diff options
author | Marc Zyngier <marc.zyngier@arm.com> | 2014-12-19 16:05:31 +0000 |
---|---|---|
committer | Christoffer Dall <christoffer.dall@linaro.org> | 2015-01-29 23:24:56 +0100 |
commit | 3c1e716508335eb132c9349cb1a1716c8f7e3d2e (patch) | |
tree | 39aa2fe691caa61a34cef1ac7d09f3348249ddb5 /arch/arm/kvm/mmu.c | |
parent | f3747379accba8e95d70cec0eae0582c8c182050 (diff) | |
download | linux-3c1e716508335eb132c9349cb1a1716c8f7e3d2e.tar.bz2 |
arm/arm64: KVM: Use set/way op trapping to track the state of the caches
Trying to emulate the behaviour of set/way cache ops is fairly
pointless, as there are too many ways we can end-up missing stuff.
Also, there is some system caches out there that simply ignore
set/way operations.
So instead of trying to implement them, let's convert it to VA ops,
and use them as a way to re-enable the trapping of VM ops. That way,
we can detect the point when the MMU/caches are turned off, and do
a full VM flush (which is what the guest was trying to do anyway).
This allows a 32bit zImage to boot on the APM thingy, and will
probably help bootloaders in general.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Diffstat (limited to 'arch/arm/kvm/mmu.c')
-rw-r--r-- | arch/arm/kvm/mmu.c | 70 |
1 files changed, 69 insertions, 1 deletions
diff --git a/arch/arm/kvm/mmu.c b/arch/arm/kvm/mmu.c index 1dc9778a00af..106737e309b1 100644 --- a/arch/arm/kvm/mmu.c +++ b/arch/arm/kvm/mmu.c @@ -278,7 +278,7 @@ static void stage2_flush_memslot(struct kvm *kvm, * Go through the stage 2 page tables and invalidate any cache lines * backing memory already mapped to the VM. */ -void stage2_flush_vm(struct kvm *kvm) +static void stage2_flush_vm(struct kvm *kvm) { struct kvm_memslots *slots; struct kvm_memory_slot *memslot; @@ -1411,3 +1411,71 @@ void kvm_arch_flush_shadow_memslot(struct kvm *kvm, unmap_stage2_range(kvm, gpa, size); spin_unlock(&kvm->mmu_lock); } + +/* + * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). + * + * Main problems: + * - S/W ops are local to a CPU (not broadcast) + * - We have line migration behind our back (speculation) + * - System caches don't support S/W at all (damn!) + * + * In the face of the above, the best we can do is to try and convert + * S/W ops to VA ops. Because the guest is not allowed to infer the + * S/W to PA mapping, it can only use S/W to nuke the whole cache, + * which is a rather good thing for us. + * + * Also, it is only used when turning caches on/off ("The expected + * usage of the cache maintenance instructions that operate by set/way + * is associated with the cache maintenance instructions associated + * with the powerdown and powerup of caches, if this is required by + * the implementation."). + * + * We use the following policy: + * + * - If we trap a S/W operation, we enable VM trapping to detect + * caches being turned on/off, and do a full clean. + * + * - We flush the caches on both caches being turned on and off. + * + * - Once the caches are enabled, we stop trapping VM ops. + */ +void kvm_set_way_flush(struct kvm_vcpu *vcpu) +{ + unsigned long hcr = vcpu_get_hcr(vcpu); + + /* + * If this is the first time we do a S/W operation + * (i.e. HCR_TVM not set) flush the whole memory, and set the + * VM trapping. + * + * Otherwise, rely on the VM trapping to wait for the MMU + + * Caches to be turned off. At that point, we'll be able to + * clean the caches again. + */ + if (!(hcr & HCR_TVM)) { + trace_kvm_set_way_flush(*vcpu_pc(vcpu), + vcpu_has_cache_enabled(vcpu)); + stage2_flush_vm(vcpu->kvm); + vcpu_set_hcr(vcpu, hcr | HCR_TVM); + } +} + +void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) +{ + bool now_enabled = vcpu_has_cache_enabled(vcpu); + + /* + * If switching the MMU+caches on, need to invalidate the caches. + * If switching it off, need to clean the caches. + * Clean + invalidate does the trick always. + */ + if (now_enabled != was_enabled) + stage2_flush_vm(vcpu->kvm); + + /* Caches are now on, stop trapping VM ops (until a S/W op) */ + if (now_enabled) + vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM); + + trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); +} |