summaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
authorDavid S. Miller <davem@davemloft.net>2013-11-04 13:48:30 -0500
committerDavid S. Miller <davem@davemloft.net>2013-11-04 13:48:30 -0500
commit394efd19d5fcae936261bd48e5b33b21897aacf8 (patch)
treec48cf3ddbb07fd87309f1abdf31a27c71330e587 /Documentation
parentf421436a591d34fa5279b54a96ac07d70250cc8d (diff)
parentbe408cd3e1fef73e9408b196a79b9934697fe3b1 (diff)
downloadlinux-394efd19d5fcae936261bd48e5b33b21897aacf8.tar.bz2
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Conflicts: drivers/net/ethernet/emulex/benet/be.h drivers/net/netconsole.c net/bridge/br_private.h Three mostly trivial conflicts. The net/bridge/br_private.h conflict was a function signature (argument addition) change overlapping with the extern removals from Joe Perches. In drivers/net/netconsole.c we had one change adjusting a printk message whilst another changed "printk(KERN_INFO" into "pr_info(". Lastly, the emulex change was a new inline function addition overlapping with Joe Perches's extern removals. Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/networking/dccp.txt4
-rw-r--r--Documentation/networking/e100.txt2
-rw-r--r--Documentation/networking/ieee802154.txt4
-rw-r--r--Documentation/networking/l2tp.txt2
-rw-r--r--Documentation/networking/netdev-FAQ.txt24
-rw-r--r--Documentation/networking/netlink_mmap.txt6
-rw-r--r--Documentation/networking/operstates.txt4
-rw-r--r--Documentation/networking/rxrpc.txt2
-rw-r--r--Documentation/networking/stmmac.txt8
-rw-r--r--Documentation/networking/vortex.txt4
-rw-r--r--Documentation/networking/x25-iface.txt2
11 files changed, 31 insertions, 31 deletions
diff --git a/Documentation/networking/dccp.txt b/Documentation/networking/dccp.txt
index d718bc2ff1cf..bf5dbe3ab8c5 100644
--- a/Documentation/networking/dccp.txt
+++ b/Documentation/networking/dccp.txt
@@ -18,8 +18,8 @@ Introduction
Datagram Congestion Control Protocol (DCCP) is an unreliable, connection
oriented protocol designed to solve issues present in UDP and TCP, particularly
for real-time and multimedia (streaming) traffic.
-It divides into a base protocol (RFC 4340) and plugable congestion control
-modules called CCIDs. Like plugable TCP congestion control, at least one CCID
+It divides into a base protocol (RFC 4340) and pluggable congestion control
+modules called CCIDs. Like pluggable TCP congestion control, at least one CCID
needs to be enabled in order for the protocol to function properly. In the Linux
implementation, this is the TCP-like CCID2 (RFC 4341). Additional CCIDs, such as
the TCP-friendly CCID3 (RFC 4342), are optional.
diff --git a/Documentation/networking/e100.txt b/Documentation/networking/e100.txt
index 13a32124bca0..f862cf3aff34 100644
--- a/Documentation/networking/e100.txt
+++ b/Documentation/networking/e100.txt
@@ -103,7 +103,7 @@ Additional Configurations
PRO/100 Family of Adapters is e100.
As an example, if you install the e100 driver for two PRO/100 adapters
- (eth0 and eth1), add the following to a configuraton file in /etc/modprobe.d/
+ (eth0 and eth1), add the following to a configuration file in /etc/modprobe.d/
alias eth0 e100
alias eth1 e100
diff --git a/Documentation/networking/ieee802154.txt b/Documentation/networking/ieee802154.txt
index 09eb57329f11..22bbc7225f8e 100644
--- a/Documentation/networking/ieee802154.txt
+++ b/Documentation/networking/ieee802154.txt
@@ -4,7 +4,7 @@
Introduction
============
-The IEEE 802.15.4 working group focuses on standartization of bottom
+The IEEE 802.15.4 working group focuses on standardization of bottom
two layers: Medium Access Control (MAC) and Physical (PHY). And there
are mainly two options available for upper layers:
- ZigBee - proprietary protocol from ZigBee Alliance
@@ -66,7 +66,7 @@ net_device, with .type = ARPHRD_IEEE802154. Data is exchanged with socket family
code via plain sk_buffs. On skb reception skb->cb must contain additional
info as described in the struct ieee802154_mac_cb. During packet transmission
the skb->cb is used to provide additional data to device's header_ops->create
-function. Be aware, that this data can be overriden later (when socket code
+function. Be aware that this data can be overridden later (when socket code
submits skb to qdisc), so if you need something from that cb later, you should
store info in the skb->data on your own.
diff --git a/Documentation/networking/l2tp.txt b/Documentation/networking/l2tp.txt
index e63fc1f7bf87..c74434de2fa5 100644
--- a/Documentation/networking/l2tp.txt
+++ b/Documentation/networking/l2tp.txt
@@ -197,7 +197,7 @@ state information because the file format is subject to change. It is
implemented to provide extra debug information to help diagnose
problems.) Users should use the netlink API.
-/proc/net/pppol2tp is also provided for backwards compaibility with
+/proc/net/pppol2tp is also provided for backwards compatibility with
the original pppol2tp driver. It lists information about L2TPv2
tunnels and sessions only. Its use is discouraged.
diff --git a/Documentation/networking/netdev-FAQ.txt b/Documentation/networking/netdev-FAQ.txt
index d9112f01c44a..0fe1c6e0dbcd 100644
--- a/Documentation/networking/netdev-FAQ.txt
+++ b/Documentation/networking/netdev-FAQ.txt
@@ -4,23 +4,23 @@ Information you need to know about netdev
Q: What is netdev?
-A: It is a mailing list for all network related linux stuff. This includes
+A: It is a mailing list for all network-related Linux stuff. This includes
anything found under net/ (i.e. core code like IPv6) and drivers/net
- (i.e. hardware specific drivers) in the linux source tree.
+ (i.e. hardware specific drivers) in the Linux source tree.
Note that some subsystems (e.g. wireless drivers) which have a high volume
of traffic have their own specific mailing lists.
- The netdev list is managed (like many other linux mailing lists) through
+ The netdev list is managed (like many other Linux mailing lists) through
VGER ( http://vger.kernel.org/ ) and archives can be found below:
http://marc.info/?l=linux-netdev
http://www.spinics.net/lists/netdev/
- Aside from subsystems like that mentioned above, all network related linux
- development (i.e. RFC, review, comments, etc) takes place on netdev.
+ Aside from subsystems like that mentioned above, all network-related Linux
+ development (i.e. RFC, review, comments, etc.) takes place on netdev.
-Q: How do the changes posted to netdev make their way into linux?
+Q: How do the changes posted to netdev make their way into Linux?
A: There are always two trees (git repositories) in play. Both are driven
by David Miller, the main network maintainer. There is the "net" tree,
@@ -35,7 +35,7 @@ A: There are always two trees (git repositories) in play. Both are driven
Q: How often do changes from these trees make it to the mainline Linus tree?
A: To understand this, you need to know a bit of background information
- on the cadence of linux development. Each new release starts off with
+ on the cadence of Linux development. Each new release starts off with
a two week "merge window" where the main maintainers feed their new
stuff to Linus for merging into the mainline tree. After the two weeks,
the merge window is closed, and it is called/tagged "-rc1". No new
@@ -46,7 +46,7 @@ A: To understand this, you need to know a bit of background information
things are in a state of churn), and a week after the last vX.Y-rcN
was done, the official "vX.Y" is released.
- Relating that to netdev: At the beginning of the 2 week merge window,
+ Relating that to netdev: At the beginning of the 2-week merge window,
the net-next tree will be closed - no new changes/features. The
accumulated new content of the past ~10 weeks will be passed onto
mainline/Linus via a pull request for vX.Y -- at the same time,
@@ -59,16 +59,16 @@ A: To understand this, you need to know a bit of background information
IMPORTANT: Do not send new net-next content to netdev during the
period during which net-next tree is closed.
- Shortly after the two weeks have passed, (and vX.Y-rc1 is released) the
+ Shortly after the two weeks have passed (and vX.Y-rc1 is released), the
tree for net-next reopens to collect content for the next (vX.Y+1) release.
If you aren't subscribed to netdev and/or are simply unsure if net-next
has re-opened yet, simply check the net-next git repository link above for
- any new networking related commits.
+ any new networking-related commits.
The "net" tree continues to collect fixes for the vX.Y content, and
is fed back to Linus at regular (~weekly) intervals. Meaning that the
- focus for "net" is on stablilization and bugfixes.
+ focus for "net" is on stabilization and bugfixes.
Finally, the vX.Y gets released, and the whole cycle starts over.
@@ -217,7 +217,7 @@ A: Attention to detail. Re-read your own work as if you were the
to why it happens, and then if necessary, explain why the fix proposed
is the best way to get things done. Don't mangle whitespace, and as
is common, don't mis-indent function arguments that span multiple lines.
- If it is your 1st patch, mail it to yourself so you can test apply
+ If it is your first patch, mail it to yourself so you can test apply
it to an unpatched tree to confirm infrastructure didn't mangle it.
Finally, go back and read Documentation/SubmittingPatches to be
diff --git a/Documentation/networking/netlink_mmap.txt b/Documentation/networking/netlink_mmap.txt
index 533378839546..b26122973525 100644
--- a/Documentation/networking/netlink_mmap.txt
+++ b/Documentation/networking/netlink_mmap.txt
@@ -45,7 +45,7 @@ processing.
Conversion of the reception path involves calling poll() on the file
descriptor, once the socket is readable the frames from the ring are
-processsed in order until no more messages are available, as indicated by
+processed in order until no more messages are available, as indicated by
a status word in the frame header.
On kernel side, in order to make use of memory mapped I/O on receive, the
@@ -56,7 +56,7 @@ Dumps of kernel databases automatically support memory mapped I/O.
Conversion of the transmit path involves changing message construction to
use memory from the TX ring instead of (usually) a buffer declared on the
-stack and setting up the frame header approriately. Optionally poll() can
+stack and setting up the frame header appropriately. Optionally poll() can
be used to wait for free frames in the TX ring.
Structured and definitions for using memory mapped I/O are contained in
@@ -231,7 +231,7 @@ Ring setup:
if (setsockopt(fd, NETLINK_TX_RING, &req, sizeof(req)) < 0)
exit(1)
- /* Calculate size of each invididual ring */
+ /* Calculate size of each individual ring */
ring_size = req.nm_block_nr * req.nm_block_size;
/* Map RX/TX rings. The TX ring is located after the RX ring */
diff --git a/Documentation/networking/operstates.txt b/Documentation/networking/operstates.txt
index 97694572338b..355c6d8ef8ad 100644
--- a/Documentation/networking/operstates.txt
+++ b/Documentation/networking/operstates.txt
@@ -89,8 +89,8 @@ packets. The name 'carrier' and the inversion are historical, think of
it as lower layer.
Note that for certain kind of soft-devices, which are not managing any
-real hardware, there is possible to set this bit from userpsace.
-One should use TVL IFLA_CARRIER to do so.
+real hardware, it is possible to set this bit from userspace. One
+should use TVL IFLA_CARRIER to do so.
netif_carrier_ok() can be used to query that bit.
diff --git a/Documentation/networking/rxrpc.txt b/Documentation/networking/rxrpc.txt
index 60d05eb77c64..b89bc82eed46 100644
--- a/Documentation/networking/rxrpc.txt
+++ b/Documentation/networking/rxrpc.txt
@@ -144,7 +144,7 @@ An overview of the RxRPC protocol:
(*) Calls use ACK packets to handle reliability. Data packets are also
explicitly sequenced per call.
- (*) There are two types of positive acknowledgement: hard-ACKs and soft-ACKs.
+ (*) There are two types of positive acknowledgment: hard-ACKs and soft-ACKs.
A hard-ACK indicates to the far side that all the data received to a point
has been received and processed; a soft-ACK indicates that the data has
been received but may yet be discarded and re-requested. The sender may
diff --git a/Documentation/networking/stmmac.txt b/Documentation/networking/stmmac.txt
index 457b8bbafb08..cdd916da838d 100644
--- a/Documentation/networking/stmmac.txt
+++ b/Documentation/networking/stmmac.txt
@@ -160,7 +160,7 @@ Where:
o pmt: core has the embedded power module (optional).
o force_sf_dma_mode: force DMA to use the Store and Forward mode
instead of the Threshold.
- o force_thresh_dma_mode: force DMA to use the Shreshold mode other than
+ o force_thresh_dma_mode: force DMA to use the Threshold mode other than
the Store and Forward mode.
o riwt_off: force to disable the RX watchdog feature and switch to NAPI mode.
o fix_mac_speed: this callback is used for modifying some syscfg registers
@@ -175,7 +175,7 @@ Where:
registers.
o custom_cfg/custom_data: this is a custom configuration that can be passed
while initializing the resources.
- o bsp_priv: another private poiter.
+ o bsp_priv: another private pointer.
For MDIO bus The we have:
@@ -271,7 +271,7 @@ reset procedure etc).
o dwmac1000_dma.c: dma functions for the GMAC chip;
o dwmac1000.h: specific header file for the GMAC;
o dwmac100_core: MAC 100 core and dma code;
- o dwmac100_dma.c: dma funtions for the MAC chip;
+ o dwmac100_dma.c: dma functions for the MAC chip;
o dwmac1000.h: specific header file for the MAC;
o dwmac_lib.c: generic DMA functions shared among chips;
o enh_desc.c: functions for handling enhanced descriptors;
@@ -364,4 +364,4 @@ Auto-negotiated Link Parter Ability.
10) TODO:
o XGMAC is not supported.
o Complete the TBI & RTBI support.
- o extened VLAN support for 3.70a SYNP GMAC.
+ o extend VLAN support for 3.70a SYNP GMAC.
diff --git a/Documentation/networking/vortex.txt b/Documentation/networking/vortex.txt
index 9a8041dcbb53..97282da82b75 100644
--- a/Documentation/networking/vortex.txt
+++ b/Documentation/networking/vortex.txt
@@ -68,7 +68,7 @@ Module parameters
There are several parameters which may be provided to the driver when
its module is loaded. These are usually placed in /etc/modprobe.d/*.conf
-configuretion files. Example:
+configuration files. Example:
options 3c59x debug=3 rx_copybreak=300
@@ -178,7 +178,7 @@ max_interrupt_work=N
The driver's interrupt service routine can handle many receive and
transmit packets in a single invocation. It does this in a loop.
- The value of max_interrupt_work governs how mnay times the interrupt
+ The value of max_interrupt_work governs how many times the interrupt
service routine will loop. The default value is 32 loops. If this
is exceeded the interrupt service routine gives up and generates a
warning message "eth0: Too much work in interrupt".
diff --git a/Documentation/networking/x25-iface.txt b/Documentation/networking/x25-iface.txt
index 78f662ee0622..7f213b556e85 100644
--- a/Documentation/networking/x25-iface.txt
+++ b/Documentation/networking/x25-iface.txt
@@ -105,7 +105,7 @@ reduced by the following measures or a combination thereof:
later.
The lapb module interface was modified to support this. Its
data_indication() method should now transparently pass the
- netif_rx() return value to the (lapb mopdule) caller.
+ netif_rx() return value to the (lapb module) caller.
(2) Drivers for kernel versions 2.2.x should always check the global
variable netdev_dropping when a new frame is received. The driver
should only call netif_rx() if netdev_dropping is zero. Otherwise