summaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2016-07-25 12:41:29 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2016-07-25 12:41:29 -0700
commitc86ad14d305d2429c3da19462440bac50c183def (patch)
treebd794cd72476661faf82c440063c217bb978ce44 /Documentation
parenta2303849a6b4b7ba59667091e00d6bb194071d9a (diff)
parentf06628638cf6e75f179742b6c1b35076965b9fdd (diff)
downloadlinux-c86ad14d305d2429c3da19462440bac50c183def.tar.bz2
Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar: "The locking tree was busier in this cycle than the usual pattern - a couple of major projects happened to coincide. The main changes are: - implement the atomic_fetch_{add,sub,and,or,xor}() API natively across all SMP architectures (Peter Zijlstra) - add atomic_fetch_{inc/dec}() as well, using the generic primitives (Davidlohr Bueso) - optimize various aspects of rwsems (Jason Low, Davidlohr Bueso, Waiman Long) - optimize smp_cond_load_acquire() on arm64 and implement LSE based atomic{,64}_fetch_{add,sub,and,andnot,or,xor}{,_relaxed,_acquire,_release}() on arm64 (Will Deacon) - introduce smp_acquire__after_ctrl_dep() and fix various barrier mis-uses and bugs (Peter Zijlstra) - after discovering ancient spin_unlock_wait() barrier bugs in its implementation and usage, strengthen its semantics and update/fix usage sites (Peter Zijlstra) - optimize mutex_trylock() fastpath (Peter Zijlstra) - ... misc fixes and cleanups" * 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (67 commits) locking/atomic: Introduce inc/dec variants for the atomic_fetch_$op() API locking/barriers, arch/arm64: Implement LDXR+WFE based smp_cond_load_acquire() locking/static_keys: Fix non static symbol Sparse warning locking/qspinlock: Use __this_cpu_dec() instead of full-blown this_cpu_dec() locking/atomic, arch/tile: Fix tilepro build locking/atomic, arch/m68k: Remove comment locking/atomic, arch/arc: Fix build locking/Documentation: Clarify limited control-dependency scope locking/atomic, arch/rwsem: Employ atomic_long_fetch_add() locking/atomic, arch/qrwlock: Employ atomic_fetch_add_acquire() locking/atomic, arch/mips: Convert to _relaxed atomics locking/atomic, arch/alpha: Convert to _relaxed atomics locking/atomic: Remove the deprecated atomic_{set,clear}_mask() functions locking/atomic: Remove linux/atomic.h:atomic_fetch_or() locking/atomic: Implement atomic{,64,_long}_fetch_{add,sub,and,andnot,or,xor}{,_relaxed,_acquire,_release}() locking/atomic: Fix atomic64_relaxed() bits locking/atomic, arch/xtensa: Implement atomic_fetch_{add,sub,and,or,xor}() locking/atomic, arch/x86: Implement atomic{,64}_fetch_{add,sub,and,or,xor}() locking/atomic, arch/tile: Implement atomic{,64}_fetch_{add,sub,and,or,xor}() locking/atomic, arch/sparc: Implement atomic{,64}_fetch_{add,sub,and,or,xor}() ...
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/memory-barriers.txt41
1 files changed, 41 insertions, 0 deletions
diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt
index 147ae8ec836f..a4d0a99de04d 100644
--- a/Documentation/memory-barriers.txt
+++ b/Documentation/memory-barriers.txt
@@ -806,6 +806,41 @@ out-guess your code. More generally, although READ_ONCE() does force
the compiler to actually emit code for a given load, it does not force
the compiler to use the results.
+In addition, control dependencies apply only to the then-clause and
+else-clause of the if-statement in question. In particular, it does
+not necessarily apply to code following the if-statement:
+
+ q = READ_ONCE(a);
+ if (q) {
+ WRITE_ONCE(b, p);
+ } else {
+ WRITE_ONCE(b, r);
+ }
+ WRITE_ONCE(c, 1); /* BUG: No ordering against the read from "a". */
+
+It is tempting to argue that there in fact is ordering because the
+compiler cannot reorder volatile accesses and also cannot reorder
+the writes to "b" with the condition. Unfortunately for this line
+of reasoning, the compiler might compile the two writes to "b" as
+conditional-move instructions, as in this fanciful pseudo-assembly
+language:
+
+ ld r1,a
+ ld r2,p
+ ld r3,r
+ cmp r1,$0
+ cmov,ne r4,r2
+ cmov,eq r4,r3
+ st r4,b
+ st $1,c
+
+A weakly ordered CPU would have no dependency of any sort between the load
+from "a" and the store to "c". The control dependencies would extend
+only to the pair of cmov instructions and the store depending on them.
+In short, control dependencies apply only to the stores in the then-clause
+and else-clause of the if-statement in question (including functions
+invoked by those two clauses), not to code following that if-statement.
+
Finally, control dependencies do -not- provide transitivity. This is
demonstrated by two related examples, with the initial values of
x and y both being zero:
@@ -869,6 +904,12 @@ In summary:
atomic{,64}_read() can help to preserve your control dependency.
Please see the COMPILER BARRIER section for more information.
+ (*) Control dependencies apply only to the then-clause and else-clause
+ of the if-statement containing the control dependency, including
+ any functions that these two clauses call. Control dependencies
+ do -not- apply to code following the if-statement containing the
+ control dependency.
+
(*) Control dependencies pair normally with other types of barriers.
(*) Control dependencies do -not- provide transitivity. If you