->msi.flags,
+ .devid = irq_entry->msi.devid,
+ };
+
+ return vgic_msi_to_its(kvm, &msi);
+}
+
+int kvm_vgic_v4_set_forwarding(struct kvm *kvm, int virq,
+ struct kvm_kernel_irq_routing_entry *irq_entry)
+{
+ struct vgic_its *its;
+ struct vgic_irq *irq;
+ struct its_vlpi_map map;
+ int ret;
+
+ if (!vgic_supports_direct_msis(kvm))
+ return 0;
+
+ /*
+ * Get the ITS, and escape early on error (not a valid
+ * doorbell for any of our vITSs).
+ */
+ its = vgic_get_its(kvm, irq_entry);
+ if (IS_ERR(its))
+ return 0;
+
+ mutex_lock(&its->its_lock);
+
+ /* Perform the actual DevID/EventID -> LPI translation. */
+ ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
+ irq_entry->msi.data, &irq);
+ if (ret)
+ goto out;
+
+ /*
+ * Emit the mapping request. If it fails, the ITS probably
+ * isn't v4 compatible, so let's silently bail out. Holding
+ * the ITS lock should ensure that nothing can modify the
+ * target vcpu.
+ */
+ map = (struct its_vlpi_map) {
+ .vm = &kvm->arch.vgic.its_vm,
+ .vpe = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe,
+ .vintid = irq->intid,
+ .properties = ((irq->priority & 0xfc) |
+ (irq->enabled ? LPI_PROP_ENABLED : 0) |
+ LPI_PROP_GROUP1),
+ .db_enabled = true,
+ };
+
+ ret = its_map_vlpi(virq, &map);
+ if (ret)
+ goto out;
+
+ irq->hw = true;
+ irq->host_irq = virq;
+ atomic_inc(&map.vpe->vlpi_count);
+
+out:
+ mutex_unlock(&its->its_lock);
+ return ret;
+}
+
+int kvm_vgic_v4_unset_forwarding(struct kvm *kvm, int virq,
+ struct kvm_kernel_irq_routing_entry *irq_entry)
+{
+ struct vgic_its *its;
+ struct vgic_irq *irq;
+ int ret;
+
+ if (!vgic_supports_direct_msis(kvm))
+ return 0;
+
+ /*
+ * Get the ITS, and escape early on error (not a valid
+ * doorbell for any of our vITSs).
+ */
+ its = vgic_get_its(kvm, irq_entry);
+ if (IS_ERR(its))
+ return 0;
+
+ mutex_lock(&its->its_lock);
+
+ ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
+ irq_entry->msi.data, &irq);
+ if (ret)
+ goto out;
+
+ WARN_ON(!(irq->hw && irq->host_irq == virq));
+ if (irq->hw) {
+ atomic_dec(&irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count);
+ irq->hw = false;
+ ret = its_unmap_vlpi(virq);
+ }
+
+out:
+ mutex_unlock(&its->its_lock);
+ return ret;
+}
diff --git a/arch/arm64/kvm/vgic/vgic.c b/arch/arm64/kvm/vgic/vgic.c
new file mode 100644
index 000000000000..c3643b7f101b
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic.c
@@ -0,0 +1,1020 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2015, 2016 ARM Ltd.
+ */
+
+#include <linux/interrupt.h>
+#include <linux/irq.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/list_sort.h>
+#include <linux/nospec.h>
+
+#include <asm/kvm_hyp.h>
+
+#include "vgic.h"
+
+#define CREATE_TRACE_POINTS
+#include "trace.h"
+
+struct vgic_global kvm_vgic_global_state __ro_after_init = {
+ .gicv3_cpuif = STATIC_KEY_FALSE_INIT,
+};
+
+/*
+ * Locking order is always:
+ * kvm->lock (mutex)
+ * its->cmd_lock (mutex)
+ * its->its_lock (mutex)
+ * vgic_cpu->ap_list_lock must be taken with IRQs disabled
+ * kvm->lpi_list_lock must be taken with IRQs disabled
+ * vgic_irq->irq_lock must be taken with IRQs disabled
+ *
+ * As the ap_list_lock might be taken from the timer interrupt handler,
+ * we have to disable IRQs before taking this lock and everything lower
+ * than it.
+ *
+ * If you need to take multiple locks, always take the upper lock first,
+ * then the lower ones, e.g. first take the its_lock, then the irq_lock.
+ * If you are already holding a lock and need to take a higher one, you
+ * have to drop the lower ranking lock first and re-aquire it after having
+ * taken the upper one.
+ *
+ * When taking more than one ap_list_lock at the same time, always take the
+ * lowest numbered VCPU's ap_list_lock first, so:
+ * vcpuX->vcpu_id < vcpuY->vcpu_id:
+ * raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
+ * raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
+ *
+ * Since the VGIC must support injecting virtual interrupts from ISRs, we have
+ * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
+ * spinlocks for any lock that may be taken while injecting an interrupt.
+ */
+
+/*
+ * Iterate over the VM's list of mapped LPIs to find the one with a
+ * matching interrupt ID and return a reference to the IRQ structure.
+ */
+static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct vgic_irq *irq = NULL;
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
+
+ list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
+ if (irq->intid != intid)
+ continue;
+
+ /*
+ * This increases the refcount, the caller is expected to
+ * call vgic_put_irq() later once it's finished with the IRQ.
+ */
+ vgic_get_irq_kref(irq);
+ goto out_unlock;
+ }
+ irq = NULL;
+
+out_unlock:
+ raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
+
+ return irq;
+}
+
+/*
+ * This looks up the virtual interrupt ID to get the corresponding
+ * struct vgic_irq. It also increases the refcount, so any caller is expected
+ * to call vgic_put_irq() once it's finished with this IRQ.
+ */
+struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
+ u32 intid)
+{
+ /* SGIs and PPIs */
+ if (intid <= VGIC_MAX_PRIVATE) {
+ intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1);
+ return &vcpu->arch.vgic_cpu.private_irqs[intid];
+ }
+
+ /* SPIs */
+ if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
+ intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
+ return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
+ }
+
+ /* LPIs */
+ if (intid >= VGIC_MIN_LPI)
+ return vgic_get_lpi(kvm, intid);
+
+ WARN(1, "Looking up struct vgic_irq for reserved INTID");
+ return NULL;
+}
+
+/*
+ * We can't do anything in here, because we lack the kvm pointer to
+ * lock and remove the item from the lpi_list. So we keep this function
+ * empty and use the return value of kref_put() to trigger the freeing.
+ */
+static void vgic_irq_release(struct kref *ref)
+{
+}
+
+/*
+ * Drop the refcount on the LPI. Must be called with lpi_list_lock held.
+ */
+void __vgic_put_lpi_locked(struct kvm *kvm, struct vgic_irq *irq)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+
+ if (!kref_put(&irq->refcount, vgic_irq_release))
+ return;
+
+ list_del(&irq->lpi_list);
+ dist->lpi_list_count--;
+
+ kfree(irq);
+}
+
+void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ unsigned long flags;
+
+ if (irq->intid < VGIC_MIN_LPI)
+ return;
+
+ raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
+ __vgic_put_lpi_locked(kvm, irq);
+ raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
+}
+
+void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ struct vgic_irq *irq, *tmp;
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
+
+ list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
+ if (irq->intid >= VGIC_MIN_LPI) {
+ raw_spin_lock(&irq->irq_lock);
+ list_del(&irq->ap_list);
+ irq->vcpu = NULL;
+ raw_spin_unlock(&irq->irq_lock);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+ }
+
+ raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
+}
+
+void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
+{
+ WARN_ON(irq_set_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING,
+ pending));
+}
+
+bool vgic_get_phys_line_level(struct vgic_irq *irq)
+{
+ bool line_level;
+
+ BUG_ON(!irq->hw);
+
+ if (irq->get_input_level)
+ return irq->get_input_level(irq->intid);
+
+ WARN_ON(irq_get_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING,
+ &line_level));
+ return line_level;
+}
+
+/* Set/Clear the physical active state */
+void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
+{
+
+ BUG_ON(!irq->hw);
+ WARN_ON(irq_set_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_ACTIVE,
+ active));
+}
+
+/**
+ * kvm_vgic_target_oracle - compute the target vcpu for an irq
+ *
+ * @irq: The irq to route. Must be already locked.
+ *
+ * Based on the current state of the interrupt (enabled, pending,
+ * active, vcpu and target_vcpu), compute the next vcpu this should be
+ * given to. Return NULL if this shouldn't be injected at all.
+ *
+ * Requires the IRQ lock to be held.
+ */
+static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
+{
+ lockdep_assert_held(&irq->irq_lock);
+
+ /* If the interrupt is active, it must stay on the current vcpu */
+ if (irq->active)
+ return irq->vcpu ? : irq->target_vcpu;
+
+ /*
+ * If the IRQ is not active but enabled and pending, we should direct
+ * it to its configured target VCPU.
+ * If the distributor is disabled, pending interrupts shouldn't be
+ * forwarded.
+ */
+ if (irq->enabled && irq_is_pending(irq)) {
+ if (unlikely(irq->target_vcpu &&
+ !irq->target_vcpu->kvm->arch.vgic.enabled))
+ return NULL;
+
+ return irq->target_vcpu;
+ }
+
+ /* If neither active nor pending and enabled, then this IRQ should not
+ * be queued to any VCPU.
+ */
+ return NULL;
+}
+
+/*
+ * The order of items in the ap_lists defines how we'll pack things in LRs as
+ * well, the first items in the list being the first things populated in the
+ * LRs.
+ *
+ * A hard rule is that active interrupts can never be pushed out of the LRs
+ * (and therefore take priority) since we cannot reliably trap on deactivation
+ * of IRQs and therefore they have to be present in the LRs.
+ *
+ * Otherwise things should be sorted by the priority field and the GIC
+ * hardware support will take care of preemption of priority groups etc.
+ *
+ * Return negative if "a" sorts before "b", 0 to preserve order, and positive
+ * to sort "b" before "a".
+ */
+static int vgic_irq_cmp(void *priv, struct list_head *a, struct list_head *b)
+{
+ struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
+ struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
+ bool penda, pendb;
+ int ret;
+
+ /*
+ * list_sort may call this function with the same element when
+ * the list is fairly long.
+ */
+ if (unlikely(irqa == irqb))
+ return 0;
+
+ raw_spin_lock(&irqa->irq_lock);
+ raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
+
+ if (irqa->active || irqb->active) {
+ ret = (int)irqb->active - (int)irqa->active;
+ goto out;
+ }
+
+ penda = irqa->enabled && irq_is_pending(irqa);
+ pendb = irqb->enabled && irq_is_pending(irqb);
+
+ if (!penda || !pendb) {
+ ret = (int)pendb - (int)penda;
+ goto out;
+ }
+
+ /* Both pending and enabled, sort by priority */
+ ret = irqa->priority - irqb->priority;
+out:
+ raw_spin_unlock(&irqb->irq_lock);
+ raw_spin_unlock(&irqa->irq_lock);
+ return ret;
+}
+
+/* Must be called with the ap_list_lock held */
+static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+
+ lockdep_assert_held(&vgic_cpu->ap_list_lock);
+
+ list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
+}
+
+/*
+ * Only valid injection if changing level for level-triggered IRQs or for a
+ * rising edge, and in-kernel connected IRQ lines can only be controlled by
+ * their owner.
+ */
+static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
+{
+ if (irq->owner != owner)
+ return false;
+
+ switch (irq->config) {
+ case VGIC_CONFIG_LEVEL:
+ return irq->line_level != level;
+ case VGIC_CONFIG_EDGE:
+ return level;
+ }
+
+ return false;
+}
+
+/*
+ * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
+ * Do the queuing if necessary, taking the right locks in the right order.
+ * Returns true when the IRQ was queued, false otherwise.
+ *
+ * Needs to be entered with the IRQ lock already held, but will return
+ * with all locks dropped.
+ */
+bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
+ unsigned long flags)
+{
+ struct kvm_vcpu *vcpu;
+
+ lockdep_assert_held(&irq->irq_lock);
+
+retry:
+ vcpu = vgic_target_oracle(irq);
+ if (irq->vcpu || !vcpu) {
+ /*
+ * If this IRQ is already on a VCPU's ap_list, then it
+ * cannot be moved or modified and there is no more work for
+ * us to do.
+ *
+ * Otherwise, if the irq is not pending and enabled, it does
+ * not need to be inserted into an ap_list and there is also
+ * no more work for us to do.
+ */
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ /*
+ * We have to kick the VCPU here, because we could be
+ * queueing an edge-triggered interrupt for which we
+ * get no EOI maintenance interrupt. In that case,
+ * while the IRQ is already on the VCPU's AP list, the
+ * VCPU could have EOI'ed the original interrupt and
+ * won't see this one until it exits for some other
+ * reason.
+ */
+ if (vcpu) {
+ kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
+ kvm_vcpu_kick(vcpu);
+ }
+ return false;
+ }
+
+ /*
+ * We must unlock the irq lock to take the ap_list_lock where
+ * we are going to insert this new pending interrupt.
+ */
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ /* someone can do stuff here, which we re-check below */
+
+ raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
+ raw_spin_lock(&irq->irq_lock);
+
+ /*
+ * Did something change behind our backs?
+ *
+ * There are two cases:
+ * 1) The irq lost its pending state or was disabled behind our
+ * backs and/or it was queued to another VCPU's ap_list.
+ * 2) Someone changed the affinity on this irq behind our
+ * backs and we are now holding the wrong ap_list_lock.
+ *
+ * In both cases, drop the locks and retry.
+ */
+
+ if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
+ raw_spin_unlock(&irq->irq_lock);
+ raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
+ flags);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ goto retry;
+ }
+
+ /*
+ * Grab a reference to the irq to reflect the fact that it is
+ * now in the ap_list.
+ */
+ vgic_get_irq_kref(irq);
+ list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
+ irq->vcpu = vcpu;
+
+ raw_spin_unlock(&irq->irq_lock);
+ raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
+
+ kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
+ kvm_vcpu_kick(vcpu);
+
+ return true;
+}
+
+/**
+ * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
+ * @kvm: The VM structure pointer
+ * @cpuid: The CPU for PPIs
+ * @intid: The INTID to inject a new state to.
+ * @level: Edge-triggered: true: to trigger the interrupt
+ * false: to ignore the call
+ * Level-sensitive true: raise the input signal
+ * false: lower the input signal
+ * @owner: The opaque pointer to the owner of the IRQ being raised to verify
+ * that the caller is allowed to inject this IRQ. Userspace
+ * injections will have owner == NULL.
+ *
+ * The VGIC is not concerned with devices being active-LOW or active-HIGH for
+ * level-sensitive interrupts. You can think of the level parameter as 1
+ * being HIGH and 0 being LOW and all devices being active-HIGH.
+ */
+int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
+ bool level, void *owner)
+{
+ struct kvm_vcpu *vcpu;
+ struct vgic_irq *irq;
+ unsigned long flags;
+ int ret;
+
+ trace_vgic_update_irq_pending(cpuid, intid, level);
+
+ ret = vgic_lazy_init(kvm);
+ if (ret)
+ return ret;
+
+ vcpu = kvm_get_vcpu(kvm, cpuid);
+ if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
+ return -EINVAL;
+
+ irq = vgic_get_irq(kvm, vcpu, intid);
+ if (!irq)
+ return -EINVAL;
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ if (!vgic_validate_injection(irq, level, owner)) {
+ /* Nothing to see here, move along... */
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(kvm, irq);
+ return 0;
+ }
+
+ if (irq->config == VGIC_CONFIG_LEVEL)
+ irq->line_level = level;
+ else
+ irq->pending_latch = true;
+
+ vgic_queue_irq_unlock(kvm, irq, flags);
+ vgic_put_irq(kvm, irq);
+
+ return 0;
+}
+
+/* @irq->irq_lock must be held */
+static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
+ unsigned int host_irq,
+ bool (*get_input_level)(int vindid))
+{
+ struct irq_desc *desc;
+ struct irq_data *data;
+
+ /*
+ * Find the physical IRQ number corresponding to @host_irq
+ */
+ desc = irq_to_desc(host_irq);
+ if (!desc) {
+ kvm_err("%s: no interrupt descriptor\n", __func__);
+ return -EINVAL;
+ }
+ data = irq_desc_get_irq_data(desc);
+ while (data->parent_data)
+ data = data->parent_data;
+
+ irq->hw = true;
+ irq->host_irq = host_irq;
+ irq->hwintid = data->hwirq;
+ irq->get_input_level = get_input_level;
+ return 0;
+}
+
+/* @irq->irq_lock must be held */
+static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
+{
+ irq->hw = false;
+ irq->hwintid = 0;
+ irq->get_input_level = NULL;
+}
+
+int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
+ u32 vintid, bool (*get_input_level)(int vindid))
+{
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
+ unsigned long flags;
+ int ret;
+
+ BUG_ON(!irq);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ ret = kvm_vgic_map_irq(vcpu, irq, host_irq, get_input_level);
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+
+ return ret;
+}
+
+/**
+ * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
+ * @vcpu: The VCPU pointer
+ * @vintid: The INTID of the interrupt
+ *
+ * Reset the active and pending states of a mapped interrupt. Kernel
+ * subsystems injecting mapped interrupts should reset their interrupt lines
+ * when we are doing a reset of the VM.
+ */
+void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
+{
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
+ unsigned long flags;
+
+ if (!irq->hw)
+ goto out;
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ irq->active = false;
+ irq->pending_latch = false;
+ irq->line_level = false;
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+out:
+ vgic_put_irq(vcpu->kvm, irq);
+}
+
+int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
+{
+ struct vgic_irq *irq;
+ unsigned long flags;
+
+ if (!vgic_initialized(vcpu->kvm))
+ return -EAGAIN;
+
+ irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
+ BUG_ON(!irq);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ kvm_vgic_unmap_irq(irq);
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+
+ return 0;
+}
+
+/**
+ * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
+ *
+ * @vcpu: Pointer to the VCPU (used for PPIs)
+ * @intid: The virtual INTID identifying the interrupt (PPI or SPI)
+ * @owner: Opaque pointer to the owner
+ *
+ * Returns 0 if intid is not already used by another in-kernel device and the
+ * owner is set, otherwise returns an error code.
+ */
+int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
+{
+ struct vgic_irq *irq;
+ unsigned long flags;
+ int ret = 0;
+
+ if (!vgic_initialized(vcpu->kvm))
+ return -EAGAIN;
+
+ /* SGIs and LPIs cannot be wired up to any device */
+ if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
+ return -EINVAL;
+
+ irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ if (irq->owner && irq->owner != owner)
+ ret = -EEXIST;
+ else
+ irq->owner = owner;
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ return ret;
+}
+
+/**
+ * vgic_prune_ap_list - Remove non-relevant interrupts from the list
+ *
+ * @vcpu: The VCPU pointer
+ *
+ * Go over the list of "interesting" interrupts, and prune those that we
+ * won't have to consider in the near future.
+ */
+static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ struct vgic_irq *irq, *tmp;
+
+ DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
+
+retry:
+ raw_spin_lock(&vgic_cpu->ap_list_lock);
+
+ list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
+ struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
+ bool target_vcpu_needs_kick = false;
+
+ raw_spin_lock(&irq->irq_lock);
+
+ BUG_ON(vcpu != irq->vcpu);
+
+ target_vcpu = vgic_target_oracle(irq);
+
+ if (!target_vcpu) {
+ /*
+ * We don't need to process this interrupt any
+ * further, move it off the list.
+ */
+ list_del(&irq->ap_list);
+ irq->vcpu = NULL;
+ raw_spin_unlock(&irq->irq_lock);
+
+ /*
+ * This vgic_put_irq call matches the
+ * vgic_get_irq_kref in vgic_queue_irq_unlock,
+ * where we added the LPI to the ap_list. As
+ * we remove the irq from the list, we drop
+ * also drop the refcount.
+ */
+ vgic_put_irq(vcpu->kvm, irq);
+ continue;
+ }
+
+ if (target_vcpu == vcpu) {
+ /* We're on the right CPU */
+ raw_spin_unlock(&irq->irq_lock);
+ continue;
+ }
+
+ /* This interrupt looks like it has to be migrated. */
+
+ raw_spin_unlock(&irq->irq_lock);
+ raw_spin_unlock(&vgic_cpu->ap_list_lock);
+
+ /*
+ * Ensure locking order by always locking the smallest
+ * ID first.
+ */
+ if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
+ vcpuA = vcpu;
+ vcpuB = target_vcpu;
+ } else {
+ vcpuA = target_vcpu;
+ vcpuB = vcpu;
+ }
+
+ raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
+ raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
+ SINGLE_DEPTH_NESTING);
+ raw_spin_lock(&irq->irq_lock);
+
+ /*
+ * If the affinity has been preserved, move the
+ * interrupt around. Otherwise, it means things have
+ * changed while the interrupt was unlocked, and we
+ * need to replay this.
+ *
+ * In all cases, we cannot trust the list not to have
+ * changed, so we restart from the beginning.
+ */
+ if (target_vcpu == vgic_target_oracle(irq)) {
+ struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
+
+ list_del(&irq->ap_list);
+ irq->vcpu = target_vcpu;
+ list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
+ target_vcpu_needs_kick = true;
+ }
+
+ raw_spin_unlock(&irq->irq_lock);
+ raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
+ raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
+
+ if (target_vcpu_needs_kick) {
+ kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
+ kvm_vcpu_kick(target_vcpu);
+ }
+
+ goto retry;
+ }
+
+ raw_spin_unlock(&vgic_cpu->ap_list_lock);
+}
+
+static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
+{
+ if (kvm_vgic_global_state.type == VGIC_V2)
+ vgic_v2_fold_lr_state(vcpu);
+ else
+ vgic_v3_fold_lr_state(vcpu);
+}
+
+/* Requires the irq_lock to be held. */
+static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
+ struct vgic_irq *irq, int lr)
+{
+ lockdep_assert_held(&irq->irq_lock);
+
+ if (kvm_vgic_global_state.type == VGIC_V2)
+ vgic_v2_populate_lr(vcpu, irq, lr);
+ else
+ vgic_v3_populate_lr(vcpu, irq, lr);
+}
+
+static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
+{
+ if (kvm_vgic_global_state.type == VGIC_V2)
+ vgic_v2_clear_lr(vcpu, lr);
+ else
+ vgic_v3_clear_lr(vcpu, lr);
+}
+
+static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
+{
+ if (kvm_vgic_global_state.type == VGIC_V2)
+ vgic_v2_set_underflow(vcpu);
+ else
+ vgic_v3_set_underflow(vcpu);
+}
+
+/* Requires the ap_list_lock to be held. */
+static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
+ bool *multi_sgi)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ struct vgic_irq *irq;
+ int count = 0;
+
+ *multi_sgi = false;
+
+ lockdep_assert_held(&vgic_cpu->ap_list_lock);
+
+ list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
+ int w;
+
+ raw_spin_lock(&irq->irq_lock);
+ /* GICv2 SGIs can count for more than one... */
+ w = vgic_irq_get_lr_count(irq);
+ raw_spin_unlock(&irq->irq_lock);
+
+ count += w;
+ *multi_sgi |= (w > 1);
+ }
+ return count;
+}
+
+/* Requires the VCPU's ap_list_lock to be held. */
+static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ struct vgic_irq *irq;
+ int count;
+ bool multi_sgi;
+ u8 prio = 0xff;
+ int i = 0;
+
+ lockdep_assert_held(&vgic_cpu->ap_list_lock);
+
+ count = compute_ap_list_depth(vcpu, &multi_sgi);
+ if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
+ vgic_sort_ap_list(vcpu);
+
+ count = 0;
+
+ list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
+ raw_spin_lock(&irq->irq_lock);
+
+ /*
+ * If we have multi-SGIs in the pipeline, we need to
+ * guarantee that they are all seen before any IRQ of
+ * lower priority. In that case, we need to filter out
+ * these interrupts by exiting early. This is easy as
+ * the AP list has been sorted already.
+ */
+ if (multi_sgi && irq->priority > prio) {
+ _raw_spin_unlock(&irq->irq_lock);
+ break;
+ }
+
+ if (likely(vgic_target_oracle(irq) == vcpu)) {
+ vgic_populate_lr(vcpu, irq, count++);
+
+ if (irq->source)
+ prio = irq->priority;
+ }
+
+ raw_spin_unlock(&irq->irq_lock);
+
+ if (count == kvm_vgic_global_state.nr_lr) {
+ if (!list_is_last(&irq->ap_list,
+ &vgic_cpu->ap_list_head))
+ vgic_set_underflow(vcpu);
+ break;
+ }
+ }
+
+ /* Nuke remaining LRs */
+ for (i = count ; i < kvm_vgic_global_state.nr_lr; i++)
+ vgic_clear_lr(vcpu, i);
+
+ if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
+ vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count;
+ else
+ vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count;
+}
+
+static inline bool can_access_vgic_from_kernel(void)
+{
+ /*
+ * GICv2 can always be accessed from the kernel because it is
+ * memory-mapped, and VHE systems can access GICv3 EL2 system
+ * registers.
+ */
+ return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
+}
+
+static inline void vgic_save_state(struct kvm_vcpu *vcpu)
+{
+ if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
+ vgic_v2_save_state(vcpu);
+ else
+ __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
+}
+
+/* Sync back the hardware VGIC state into our emulation after a guest's run. */
+void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
+{
+ int used_lrs;
+
+ /* An empty ap_list_head implies used_lrs == 0 */
+ if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
+ return;
+
+ if (can_access_vgic_from_kernel())
+ vgic_save_state(vcpu);
+
+ if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
+ used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
+ else
+ used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
+
+ if (used_lrs)
+ vgic_fold_lr_state(vcpu);
+ vgic_prune_ap_list(vcpu);
+}
+
+static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
+{
+ if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
+ vgic_v2_restore_state(vcpu);
+ else
+ __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
+}
+
+/* Flush our emulation state into the GIC hardware before entering the guest. */
+void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
+{
+ /*
+ * If there are no virtual interrupts active or pending for this
+ * VCPU, then there is no work to do and we can bail out without
+ * taking any lock. There is a potential race with someone injecting
+ * interrupts to the VCPU, but it is a benign race as the VCPU will
+ * either observe the new interrupt before or after doing this check,
+ * and introducing additional synchronization mechanism doesn't change
+ * this.
+ *
+ * Note that we still need to go through the whole thing if anything
+ * can be directly injected (GICv4).
+ */
+ if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) &&
+ !vgic_supports_direct_msis(vcpu->kvm))
+ return;
+
+ DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
+
+ if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) {
+ raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
+ vgic_flush_lr_state(vcpu);
+ raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
+ }
+
+ if (can_access_vgic_from_kernel())
+ vgic_restore_state(vcpu);
+}
+
+void kvm_vgic_load(struct kvm_vcpu *vcpu)
+{
+ if (unlikely(!vgic_initialized(vcpu->kvm)))
+ return;
+
+ if (kvm_vgic_global_state.type == VGIC_V2)
+ vgic_v2_load(vcpu);
+ else
+ vgic_v3_load(vcpu);
+}
+
+void kvm_vgic_put(struct kvm_vcpu *vcpu)
+{
+ if (unlikely(!vgic_initialized(vcpu->kvm)))
+ return;
+
+ if (kvm_vgic_global_state.type == VGIC_V2)
+ vgic_v2_put(vcpu);
+ else
+ vgic_v3_put(vcpu);
+}
+
+void kvm_vgic_vmcr_sync(struct kvm_vcpu *vcpu)
+{
+ if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
+ return;
+
+ if (kvm_vgic_global_state.type == VGIC_V2)
+ vgic_v2_vmcr_sync(vcpu);
+ else
+ vgic_v3_vmcr_sync(vcpu);
+}
+
+int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ struct vgic_irq *irq;
+ bool pending = false;
+ unsigned long flags;
+ struct vgic_vmcr vmcr;
+
+ if (!vcpu->kvm->arch.vgic.enabled)
+ return false;
+
+ if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
+ return true;
+
+ vgic_get_vmcr(vcpu, &vmcr);
+
+ raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
+
+ list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
+ raw_spin_lock(&irq->irq_lock);
+ pending = irq_is_pending(irq) && irq->enabled &&
+ !irq->active &&
+ irq->priority < vmcr.pmr;
+ raw_spin_unlock(&irq->irq_lock);
+
+ if (pending)
+ break;
+ }
+
+ raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
+
+ return pending;
+}
+
+void vgic_kick_vcpus(struct kvm *kvm)
+{
+ struct kvm_vcpu *vcpu;
+ int c;
+
+ /*
+ * We've injected an interrupt, time to find out who deserves
+ * a good kick...
+ */
+ kvm_for_each_vcpu(c, vcpu, kvm) {
+ if (kvm_vgic_vcpu_pending_irq(vcpu)) {
+ kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
+ kvm_vcpu_kick(vcpu);
+ }
+ }
+}
+
+bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
+{
+ struct vgic_irq *irq;
+ bool map_is_active;
+ unsigned long flags;
+
+ if (!vgic_initialized(vcpu->kvm))
+ return false;
+
+ irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ map_is_active = irq->hw && irq->active;
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+
+ return map_is_active;
+}
diff --git a/arch/arm64/kvm/vgic/vgic.h b/arch/arm64/kvm/vgic/vgic.h
new file mode 100644
index 000000000000..64fcd7511110
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic.h
@@ -0,0 +1,321 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2015, 2016 ARM Ltd.
+ */
+#ifndef __KVM_ARM_VGIC_NEW_H__
+#define __KVM_ARM_VGIC_NEW_H__
+
+#include <linux/irqchip/arm-gic-common.h>
+
+#define PRODUCT_ID_KVM 0x4b /* ASCII code K */
+#define IMPLEMENTER_ARM 0x43b
+
+#define VGIC_ADDR_UNDEF (-1)
+#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
+
+#define INTERRUPT_ID_BITS_SPIS 10
+#define INTERRUPT_ID_BITS_ITS 16
+#define VGIC_PRI_BITS 5
+
+#define vgic_irq_is_sgi(intid) ((intid) < VGIC_NR_SGIS)
+
+#define VGIC_AFFINITY_0_SHIFT 0
+#define VGIC_AFFINITY_0_MASK (0xffUL << VGIC_AFFINITY_0_SHIFT)
+#define VGIC_AFFINITY_1_SHIFT 8
+#define VGIC_AFFINITY_1_MASK (0xffUL << VGIC_AFFINITY_1_SHIFT)
+#define VGIC_AFFINITY_2_SHIFT 16
+#define VGIC_AFFINITY_2_MASK (0xffUL << VGIC_AFFINITY_2_SHIFT)
+#define VGIC_AFFINITY_3_SHIFT 24
+#define VGIC_AFFINITY_3_MASK (0xffUL << VGIC_AFFINITY_3_SHIFT)
+
+#define VGIC_AFFINITY_LEVEL(reg, level) \
+ ((((reg) & VGIC_AFFINITY_## level ##_MASK) \
+ >> VGIC_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
+
+/*
+ * The Userspace encodes the affinity differently from the MPIDR,
+ * Below macro converts vgic userspace format to MPIDR reg format.
+ */
+#define VGIC_TO_MPIDR(val) (VGIC_AFFINITY_LEVEL(val, 0) | \
+ VGIC_AFFINITY_LEVEL(val, 1) | \
+ VGIC_AFFINITY_LEVEL(val, 2) | \
+ VGIC_AFFINITY_LEVEL(val, 3))
+
+/*
+ * As per Documentation/virt/kvm/devices/arm-vgic-v3.rst,
+ * below macros are defined for CPUREG encoding.
+ */
+#define KVM_REG_ARM_VGIC_SYSREG_OP0_MASK 0x000000000000c000
+#define KVM_REG_ARM_VGIC_SYSREG_OP0_SHIFT 14
+#define KVM_REG_ARM_VGIC_SYSREG_OP1_MASK 0x0000000000003800
+#define KVM_REG_ARM_VGIC_SYSREG_OP1_SHIFT 11
+#define KVM_REG_ARM_VGIC_SYSREG_CRN_MASK 0x0000000000000780
+#define KVM_REG_ARM_VGIC_SYSREG_CRN_SHIFT 7
+#define KVM_REG_ARM_VGIC_SYSREG_CRM_MASK 0x0000000000000078
+#define KVM_REG_ARM_VGIC_SYSREG_CRM_SHIFT 3
+#define KVM_REG_ARM_VGIC_SYSREG_OP2_MASK 0x0000000000000007
+#define KVM_REG_ARM_VGIC_SYSREG_OP2_SHIFT 0
+
+#define KVM_DEV_ARM_VGIC_SYSREG_MASK (KVM_REG_ARM_VGIC_SYSREG_OP0_MASK | \
+ KVM_REG_ARM_VGIC_SYSREG_OP1_MASK | \
+ KVM_REG_ARM_VGIC_SYSREG_CRN_MASK | \
+ KVM_REG_ARM_VGIC_SYSREG_CRM_MASK | \
+ KVM_REG_ARM_VGIC_SYSREG_OP2_MASK)
+
+/*
+ * As per Documentation/virt/kvm/devices/arm-vgic-its.rst,
+ * below macros are defined for ITS table entry encoding.
+ */
+#define KVM_ITS_CTE_VALID_SHIFT 63
+#define KVM_ITS_CTE_VALID_MASK BIT_ULL(63)
+#define KVM_ITS_CTE_RDBASE_SHIFT 16
+#define KVM_ITS_CTE_ICID_MASK GENMASK_ULL(15, 0)
+#define KVM_ITS_ITE_NEXT_SHIFT 48
+#define KVM_ITS_ITE_PINTID_SHIFT 16
+#define KVM_ITS_ITE_PINTID_MASK GENMASK_ULL(47, 16)
+#define KVM_ITS_ITE_ICID_MASK GENMASK_ULL(15, 0)
+#define KVM_ITS_DTE_VALID_SHIFT 63
+#define KVM_ITS_DTE_VALID_MASK BIT_ULL(63)
+#define KVM_ITS_DTE_NEXT_SHIFT 49
+#define KVM_ITS_DTE_NEXT_MASK GENMASK_ULL(62, 49)
+#define KVM_ITS_DTE_ITTADDR_SHIFT 5
+#define KVM_ITS_DTE_ITTADDR_MASK GENMASK_ULL(48, 5)
+#define KVM_ITS_DTE_SIZE_MASK GENMASK_ULL(4, 0)
+#define KVM_ITS_L1E_VALID_MASK BIT_ULL(63)
+/* we only support 64 kB translation table page size */
+#define KVM_ITS_L1E_ADDR_MASK GENMASK_ULL(51, 16)
+
+#define KVM_VGIC_V3_RDIST_INDEX_MASK GENMASK_ULL(11, 0)
+#define KVM_VGIC_V3_RDIST_FLAGS_MASK GENMASK_ULL(15, 12)
+#define KVM_VGIC_V3_RDIST_FLAGS_SHIFT 12
+#define KVM_VGIC_V3_RDIST_BASE_MASK GENMASK_ULL(51, 16)
+#define KVM_VGIC_V3_RDIST_COUNT_MASK GENMASK_ULL(63, 52)
+#define KVM_VGIC_V3_RDIST_COUNT_SHIFT 52
+
+#ifdef CONFIG_DEBUG_SPINLOCK
+#define DEBUG_SPINLOCK_BUG_ON(p) BUG_ON(p)
+#else
+#define DEBUG_SPINLOCK_BUG_ON(p)
+#endif
+
+/* Requires the irq_lock to be held by the caller. */
+static inline bool irq_is_pending(struct vgic_irq *irq)
+{
+ if (irq->config == VGIC_CONFIG_EDGE)
+ return irq->pending_latch;
+ else
+ return irq->pending_latch || irq->line_level;
+}
+
+static inline bool vgic_irq_is_mapped_level(struct vgic_irq *irq)
+{
+ return irq->config == VGIC_CONFIG_LEVEL && irq->hw;
+}
+
+static inline int vgic_irq_get_lr_count(struct vgic_irq *irq)
+{
+ /* Account for the active state as an interrupt */
+ if (vgic_irq_is_sgi(irq->intid) && irq->source)
+ return hweight8(irq->source) + irq->active;
+
+ return irq_is_pending(irq) || irq->active;
+}
+
+static inline bool vgic_irq_is_multi_sgi(struct vgic_irq *irq)
+{
+ return vgic_irq_get_lr_count(irq) > 1;
+}
+
+/*
+ * This struct provides an intermediate representation of the fields contained
+ * in the GICH_VMCR and ICH_VMCR registers, such that code exporting the GIC
+ * state to userspace can generate either GICv2 or GICv3 CPU interface
+ * registers regardless of the hardware backed GIC used.
+ */
+struct vgic_vmcr {
+ u32 grpen0;
+ u32 grpen1;
+
+ u32 ackctl;
+ u32 fiqen;
+ u32 cbpr;
+ u32 eoim;
+
+ u32 abpr;
+ u32 bpr;
+ u32 pmr; /* Priority mask field in the GICC_PMR and
+ * ICC_PMR_EL1 priority field format */
+};
+
+struct vgic_reg_attr {
+ struct kvm_vcpu *vcpu;
+ gpa_t addr;
+};
+
+int vgic_v3_parse_attr(struct kvm_device *dev, struct kvm_device_attr *attr,
+ struct vgic_reg_attr *reg_attr);
+int vgic_v2_parse_attr(struct kvm_device *dev, struct kvm_device_attr *attr,
+ struct vgic_reg_attr *reg_attr);
+const struct vgic_register_region *
+vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
+ gpa_t addr, int len);
+struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
+ u32 intid);
+void __vgic_put_lpi_locked(struct kvm *kvm, struct vgic_irq *irq);
+void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq);
+bool vgic_get_phys_line_level(struct vgic_irq *irq);
+void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending);
+void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active);
+bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
+ unsigned long flags);
+void vgic_kick_vcpus(struct kvm *kvm);
+
+int vgic_check_ioaddr(struct kvm *kvm, phys_addr_t *ioaddr,
+ phys_addr_t addr, phys_addr_t alignment);
+
+void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu);
+void vgic_v2_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr);
+void vgic_v2_clear_lr(struct kvm_vcpu *vcpu, int lr);
+void vgic_v2_set_underflow(struct kvm_vcpu *vcpu);
+void vgic_v2_set_npie(struct kvm_vcpu *vcpu);
+int vgic_v2_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr);
+int vgic_v2_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
+ int offset, u32 *val);
+int vgic_v2_cpuif_uaccess(struct kvm_vcpu *vcpu, bool is_write,
+ int offset, u32 *val);
+void vgic_v2_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
+void vgic_v2_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
+void vgic_v2_enable(struct kvm_vcpu *vcpu);
+int vgic_v2_probe(const struct gic_kvm_info *info);
+int vgic_v2_map_resources(struct kvm *kvm);
+int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
+ enum vgic_type);
+
+void vgic_v2_init_lrs(void);
+void vgic_v2_load(struct kvm_vcpu *vcpu);
+void vgic_v2_put(struct kvm_vcpu *vcpu);
+void vgic_v2_vmcr_sync(struct kvm_vcpu *vcpu);
+
+void vgic_v2_save_state(struct kvm_vcpu *vcpu);
+void vgic_v2_restore_state(struct kvm_vcpu *vcpu);
+
+static inline void vgic_get_irq_kref(struct vgic_irq *irq)
+{
+ if (irq->intid < VGIC_MIN_LPI)
+ return;
+
+ kref_get(&irq->refcount);
+}
+
+void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu);
+void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr);
+void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr);
+void vgic_v3_set_underflow(struct kvm_vcpu *vcpu);
+void vgic_v3_set_npie(struct kvm_vcpu *vcpu);
+void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
+void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
+void vgic_v3_enable(struct kvm_vcpu *vcpu);
+int vgic_v3_probe(const struct gic_kvm_info *info);
+int vgic_v3_map_resources(struct kvm *kvm);
+int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq);
+int vgic_v3_save_pending_tables(struct kvm *kvm);
+int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count);
+int vgic_register_redist_iodev(struct kvm_vcpu *vcpu);
+bool vgic_v3_check_base(struct kvm *kvm);
+
+void vgic_v3_load(struct kvm_vcpu *vcpu);
+void vgic_v3_put(struct kvm_vcpu *vcpu);
+void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu);
+
+bool vgic_has_its(struct kvm *kvm);
+int kvm_vgic_register_its_device(void);
+void vgic_enable_lpis(struct kvm_vcpu *vcpu);
+void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu);
+int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi);
+int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr);
+int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
+ int offset, u32 *val);
+int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
+ int offset, u32 *val);
+int vgic_v3_cpu_sysregs_uaccess(struct kvm_vcpu *vcpu, bool is_write,
+ u64 id, u64 *val);
+int vgic_v3_has_cpu_sysregs_attr(struct kvm_vcpu *vcpu, bool is_write, u64 id,
+ u64 *reg);
+int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
+ u32 intid, u64 *val);
+int kvm_register_vgic_device(unsigned long type);
+void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
+void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
+int vgic_lazy_init(struct kvm *kvm);
+int vgic_init(struct kvm *kvm);
+
+void vgic_debug_init(struct kvm *kvm);
+void vgic_debug_destroy(struct kvm *kvm);
+
+bool lock_all_vcpus(struct kvm *kvm);
+void unlock_all_vcpus(struct kvm *kvm);
+
+static inline int vgic_v3_max_apr_idx(struct kvm_vcpu *vcpu)
+{
+ struct vgic_cpu *cpu_if = &vcpu->arch.vgic_cpu;
+
+ /*
+ * num_pri_bits are initialized with HW supported values.
+ * We can rely safely on num_pri_bits even if VM has not
+ * restored ICC_CTLR_EL1 before restoring APnR registers.
+ */
+ switch (cpu_if->num_pri_bits) {
+ case 7: return 3;
+ case 6: return 1;
+ default: return 0;
+ }
+}
+
+static inline bool
+vgic_v3_redist_region_full(struct vgic_redist_region *region)
+{
+ if (!region->count)
+ return false;
+
+ return (region->free_index >= region->count);
+}
+
+struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rdregs);
+
+static inline size_t
+vgic_v3_rd_region_size(struct kvm *kvm, struct vgic_redist_region *rdreg)
+{
+ if (!rdreg->count)
+ return atomic_read(&kvm->online_vcpus) * KVM_VGIC_V3_REDIST_SIZE;
+ else
+ return rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
+}
+
+struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
+ u32 index);
+
+bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size);
+
+static inline bool vgic_dist_overlap(struct kvm *kvm, gpa_t base, size_t size)
+{
+ struct vgic_dist *d = &kvm->arch.vgic;
+
+ return (base + size > d->vgic_dist_base) &&
+ (base < d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE);
+}
+
+int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr);
+int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
+ u32 devid, u32 eventid, struct vgic_irq **irq);
+struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi);
+int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi);
+void vgic_lpi_translation_cache_init(struct kvm *kvm);
+void vgic_lpi_translation_cache_destroy(struct kvm *kvm);
+void vgic_its_invalidate_cache(struct kvm *kvm);
+
+bool vgic_supports_direct_msis(struct kvm *kvm);
+int vgic_v4_init(struct kvm *kvm);
+void vgic_v4_teardown(struct kvm *kvm);
+void vgic_v4_configure_vsgis(struct kvm *kvm);
+
+#endif