diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2014-03-07 15:17:36 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2014-03-07 15:17:36 -0800 |
commit | 2ef176f11a40d21e8d6c5d98a3c09d57c861fac6 (patch) | |
tree | bfac92c332d83f77a97514648e8b45b096d2a35c /Documentation | |
parent | b053940df41808f0f27568eb36820d10a8a987f8 (diff) | |
parent | cebc2de44d3bce53e46476e774126c298ca2c8a9 (diff) | |
download | linux-2ef176f11a40d21e8d6c5d98a3c09d57c861fac6.tar.bz2 |
Merge tag 'dm-3.14-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm
Pull device mapper fixes from Mike Snitzer:
- dm-cache memory allocation failure fix
- fix DM's Kconfig identation
- dm-snapshot metadata corruption fix for bug introduced in 3.14-rc1
- important refcount < 0 fix for the DM persistent data library's space
map metadata interface which fixes corruption reported by a few
dm-thinp users
and last but not least:
- more extensive fixes than ideal for dm-thinp's data resize capability
(which has had growing pain much like we've seen from -ENOSPC
handling of filesystems that mature).
The end result is dm-thinp now handles metadata operation failure and
no data space error conditions much better than before.
* tag 'dm-3.14-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm:
dm space map metadata: fix refcount decrement below 0 which caused corruption
dm thin: fix Documentation for held metadata root feature
dm thin: fix noflush suspend IO queueing
dm thin: fix deadlock in __requeue_bio_list
dm thin: fix out of data space handling
dm thin: ensure user takes action to validate data and metadata consistency
dm thin: synchronize the pool mode during suspend
dm snapshot: fix metadata corruption
dm: fix Kconfig indentation
dm cache mq: fix memory allocation failure for large cache devices
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/device-mapper/cache.txt | 11 | ||||
-rw-r--r-- | Documentation/device-mapper/thin-provisioning.txt | 34 |
2 files changed, 36 insertions, 9 deletions
diff --git a/Documentation/device-mapper/cache.txt b/Documentation/device-mapper/cache.txt index e6b72d355151..68c0f517c60e 100644 --- a/Documentation/device-mapper/cache.txt +++ b/Documentation/device-mapper/cache.txt @@ -124,12 +124,11 @@ the default being 204800 sectors (or 100MB). Updating on-disk metadata ------------------------- -On-disk metadata is committed every time a REQ_SYNC or REQ_FUA bio is -written. If no such requests are made then commits will occur every -second. This means the cache behaves like a physical disk that has a -write cache (the same is true of the thin-provisioning target). If -power is lost you may lose some recent writes. The metadata should -always be consistent in spite of any crash. +On-disk metadata is committed every time a FLUSH or FUA bio is written. +If no such requests are made then commits will occur every second. This +means the cache behaves like a physical disk that has a volatile write +cache. If power is lost you may lose some recent writes. The metadata +should always be consistent in spite of any crash. The 'dirty' state for a cache block changes far too frequently for us to keep updating it on the fly. So we treat it as a hint. In normal diff --git a/Documentation/device-mapper/thin-provisioning.txt b/Documentation/device-mapper/thin-provisioning.txt index 8a7a3d46e0da..05a27e9442bd 100644 --- a/Documentation/device-mapper/thin-provisioning.txt +++ b/Documentation/device-mapper/thin-provisioning.txt @@ -116,6 +116,35 @@ Resuming a device with a new table itself triggers an event so the userspace daemon can use this to detect a situation where a new table already exceeds the threshold. +A low water mark for the metadata device is maintained in the kernel and +will trigger a dm event if free space on the metadata device drops below +it. + +Updating on-disk metadata +------------------------- + +On-disk metadata is committed every time a FLUSH or FUA bio is written. +If no such requests are made then commits will occur every second. This +means the thin-provisioning target behaves like a physical disk that has +a volatile write cache. If power is lost you may lose some recent +writes. The metadata should always be consistent in spite of any crash. + +If data space is exhausted the pool will either error or queue IO +according to the configuration (see: error_if_no_space). If metadata +space is exhausted or a metadata operation fails: the pool will error IO +until the pool is taken offline and repair is performed to 1) fix any +potential inconsistencies and 2) clear the flag that imposes repair. +Once the pool's metadata device is repaired it may be resized, which +will allow the pool to return to normal operation. Note that if a pool +is flagged as needing repair, the pool's data and metadata devices +cannot be resized until repair is performed. It should also be noted +that when the pool's metadata space is exhausted the current metadata +transaction is aborted. Given that the pool will cache IO whose +completion may have already been acknowledged to upper IO layers +(e.g. filesystem) it is strongly suggested that consistency checks +(e.g. fsck) be performed on those layers when repair of the pool is +required. + Thin provisioning ----------------- @@ -258,10 +287,9 @@ ii) Status should register for the event and then check the target's status. held metadata root: - The location, in sectors, of the metadata root that has been + The location, in blocks, of the metadata root that has been 'held' for userspace read access. '-' indicates there is no - held root. This feature is not yet implemented so '-' is - always returned. + held root. discard_passdown|no_discard_passdown Whether or not discards are actually being passed down to the |