summaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2012-10-02 18:32:35 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2012-10-02 18:32:35 -0700
commit16642a2e7be23bbda013fc32d8f6c68982eab603 (patch)
tree346ae485f485f6901e5d8150f0d34d178a7dd448 /Documentation
parent51562cba98939da0a1d10fe7c25359b77a069033 (diff)
parentb9142167a2bb979b58b98ffcd928a311b55cbd9f (diff)
downloadlinux-16642a2e7be23bbda013fc32d8f6c68982eab603.tar.bz2
Merge tag 'pm-for-3.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael J Wysocki: - Improved system suspend/resume and runtime PM handling for the SH TMU, CMT and MTU2 clock event devices (also used by ARM/shmobile). - Generic PM domains framework extensions related to cpuidle support and domain objects lookup using names. - ARM/shmobile power management updates including improved support for the SH7372's A4S power domain containing the CPU core. - cpufreq changes related to AMD CPUs support from Matthew Garrett, Andre Przywara and Borislav Petkov. - cpu0 cpufreq driver from Shawn Guo. - cpufreq governor fixes related to the relaxing of limit from Michal Pecio. - OMAP cpufreq updates from Axel Lin and Richard Zhao. - cpuidle ladder governor fixes related to the disabling of states from Carsten Emde and me. - Runtime PM core updates related to the interactions with the system suspend core from Alan Stern and Kevin Hilman. - Wakeup sources modification allowing more helper functions to be called from interrupt context from John Stultz and additional diagnostic code from Todd Poynor. - System suspend error code path fix from Feng Hong. Fixed up conflicts in cpufreq/powernow-k8 that stemmed from the workqueue fixes conflicting fairly badly with the removal of support for hardware P-state chips. The changes were independent but somewhat intertwined. * tag 'pm-for-3.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (76 commits) Revert "PM QoS: Use spinlock in the per-device PM QoS constraints code" PM / Runtime: let rpm_resume() succeed if RPM_ACTIVE, even when disabled, v2 cpuidle: rename function name "__cpuidle_register_driver", v2 cpufreq: OMAP: Check IS_ERR() instead of NULL for omap_device_get_by_hwmod_name cpuidle: remove some empty lines PM: Prevent runtime suspend during system resume PM QoS: Use spinlock in the per-device PM QoS constraints code PM / Sleep: use resume event when call dpm_resume_early cpuidle / ACPI : move cpuidle_device field out of the acpi_processor_power structure ACPI / processor: remove pointless variable initialization ACPI / processor: remove unused function parameter cpufreq: OMAP: remove loops_per_jiffy recalculate for smp sections: fix section conflicts in drivers/cpufreq cpufreq: conservative: update frequency when limits are relaxed cpufreq / ondemand: update frequency when limits are relaxed properly __init-annotate pm_sysrq_init() cpufreq: Add a generic cpufreq-cpu0 driver PM / OPP: Initialize OPP table from device tree ARM: add cpufreq transiton notifier to adjust loops_per_jiffy for smp cpufreq: Remove support for hardware P-state chips from powernow-k8 ...
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/testing/sysfs-devices-system-cpu11
-rw-r--r--Documentation/cpu-freq/boost.txt93
-rw-r--r--Documentation/cpuidle/sysfs.txt10
-rw-r--r--Documentation/devicetree/bindings/cpufreq/cpufreq-cpu0.txt55
-rw-r--r--Documentation/devicetree/bindings/power/opp.txt25
5 files changed, 193 insertions, 1 deletions
diff --git a/Documentation/ABI/testing/sysfs-devices-system-cpu b/Documentation/ABI/testing/sysfs-devices-system-cpu
index 5dab36448b44..6943133afcb8 100644
--- a/Documentation/ABI/testing/sysfs-devices-system-cpu
+++ b/Documentation/ABI/testing/sysfs-devices-system-cpu
@@ -176,3 +176,14 @@ Description: Disable L3 cache indices
All AMD processors with L3 caches provide this functionality.
For details, see BKDGs at
http://developer.amd.com/documentation/guides/Pages/default.aspx
+
+
+What: /sys/devices/system/cpu/cpufreq/boost
+Date: August 2012
+Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org>
+Description: Processor frequency boosting control
+
+ This switch controls the boost setting for the whole system.
+ Boosting allows the CPU and the firmware to run at a frequency
+ beyound it's nominal limit.
+ More details can be found in Documentation/cpu-freq/boost.txt
diff --git a/Documentation/cpu-freq/boost.txt b/Documentation/cpu-freq/boost.txt
new file mode 100644
index 000000000000..9b4edfcf486f
--- /dev/null
+++ b/Documentation/cpu-freq/boost.txt
@@ -0,0 +1,93 @@
+Processor boosting control
+
+ - information for users -
+
+Quick guide for the impatient:
+--------------------
+/sys/devices/system/cpu/cpufreq/boost
+controls the boost setting for the whole system. You can read and write
+that file with either "0" (boosting disabled) or "1" (boosting allowed).
+Reading or writing 1 does not mean that the system is boosting at this
+very moment, but only that the CPU _may_ raise the frequency at it's
+discretion.
+--------------------
+
+Introduction
+-------------
+Some CPUs support a functionality to raise the operating frequency of
+some cores in a multi-core package if certain conditions apply, mostly
+if the whole chip is not fully utilized and below it's intended thermal
+budget. This is done without operating system control by a combination
+of hardware and firmware.
+On Intel CPUs this is called "Turbo Boost", AMD calls it "Turbo-Core",
+in technical documentation "Core performance boost". In Linux we use
+the term "boost" for convenience.
+
+Rationale for disable switch
+----------------------------
+
+Though the idea is to just give better performance without any user
+intervention, sometimes the need arises to disable this functionality.
+Most systems offer a switch in the (BIOS) firmware to disable the
+functionality at all, but a more fine-grained and dynamic control would
+be desirable:
+1. While running benchmarks, reproducible results are important. Since
+ the boosting functionality depends on the load of the whole package,
+ single thread performance can vary. By explicitly disabling the boost
+ functionality at least for the benchmark's run-time the system will run
+ at a fixed frequency and results are reproducible again.
+2. To examine the impact of the boosting functionality it is helpful
+ to do tests with and without boosting.
+3. Boosting means overclocking the processor, though under controlled
+ conditions. By raising the frequency and the voltage the processor
+ will consume more power than without the boosting, which may be
+ undesirable for instance for mobile users. Disabling boosting may
+ save power here, though this depends on the workload.
+
+
+User controlled switch
+----------------------
+
+To allow the user to toggle the boosting functionality, the acpi-cpufreq
+driver exports a sysfs knob to disable it. There is a file:
+/sys/devices/system/cpu/cpufreq/boost
+which can either read "0" (boosting disabled) or "1" (boosting enabled).
+Reading the file is always supported, even if the processor does not
+support boosting. In this case the file will be read-only and always
+reads as "0". Explicitly changing the permissions and writing to that
+file anyway will return EINVAL.
+
+On supported CPUs one can write either a "0" or a "1" into this file.
+This will either disable the boost functionality on all cores in the
+whole system (0) or will allow the hardware to boost at will (1).
+
+Writing a "1" does not explicitly boost the system, but just allows the
+CPU (and the firmware) to boost at their discretion. Some implementations
+take external factors like the chip's temperature into account, so
+boosting once does not necessarily mean that it will occur every time
+even using the exact same software setup.
+
+
+AMD legacy cpb switch
+---------------------
+The AMD powernow-k8 driver used to support a very similar switch to
+disable or enable the "Core Performance Boost" feature of some AMD CPUs.
+This switch was instantiated in each CPU's cpufreq directory
+(/sys/devices/system/cpu[0-9]*/cpufreq) and was called "cpb".
+Though the per CPU existence hints at a more fine grained control, the
+actual implementation only supported a system-global switch semantics,
+which was simply reflected into each CPU's file. Writing a 0 or 1 into it
+would pull the other CPUs to the same state.
+For compatibility reasons this file and its behavior is still supported
+on AMD CPUs, though it is now protected by a config switch
+(X86_ACPI_CPUFREQ_CPB). On Intel CPUs this file will never be created,
+even with the config option set.
+This functionality is considered legacy and will be removed in some future
+kernel version.
+
+More fine grained boosting control
+----------------------------------
+
+Technically it is possible to switch the boosting functionality at least
+on a per package basis, for some CPUs even per core. Currently the driver
+does not support it, but this may be implemented in the future.
diff --git a/Documentation/cpuidle/sysfs.txt b/Documentation/cpuidle/sysfs.txt
index 9d28a3406e74..b6f44f490ed7 100644
--- a/Documentation/cpuidle/sysfs.txt
+++ b/Documentation/cpuidle/sysfs.txt
@@ -76,9 +76,17 @@ total 0
* desc : Small description about the idle state (string)
-* disable : Option to disable this idle state (bool)
+* disable : Option to disable this idle state (bool) -> see note below
* latency : Latency to exit out of this idle state (in microseconds)
* name : Name of the idle state (string)
* power : Power consumed while in this idle state (in milliwatts)
* time : Total time spent in this idle state (in microseconds)
* usage : Number of times this state was entered (count)
+
+Note:
+The behavior and the effect of the disable variable depends on the
+implementation of a particular governor. In the ladder governor, for
+example, it is not coherent, i.e. if one is disabling a light state,
+then all deeper states are disabled as well, but the disable variable
+does not reflect it. Likewise, if one enables a deep state but a lighter
+state still is disabled, then this has no effect.
diff --git a/Documentation/devicetree/bindings/cpufreq/cpufreq-cpu0.txt b/Documentation/devicetree/bindings/cpufreq/cpufreq-cpu0.txt
new file mode 100644
index 000000000000..4416ccc33472
--- /dev/null
+++ b/Documentation/devicetree/bindings/cpufreq/cpufreq-cpu0.txt
@@ -0,0 +1,55 @@
+Generic CPU0 cpufreq driver
+
+It is a generic cpufreq driver for CPU0 frequency management. It
+supports both uniprocessor (UP) and symmetric multiprocessor (SMP)
+systems which share clock and voltage across all CPUs.
+
+Both required and optional properties listed below must be defined
+under node /cpus/cpu@0.
+
+Required properties:
+- operating-points: Refer to Documentation/devicetree/bindings/power/opp.txt
+ for details
+
+Optional properties:
+- clock-latency: Specify the possible maximum transition latency for clock,
+ in unit of nanoseconds.
+- voltage-tolerance: Specify the CPU voltage tolerance in percentage.
+
+Examples:
+
+cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ cpu@0 {
+ compatible = "arm,cortex-a9";
+ reg = <0>;
+ next-level-cache = <&L2>;
+ operating-points = <
+ /* kHz uV */
+ 792000 1100000
+ 396000 950000
+ 198000 850000
+ >;
+ transition-latency = <61036>; /* two CLK32 periods */
+ };
+
+ cpu@1 {
+ compatible = "arm,cortex-a9";
+ reg = <1>;
+ next-level-cache = <&L2>;
+ };
+
+ cpu@2 {
+ compatible = "arm,cortex-a9";
+ reg = <2>;
+ next-level-cache = <&L2>;
+ };
+
+ cpu@3 {
+ compatible = "arm,cortex-a9";
+ reg = <3>;
+ next-level-cache = <&L2>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/power/opp.txt b/Documentation/devicetree/bindings/power/opp.txt
new file mode 100644
index 000000000000..74499e5033fc
--- /dev/null
+++ b/Documentation/devicetree/bindings/power/opp.txt
@@ -0,0 +1,25 @@
+* Generic OPP Interface
+
+SoCs have a standard set of tuples consisting of frequency and
+voltage pairs that the device will support per voltage domain. These
+are called Operating Performance Points or OPPs.
+
+Properties:
+- operating-points: An array of 2-tuples items, and each item consists
+ of frequency and voltage like <freq-kHz vol-uV>.
+ freq: clock frequency in kHz
+ vol: voltage in microvolt
+
+Examples:
+
+cpu@0 {
+ compatible = "arm,cortex-a9";
+ reg = <0>;
+ next-level-cache = <&L2>;
+ operating-points = <
+ /* kHz uV */
+ 792000 1100000
+ 396000 950000
+ 198000 850000
+ >;
+};