diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2018-12-28 16:55:46 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2018-12-28 16:55:46 -0800 |
commit | f346b0becb1bc62e45495f9cdbae3eef35d0b635 (patch) | |
tree | ae79f3dfb8e031da51d38f0f095f89d7d23f3643 /Documentation | |
parent | 00d59fde8532b2d42e80909d2e58678755e04da9 (diff) | |
parent | 0f4991e8fd48987ae476a92cdee6bfec4aff31b8 (diff) | |
download | linux-f346b0becb1bc62e45495f9cdbae3eef35d0b635.tar.bz2 |
Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:
- large KASAN update to use arm's "software tag-based mode"
- a few misc things
- sh updates
- ocfs2 updates
- just about all of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (167 commits)
kernel/fork.c: mark 'stack_vm_area' with __maybe_unused
memcg, oom: notify on oom killer invocation from the charge path
mm, swap: fix swapoff with KSM pages
include/linux/gfp.h: fix typo
mm/hmm: fix memremap.h, move dev_page_fault_t callback to hmm
hugetlbfs: Use i_mmap_rwsem to fix page fault/truncate race
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
memory_hotplug: add missing newlines to debugging output
mm: remove __hugepage_set_anon_rmap()
include/linux/vmstat.h: remove unused page state adjustment macro
mm/page_alloc.c: allow error injection
mm: migrate: drop unused argument of migrate_page_move_mapping()
blkdev: avoid migration stalls for blkdev pages
mm: migrate: provide buffer_migrate_page_norefs()
mm: migrate: move migrate_page_lock_buffers()
mm: migrate: lock buffers before migrate_page_move_mapping()
mm: migration: factor out code to compute expected number of page references
mm, page_alloc: enable pcpu_drain with zone capability
kmemleak: add config to select auto scan
mm/page_alloc.c: don't call kasan_free_pages() at deferred mem init
...
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/ABI/testing/sysfs-block-zram | 32 | ||||
-rw-r--r-- | Documentation/blockdev/zram.txt | 80 | ||||
-rw-r--r-- | Documentation/dev-tools/kasan.rst | 232 | ||||
-rw-r--r-- | Documentation/filesystems/proc.txt | 10 | ||||
-rw-r--r-- | Documentation/sysctl/vm.txt | 21 |
5 files changed, 272 insertions, 103 deletions
diff --git a/Documentation/ABI/testing/sysfs-block-zram b/Documentation/ABI/testing/sysfs-block-zram index c1513c756af1..9d2339a485c8 100644 --- a/Documentation/ABI/testing/sysfs-block-zram +++ b/Documentation/ABI/testing/sysfs-block-zram @@ -98,3 +98,35 @@ Description: The backing_dev file is read-write and set up backing device for zram to write incompressible pages. For using, user should enable CONFIG_ZRAM_WRITEBACK. + +What: /sys/block/zram<id>/idle +Date: November 2018 +Contact: Minchan Kim <minchan@kernel.org> +Description: + idle file is write-only and mark zram slot as idle. + If system has mounted debugfs, user can see which slots + are idle via /sys/kernel/debug/zram/zram<id>/block_state + +What: /sys/block/zram<id>/writeback +Date: November 2018 +Contact: Minchan Kim <minchan@kernel.org> +Description: + The writeback file is write-only and trigger idle and/or + huge page writeback to backing device. + +What: /sys/block/zram<id>/bd_stat +Date: November 2018 +Contact: Minchan Kim <minchan@kernel.org> +Description: + The bd_stat file is read-only and represents backing device's + statistics (bd_count, bd_reads, bd_writes) in a format + similar to block layer statistics file format. + +What: /sys/block/zram<id>/writeback_limit +Date: November 2018 +Contact: Minchan Kim <minchan@kernel.org> +Description: + The writeback_limit file is read-write and specifies the maximum + amount of writeback ZRAM can do. The limit could be changed + in run time and "0" means disable the limit. + No limit is the initial state. diff --git a/Documentation/blockdev/zram.txt b/Documentation/blockdev/zram.txt index 3c1b5ab54bc0..436c5e98e1b6 100644 --- a/Documentation/blockdev/zram.txt +++ b/Documentation/blockdev/zram.txt @@ -164,11 +164,14 @@ reset WO trigger device reset mem_used_max WO reset the `mem_used_max' counter (see later) mem_limit WO specifies the maximum amount of memory ZRAM can use to store the compressed data +writeback_limit WO specifies the maximum amount of write IO zram can + write out to backing device as 4KB unit max_comp_streams RW the number of possible concurrent compress operations comp_algorithm RW show and change the compression algorithm compact WO trigger memory compaction debug_stat RO this file is used for zram debugging purposes backing_dev RW set up backend storage for zram to write out +idle WO mark allocated slot as idle User space is advised to use the following files to read the device statistics. @@ -220,6 +223,17 @@ line of text and contains the following stats separated by whitespace: pages_compacted the number of pages freed during compaction huge_pages the number of incompressible pages +File /sys/block/zram<id>/bd_stat + +The stat file represents device's backing device statistics. It consists of +a single line of text and contains the following stats separated by whitespace: + bd_count size of data written in backing device. + Unit: 4K bytes + bd_reads the number of reads from backing device + Unit: 4K bytes + bd_writes the number of writes to backing device + Unit: 4K bytes + 9) Deactivate: swapoff /dev/zram0 umount /dev/zram1 @@ -237,11 +251,60 @@ line of text and contains the following stats separated by whitespace: = writeback -With incompressible pages, there is no memory saving with zram. -Instead, with CONFIG_ZRAM_WRITEBACK, zram can write incompressible page +With CONFIG_ZRAM_WRITEBACK, zram can write idle/incompressible page to backing storage rather than keeping it in memory. -User should set up backing device via /sys/block/zramX/backing_dev -before disksize setting. +To use the feature, admin should set up backing device via + + "echo /dev/sda5 > /sys/block/zramX/backing_dev" + +before disksize setting. It supports only partition at this moment. +If admin want to use incompressible page writeback, they could do via + + "echo huge > /sys/block/zramX/write" + +To use idle page writeback, first, user need to declare zram pages +as idle. + + "echo all > /sys/block/zramX/idle" + +From now on, any pages on zram are idle pages. The idle mark +will be removed until someone request access of the block. +IOW, unless there is access request, those pages are still idle pages. + +Admin can request writeback of those idle pages at right timing via + + "echo idle > /sys/block/zramX/writeback" + +With the command, zram writeback idle pages from memory to the storage. + +If there are lots of write IO with flash device, potentially, it has +flash wearout problem so that admin needs to design write limitation +to guarantee storage health for entire product life. +To overcome the concern, zram supports "writeback_limit". +The "writeback_limit"'s default value is 0 so that it doesn't limit +any writeback. If admin want to measure writeback count in a certain +period, he could know it via /sys/block/zram0/bd_stat's 3rd column. + +If admin want to limit writeback as per-day 400M, he could do it +like below. + + MB_SHIFT=20 + 4K_SHIFT=12 + echo $((400<<MB_SHIFT>>4K_SHIFT)) > \ + /sys/block/zram0/writeback_limit. + +If admin want to allow further write again, he could do it like below + + echo 0 > /sys/block/zram0/writeback_limit + +If admin want to see remaining writeback budget since he set, + + cat /sys/block/zram0/writeback_limit + +The writeback_limit count will reset whenever you reset zram(e.g., +system reboot, echo 1 > /sys/block/zramX/reset) so keeping how many of +writeback happened until you reset the zram to allocate extra writeback +budget in next setting is user's job. = memory tracking @@ -251,16 +314,17 @@ pages of the process with*pagemap. If you enable the feature, you could see block state via /sys/kernel/debug/zram/zram0/block_state". The output is as follows, - 300 75.033841 .wh - 301 63.806904 s.. - 302 63.806919 ..h + 300 75.033841 .wh. + 301 63.806904 s... + 302 63.806919 ..hi First column is zram's block index. Second column is access time since the system was booted Third column is state of the block. (s: same page w: written page to backing store -h: huge page) +h: huge page +i: idle page) First line of above example says 300th block is accessed at 75.033841sec and the block's state is huge so it is written back to the backing diff --git a/Documentation/dev-tools/kasan.rst b/Documentation/dev-tools/kasan.rst index aabc8738b3d8..b72d07d70239 100644 --- a/Documentation/dev-tools/kasan.rst +++ b/Documentation/dev-tools/kasan.rst @@ -4,15 +4,25 @@ The Kernel Address Sanitizer (KASAN) Overview -------- -KernelAddressSANitizer (KASAN) is a dynamic memory error detector. It provides -a fast and comprehensive solution for finding use-after-free and out-of-bounds -bugs. +KernelAddressSANitizer (KASAN) is a dynamic memory error detector designed to +find out-of-bound and use-after-free bugs. KASAN has two modes: generic KASAN +(similar to userspace ASan) and software tag-based KASAN (similar to userspace +HWASan). -KASAN uses compile-time instrumentation for checking every memory access, -therefore you will need a GCC version 4.9.2 or later. GCC 5.0 or later is -required for detection of out-of-bounds accesses to stack or global variables. +KASAN uses compile-time instrumentation to insert validity checks before every +memory access, and therefore requires a compiler version that supports that. -Currently KASAN is supported only for the x86_64 and arm64 architectures. +Generic KASAN is supported in both GCC and Clang. With GCC it requires version +4.9.2 or later for basic support and version 5.0 or later for detection of +out-of-bounds accesses for stack and global variables and for inline +instrumentation mode (see the Usage section). With Clang it requires version +7.0.0 or later and it doesn't support detection of out-of-bounds accesses for +global variables yet. + +Tag-based KASAN is only supported in Clang and requires version 7.0.0 or later. + +Currently generic KASAN is supported for the x86_64, arm64, xtensa and s390 +architectures, and tag-based KASAN is supported only for arm64. Usage ----- @@ -21,12 +31,14 @@ To enable KASAN configure kernel with:: CONFIG_KASAN = y -and choose between CONFIG_KASAN_OUTLINE and CONFIG_KASAN_INLINE. Outline and -inline are compiler instrumentation types. The former produces smaller binary -the latter is 1.1 - 2 times faster. Inline instrumentation requires a GCC -version 5.0 or later. +and choose between CONFIG_KASAN_GENERIC (to enable generic KASAN) and +CONFIG_KASAN_SW_TAGS (to enable software tag-based KASAN). + +You also need to choose between CONFIG_KASAN_OUTLINE and CONFIG_KASAN_INLINE. +Outline and inline are compiler instrumentation types. The former produces +smaller binary while the latter is 1.1 - 2 times faster. -KASAN works with both SLUB and SLAB memory allocators. +Both KASAN modes work with both SLUB and SLAB memory allocators. For better bug detection and nicer reporting, enable CONFIG_STACKTRACE. To disable instrumentation for specific files or directories, add a line @@ -43,85 +55,85 @@ similar to the following to the respective kernel Makefile: Error reports ~~~~~~~~~~~~~ -A typical out of bounds access report looks like this:: +A typical out-of-bounds access generic KASAN report looks like this:: ================================================================== - BUG: AddressSanitizer: out of bounds access in kmalloc_oob_right+0x65/0x75 [test_kasan] at addr ffff8800693bc5d3 - Write of size 1 by task modprobe/1689 - ============================================================================= - BUG kmalloc-128 (Not tainted): kasan error - ----------------------------------------------------------------------------- - - Disabling lock debugging due to kernel taint - INFO: Allocated in kmalloc_oob_right+0x3d/0x75 [test_kasan] age=0 cpu=0 pid=1689 - __slab_alloc+0x4b4/0x4f0 - kmem_cache_alloc_trace+0x10b/0x190 - kmalloc_oob_right+0x3d/0x75 [test_kasan] - init_module+0x9/0x47 [test_kasan] - do_one_initcall+0x99/0x200 - load_module+0x2cb3/0x3b20 - SyS_finit_module+0x76/0x80 - system_call_fastpath+0x12/0x17 - INFO: Slab 0xffffea0001a4ef00 objects=17 used=7 fp=0xffff8800693bd728 flags=0x100000000004080 - INFO: Object 0xffff8800693bc558 @offset=1368 fp=0xffff8800693bc720 - - Bytes b4 ffff8800693bc548: 00 00 00 00 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ - Object ffff8800693bc558: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk - Object ffff8800693bc568: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk - Object ffff8800693bc578: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk - Object ffff8800693bc588: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk - Object ffff8800693bc598: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk - Object ffff8800693bc5a8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk - Object ffff8800693bc5b8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk - Object ffff8800693bc5c8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b a5 kkkkkkkkkkkkkkk. - Redzone ffff8800693bc5d8: cc cc cc cc cc cc cc cc ........ - Padding ffff8800693bc718: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ - CPU: 0 PID: 1689 Comm: modprobe Tainted: G B 3.18.0-rc1-mm1+ #98 - Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014 - ffff8800693bc000 0000000000000000 ffff8800693bc558 ffff88006923bb78 - ffffffff81cc68ae 00000000000000f3 ffff88006d407600 ffff88006923bba8 - ffffffff811fd848 ffff88006d407600 ffffea0001a4ef00 ffff8800693bc558 + BUG: KASAN: slab-out-of-bounds in kmalloc_oob_right+0xa8/0xbc [test_kasan] + Write of size 1 at addr ffff8801f44ec37b by task insmod/2760 + + CPU: 1 PID: 2760 Comm: insmod Not tainted 4.19.0-rc3+ #698 + Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 Call Trace: - [<ffffffff81cc68ae>] dump_stack+0x46/0x58 - [<ffffffff811fd848>] print_trailer+0xf8/0x160 - [<ffffffffa00026a7>] ? kmem_cache_oob+0xc3/0xc3 [test_kasan] - [<ffffffff811ff0f5>] object_err+0x35/0x40 - [<ffffffffa0002065>] ? kmalloc_oob_right+0x65/0x75 [test_kasan] - [<ffffffff8120b9fa>] kasan_report_error+0x38a/0x3f0 - [<ffffffff8120a79f>] ? kasan_poison_shadow+0x2f/0x40 - [<ffffffff8120b344>] ? kasan_unpoison_shadow+0x14/0x40 - [<ffffffff8120a79f>] ? kasan_poison_shadow+0x2f/0x40 - [<ffffffffa00026a7>] ? kmem_cache_oob+0xc3/0xc3 [test_kasan] - [<ffffffff8120a995>] __asan_store1+0x75/0xb0 - [<ffffffffa0002601>] ? kmem_cache_oob+0x1d/0xc3 [test_kasan] - [<ffffffffa0002065>] ? kmalloc_oob_right+0x65/0x75 [test_kasan] - [<ffffffffa0002065>] kmalloc_oob_right+0x65/0x75 [test_kasan] - [<ffffffffa00026b0>] init_module+0x9/0x47 [test_kasan] - [<ffffffff810002d9>] do_one_initcall+0x99/0x200 - [<ffffffff811e4e5c>] ? __vunmap+0xec/0x160 - [<ffffffff81114f63>] load_module+0x2cb3/0x3b20 - [<ffffffff8110fd70>] ? m_show+0x240/0x240 - [<ffffffff81115f06>] SyS_finit_module+0x76/0x80 - [<ffffffff81cd3129>] system_call_fastpath+0x12/0x17 + dump_stack+0x94/0xd8 + print_address_description+0x73/0x280 + kasan_report+0x144/0x187 + __asan_report_store1_noabort+0x17/0x20 + kmalloc_oob_right+0xa8/0xbc [test_kasan] + kmalloc_tests_init+0x16/0x700 [test_kasan] + do_one_initcall+0xa5/0x3ae + do_init_module+0x1b6/0x547 + load_module+0x75df/0x8070 + __do_sys_init_module+0x1c6/0x200 + __x64_sys_init_module+0x6e/0xb0 + do_syscall_64+0x9f/0x2c0 + entry_SYSCALL_64_after_hwframe+0x44/0xa9 + RIP: 0033:0x7f96443109da + RSP: 002b:00007ffcf0b51b08 EFLAGS: 00000202 ORIG_RAX: 00000000000000af + RAX: ffffffffffffffda RBX: 000055dc3ee521a0 RCX: 00007f96443109da + RDX: 00007f96445cff88 RSI: 0000000000057a50 RDI: 00007f9644992000 + RBP: 000055dc3ee510b0 R08: 0000000000000003 R09: 0000000000000000 + R10: 00007f964430cd0a R11: 0000000000000202 R12: 00007f96445cff88 + R13: 000055dc3ee51090 R14: 0000000000000000 R15: 0000000000000000 + + Allocated by task 2760: + save_stack+0x43/0xd0 + kasan_kmalloc+0xa7/0xd0 + kmem_cache_alloc_trace+0xe1/0x1b0 + kmalloc_oob_right+0x56/0xbc [test_kasan] + kmalloc_tests_init+0x16/0x700 [test_kasan] + do_one_initcall+0xa5/0x3ae + do_init_module+0x1b6/0x547 + load_module+0x75df/0x8070 + __do_sys_init_module+0x1c6/0x200 + __x64_sys_init_module+0x6e/0xb0 + do_syscall_64+0x9f/0x2c0 + entry_SYSCALL_64_after_hwframe+0x44/0xa9 + + Freed by task 815: + save_stack+0x43/0xd0 + __kasan_slab_free+0x135/0x190 + kasan_slab_free+0xe/0x10 + kfree+0x93/0x1a0 + umh_complete+0x6a/0xa0 + call_usermodehelper_exec_async+0x4c3/0x640 + ret_from_fork+0x35/0x40 + + The buggy address belongs to the object at ffff8801f44ec300 + which belongs to the cache kmalloc-128 of size 128 + The buggy address is located 123 bytes inside of + 128-byte region [ffff8801f44ec300, ffff8801f44ec380) + The buggy address belongs to the page: + page:ffffea0007d13b00 count:1 mapcount:0 mapping:ffff8801f7001640 index:0x0 + flags: 0x200000000000100(slab) + raw: 0200000000000100 ffffea0007d11dc0 0000001a0000001a ffff8801f7001640 + raw: 0000000000000000 0000000080150015 00000001ffffffff 0000000000000000 + page dumped because: kasan: bad access detected + Memory state around the buggy address: - ffff8800693bc300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc - ffff8800693bc380: fc fc 00 00 00 00 00 00 00 00 00 00 00 00 00 fc - ffff8800693bc400: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc - ffff8800693bc480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc - ffff8800693bc500: fc fc fc fc fc fc fc fc fc fc fc 00 00 00 00 00 - >ffff8800693bc580: 00 00 00 00 00 00 00 00 00 00 03 fc fc fc fc fc - ^ - ffff8800693bc600: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc - ffff8800693bc680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc - ffff8800693bc700: fc fc fc fc fb fb fb fb fb fb fb fb fb fb fb fb - ffff8800693bc780: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb - ffff8800693bc800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb + ffff8801f44ec200: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb + ffff8801f44ec280: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc + >ffff8801f44ec300: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 03 + ^ + ffff8801f44ec380: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb + ffff8801f44ec400: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc ================================================================== -The header of the report discribe what kind of bug happened and what kind of -access caused it. It's followed by the description of the accessed slub object -(see 'SLUB Debug output' section in Documentation/vm/slub.rst for details) and -the description of the accessed memory page. +The header of the report provides a short summary of what kind of bug happened +and what kind of access caused it. It's followed by a stack trace of the bad +access, a stack trace of where the accessed memory was allocated (in case bad +access happens on a slab object), and a stack trace of where the object was +freed (in case of a use-after-free bug report). Next comes a description of +the accessed slab object and information about the accessed memory page. In the last section the report shows memory state around the accessed address. Reading this part requires some understanding of how KASAN works. @@ -138,18 +150,24 @@ inaccessible memory like redzones or freed memory (see mm/kasan/kasan.h). In the report above the arrows point to the shadow byte 03, which means that the accessed address is partially accessible. +For tag-based KASAN this last report section shows the memory tags around the +accessed address (see Implementation details section). + Implementation details ---------------------- +Generic KASAN +~~~~~~~~~~~~~ + From a high level, our approach to memory error detection is similar to that of kmemcheck: use shadow memory to record whether each byte of memory is safe -to access, and use compile-time instrumentation to check shadow memory on each -memory access. +to access, and use compile-time instrumentation to insert checks of shadow +memory on each memory access. -AddressSanitizer dedicates 1/8 of kernel memory to its shadow memory -(e.g. 16TB to cover 128TB on x86_64) and uses direct mapping with a scale and -offset to translate a memory address to its corresponding shadow address. +Generic KASAN dedicates 1/8th of kernel memory to its shadow memory (e.g. 16TB +to cover 128TB on x86_64) and uses direct mapping with a scale and offset to +translate a memory address to its corresponding shadow address. Here is the function which translates an address to its corresponding shadow address:: @@ -162,12 +180,38 @@ address:: where ``KASAN_SHADOW_SCALE_SHIFT = 3``. -Compile-time instrumentation used for checking memory accesses. Compiler inserts -function calls (__asan_load*(addr), __asan_store*(addr)) before each memory -access of size 1, 2, 4, 8 or 16. These functions check whether memory access is -valid or not by checking corresponding shadow memory. +Compile-time instrumentation is used to insert memory access checks. Compiler +inserts function calls (__asan_load*(addr), __asan_store*(addr)) before each +memory access of size 1, 2, 4, 8 or 16. These functions check whether memory +access is valid or not by checking corresponding shadow memory. GCC 5.0 has possibility to perform inline instrumentation. Instead of making function calls GCC directly inserts the code to check the shadow memory. This option significantly enlarges kernel but it gives x1.1-x2 performance boost over outline instrumented kernel. + +Software tag-based KASAN +~~~~~~~~~~~~~~~~~~~~~~~~ + +Tag-based KASAN uses the Top Byte Ignore (TBI) feature of modern arm64 CPUs to +store a pointer tag in the top byte of kernel pointers. Like generic KASAN it +uses shadow memory to store memory tags associated with each 16-byte memory +cell (therefore it dedicates 1/16th of the kernel memory for shadow memory). + +On each memory allocation tag-based KASAN generates a random tag, tags the +allocated memory with this tag, and embeds this tag into the returned pointer. +Software tag-based KASAN uses compile-time instrumentation to insert checks +before each memory access. These checks make sure that tag of the memory that +is being accessed is equal to tag of the pointer that is used to access this +memory. In case of a tag mismatch tag-based KASAN prints a bug report. + +Software tag-based KASAN also has two instrumentation modes (outline, that +emits callbacks to check memory accesses; and inline, that performs the shadow +memory checks inline). With outline instrumentation mode, a bug report is +simply printed from the function that performs the access check. With inline +instrumentation a brk instruction is emitted by the compiler, and a dedicated +brk handler is used to print bug reports. + +A potential expansion of this mode is a hardware tag-based mode, which would +use hardware memory tagging support instead of compiler instrumentation and +manual shadow memory manipulation. diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt index 12a5e6e693b6..b24fd9bccc99 100644 --- a/Documentation/filesystems/proc.txt +++ b/Documentation/filesystems/proc.txt @@ -182,6 +182,7 @@ read the file /proc/PID/status: VmSwap: 0 kB HugetlbPages: 0 kB CoreDumping: 0 + THP_enabled: 1 Threads: 1 SigQ: 0/28578 SigPnd: 0000000000000000 @@ -256,6 +257,8 @@ Table 1-2: Contents of the status files (as of 4.8) HugetlbPages size of hugetlb memory portions CoreDumping process's memory is currently being dumped (killing the process may lead to a corrupted core) + THP_enabled process is allowed to use THP (returns 0 when + PR_SET_THP_DISABLE is set on the process Threads number of threads SigQ number of signals queued/max. number for queue SigPnd bitmap of pending signals for the thread @@ -425,6 +428,7 @@ SwapPss: 0 kB KernelPageSize: 4 kB MMUPageSize: 4 kB Locked: 0 kB +THPeligible: 0 VmFlags: rd ex mr mw me dw the first of these lines shows the same information as is displayed for the @@ -462,6 +466,8 @@ replaced by copy-on-write) part of the underlying shmem object out on swap. "SwapPss" shows proportional swap share of this mapping. Unlike "Swap", this does not take into account swapped out page of underlying shmem objects. "Locked" indicates whether the mapping is locked in memory or not. +"THPeligible" indicates whether the mapping is eligible for THP pages - 1 if +true, 0 otherwise. "VmFlags" field deserves a separate description. This member represents the kernel flags associated with the particular virtual memory area in two letter encoded @@ -496,7 +502,9 @@ manner. The codes are the following: Note that there is no guarantee that every flag and associated mnemonic will be present in all further kernel releases. Things get changed, the flags may -be vanished or the reverse -- new added. +be vanished or the reverse -- new added. Interpretation of their meaning +might change in future as well. So each consumer of these flags has to +follow each specific kernel version for the exact semantic. This file is only present if the CONFIG_MMU kernel configuration option is enabled. diff --git a/Documentation/sysctl/vm.txt b/Documentation/sysctl/vm.txt index 7d73882e2c27..187ce4f599a2 100644 --- a/Documentation/sysctl/vm.txt +++ b/Documentation/sysctl/vm.txt @@ -63,6 +63,7 @@ Currently, these files are in /proc/sys/vm: - swappiness - user_reserve_kbytes - vfs_cache_pressure +- watermark_boost_factor - watermark_scale_factor - zone_reclaim_mode @@ -856,6 +857,26 @@ ten times more freeable objects than there are. ============================================================= +watermark_boost_factor: + +This factor controls the level of reclaim when memory is being fragmented. +It defines the percentage of the high watermark of a zone that will be +reclaimed if pages of different mobility are being mixed within pageblocks. +The intent is that compaction has less work to do in the future and to +increase the success rate of future high-order allocations such as SLUB +allocations, THP and hugetlbfs pages. + +To make it sensible with respect to the watermark_scale_factor parameter, +the unit is in fractions of 10,000. The default value of 15,000 means +that up to 150% of the high watermark will be reclaimed in the event of +a pageblock being mixed due to fragmentation. The level of reclaim is +determined by the number of fragmentation events that occurred in the +recent past. If this value is smaller than a pageblock then a pageblocks +worth of pages will be reclaimed (e.g. 2MB on 64-bit x86). A boost factor +of 0 will disable the feature. + +============================================================= + watermark_scale_factor: This factor controls the aggressiveness of kswapd. It defines the |