diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2016-07-27 12:03:20 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2016-07-27 12:03:20 -0700 |
commit | 468fc7ed5537615efe671d94248446ac24679773 (patch) | |
tree | 27bc9de792e863d6ec1630927b77ac9e7dabb38a /Documentation/networking/vrf.txt | |
parent | 08fd8c17686c6b09fa410a26d516548dd80ff147 (diff) | |
parent | 36232012344b8db67052432742deaf17f82e70e6 (diff) | |
download | linux-468fc7ed5537615efe671d94248446ac24679773.tar.bz2 |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller:
1) Unified UDP encapsulation offload methods for drivers, from
Alexander Duyck.
2) Make DSA binding more sane, from Andrew Lunn.
3) Support QCA9888 chips in ath10k, from Anilkumar Kolli.
4) Several workqueue usage cleanups, from Bhaktipriya Shridhar.
5) Add XDP (eXpress Data Path), essentially running BPF programs on RX
packets as soon as the device sees them, with the option to mirror
the packet on TX via the same interface. From Brenden Blanco and
others.
6) Allow qdisc/class stats dumps to run lockless, from Eric Dumazet.
7) Add VLAN support to b53 and bcm_sf2, from Florian Fainelli.
8) Simplify netlink conntrack entry layout, from Florian Westphal.
9) Add ipv4 forwarding support to mlxsw spectrum driver, from Ido
Schimmel, Yotam Gigi, and Jiri Pirko.
10) Add SKB array infrastructure and convert tun and macvtap over to it.
From Michael S Tsirkin and Jason Wang.
11) Support qdisc packet injection in pktgen, from John Fastabend.
12) Add neighbour monitoring framework to TIPC, from Jon Paul Maloy.
13) Add NV congestion control support to TCP, from Lawrence Brakmo.
14) Add GSO support to SCTP, from Marcelo Ricardo Leitner.
15) Allow GRO and RPS to function on macsec devices, from Paolo Abeni.
16) Support MPLS over IPV4, from Simon Horman.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1622 commits)
xgene: Fix build warning with ACPI disabled.
be2net: perform temperature query in adapter regardless of its interface state
l2tp: Correctly return -EBADF from pppol2tp_getname.
net/mlx5_core/health: Remove deprecated create_singlethread_workqueue
net: ipmr/ip6mr: update lastuse on entry change
macsec: ensure rx_sa is set when validation is disabled
tipc: dump monitor attributes
tipc: add a function to get the bearer name
tipc: get monitor threshold for the cluster
tipc: make cluster size threshold for monitoring configurable
tipc: introduce constants for tipc address validation
net: neigh: disallow transition to NUD_STALE if lladdr is unchanged in neigh_update()
MAINTAINERS: xgene: Add driver and documentation path
Documentation: dtb: xgene: Add MDIO node
dtb: xgene: Add MDIO node
drivers: net: xgene: ethtool: Use phy_ethtool_gset and sset
drivers: net: xgene: Use exported functions
drivers: net: xgene: Enable MDIO driver
drivers: net: xgene: Add backward compatibility
drivers: net: phy: xgene: Add MDIO driver
...
Diffstat (limited to 'Documentation/networking/vrf.txt')
-rw-r--r-- | Documentation/networking/vrf.txt | 203 |
1 files changed, 104 insertions, 99 deletions
diff --git a/Documentation/networking/vrf.txt b/Documentation/networking/vrf.txt index 5da679c573d2..755dab856392 100644 --- a/Documentation/networking/vrf.txt +++ b/Documentation/networking/vrf.txt @@ -15,9 +15,9 @@ the use of higher priority ip rules (Policy Based Routing, PBR) to take precedence over the VRF device rules directing specific traffic as desired. In addition, VRF devices allow VRFs to be nested within namespaces. For -example network namespaces provide separation of network interfaces at L1 -(Layer 1 separation), VLANs on the interfaces within a namespace provide -L2 separation and then VRF devices provide L3 separation. +example network namespaces provide separation of network interfaces at the +device layer, VLANs on the interfaces within a namespace provide L2 separation +and then VRF devices provide L3 separation. Design ------ @@ -37,21 +37,22 @@ are then enslaved to a VRF device: +------+ +------+ Packets received on an enslaved device and are switched to the VRF device -using an rx_handler which gives the impression that packets flow through -the VRF device. Similarly on egress routing rules are used to send packets -to the VRF device driver before getting sent out the actual interface. This -allows tcpdump on a VRF device to capture all packets into and out of the -VRF as a whole.[1] Similarly, netfilter [2] and tc rules can be applied -using the VRF device to specify rules that apply to the VRF domain as a whole. +in the IPv4 and IPv6 processing stacks giving the impression that packets +flow through the VRF device. Similarly on egress routing rules are used to +send packets to the VRF device driver before getting sent out the actual +interface. This allows tcpdump on a VRF device to capture all packets into +and out of the VRF as a whole.[1] Similarly, netfilter[2] and tc rules can be +applied using the VRF device to specify rules that apply to the VRF domain +as a whole. [1] Packets in the forwarded state do not flow through the device, so those packets are not seen by tcpdump. Will revisit this limitation in a future release. -[2] Iptables on ingress is limited to NF_INET_PRE_ROUTING only with skb->dev - set to real ingress device and egress is limited to NF_INET_POST_ROUTING. - Will revisit this limitation in a future release. - +[2] Iptables on ingress supports PREROUTING with skb->dev set to the real + ingress device and both INPUT and PREROUTING rules with skb->dev set to + the VRF device. For egress POSTROUTING and OUTPUT rules can be written + using either the VRF device or real egress device. Setup ----- @@ -59,23 +60,33 @@ Setup e.g, ip link add vrf-blue type vrf table 10 ip link set dev vrf-blue up -2. Rules are added that send lookups to the associated FIB table when the - iif or oif is the VRF device. e.g., +2. An l3mdev FIB rule directs lookups to the table associated with the device. + A single l3mdev rule is sufficient for all VRFs. The VRF device adds the + l3mdev rule for IPv4 and IPv6 when the first device is created with a + default preference of 1000. Users may delete the rule if desired and add + with a different priority or install per-VRF rules. + + Prior to the v4.8 kernel iif and oif rules are needed for each VRF device: ip ru add oif vrf-blue table 10 ip ru add iif vrf-blue table 10 - Set the default route for the table (and hence default route for the VRF). - e.g, ip route add table 10 prohibit default +3. Set the default route for the table (and hence default route for the VRF). + ip route add table 10 unreachable default -3. Enslave L3 interfaces to a VRF device. - e.g, ip link set dev eth1 master vrf-blue +4. Enslave L3 interfaces to a VRF device. + ip link set dev eth1 master vrf-blue Local and connected routes for enslaved devices are automatically moved to the table associated with VRF device. Any additional routes depending on - the enslaved device will need to be reinserted following the enslavement. + the enslaved device are dropped and will need to be reinserted to the VRF + FIB table following the enslavement. + + The IPv6 sysctl option keep_addr_on_down can be enabled to keep IPv6 global + addresses as VRF enslavement changes. + sysctl -w net.ipv6.conf.all.keep_addr_on_down=1 -4. Additional VRF routes are added to associated table. - e.g., ip route add table 10 ... +5. Additional VRF routes are added to associated table. + ip route add table 10 ... Applications @@ -87,39 +98,34 @@ VRF device: or to specify the output device using cmsg and IP_PKTINFO. +TCP services running in the default VRF context (ie., not bound to any VRF +device) can work across all VRF domains by enabling the tcp_l3mdev_accept +sysctl option: + sysctl -w net.ipv4.tcp_l3mdev_accept=1 -Limitations ------------ -Index of original ingress interface is not available via cmsg. Will address -soon. +netfilter rules on the VRF device can be used to limit access to services +running in the default VRF context as well. + +The default VRF does not have limited scope with respect to port bindings. +That is, if a process does a wildcard bind to a port in the default VRF it +owns the port across all VRF domains within the network namespace. ################################################################################ Using iproute2 for VRFs ======================= -VRF devices do *not* have to start with 'vrf-'. That is a convention used here -for emphasis of the device type, similar to use of 'br' in bridge names. +iproute2 supports the vrf keyword as of v4.7. For backwards compatibility this +section lists both commands where appropriate -- with the vrf keyword and the +older form without it. 1. Create a VRF To instantiate a VRF device and associate it with a table: $ ip link add dev NAME type vrf table ID - Remember to add the ip rules as well: - $ ip ru add oif NAME table 10 - $ ip ru add iif NAME table 10 - $ ip -6 ru add oif NAME table 10 - $ ip -6 ru add iif NAME table 10 - - Without the rules route lookups are not directed to the table. - - For example: - $ ip link add dev vrf-blue type vrf table 10 - $ ip ru add pref 200 oif vrf-blue table 10 - $ ip ru add pref 200 iif vrf-blue table 10 - $ ip -6 ru add pref 200 oif vrf-blue table 10 - $ ip -6 ru add pref 200 iif vrf-blue table 10 - + As of v4.8 the kernel supports the l3mdev FIB rule where a single rule + covers all VRFs. The l3mdev rule is created for IPv4 and IPv6 on first + device create. 2. List VRFs @@ -129,16 +135,16 @@ for emphasis of the device type, similar to use of 'br' in bridge names. For example: $ ip -d link show type vrf - 11: vrf-mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 + 11: mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0 vrf table 1 addrgenmode eui64 - 12: vrf-red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 + 12: red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0 vrf table 10 addrgenmode eui64 - 13: vrf-blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 + 13: blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0 vrf table 66 addrgenmode eui64 - 14: vrf-green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 + 14: green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0 vrf table 81 addrgenmode eui64 @@ -146,43 +152,44 @@ for emphasis of the device type, similar to use of 'br' in bridge names. Or in brief output: $ ip -br link show type vrf - vrf-mgmt UP 72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP> - vrf-red UP b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP> - vrf-blue UP 36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP> - vrf-green UP e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP> + mgmt UP 72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP> + red UP b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP> + blue UP 36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP> + green UP e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP> 3. Assign a Network Interface to a VRF Network interfaces are assigned to a VRF by enslaving the netdevice to a VRF device: - $ ip link set dev NAME master VRF-NAME + $ ip link set dev NAME master NAME On enslavement connected and local routes are automatically moved to the table associated with the VRF device. For example: - $ ip link set dev eth0 master vrf-mgmt + $ ip link set dev eth0 master mgmt 4. Show Devices Assigned to a VRF To show devices that have been assigned to a specific VRF add the master option to the ip command: - $ ip link show master VRF-NAME + $ ip link show vrf NAME + $ ip link show master NAME For example: - $ ip link show master vrf-red - 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master vrf-red state UP mode DEFAULT group default qlen 1000 + $ ip link show vrf red + 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000 link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff - 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master vrf-red state UP mode DEFAULT group default qlen 1000 + 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000 link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff - 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master vrf-red state DOWN mode DEFAULT group default qlen 1000 + 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN mode DEFAULT group default qlen 1000 link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff Or using the brief output: - $ ip -br link show master vrf-red + $ ip -br link show vrf red eth1 UP 02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP> eth2 UP 02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP> eth5 DOWN 02:00:00:00:02:06 <BROADCAST,MULTICAST> @@ -192,26 +199,28 @@ for emphasis of the device type, similar to use of 'br' in bridge names. To list neighbor entries associated with devices enslaved to a VRF device add the master option to the ip command: - $ ip [-6] neigh show master VRF-NAME + $ ip [-6] neigh show vrf NAME + $ ip [-6] neigh show master NAME For example: - $ ip neigh show master vrf-red + $ ip neigh show vrf red 10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE 10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE - $ ip -6 neigh show master vrf-red - 2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE + $ ip -6 neigh show vrf red + 2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE 6. Show Addresses for a VRF To show addresses for interfaces associated with a VRF add the master option to the ip command: - $ ip addr show master VRF-NAME + $ ip addr show vrf NAME + $ ip addr show master NAME For example: - $ ip addr show master vrf-red - 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master vrf-red state UP group default qlen 1000 + $ ip addr show vrf red + 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000 link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1 valid_lft forever preferred_lft forever @@ -219,7 +228,7 @@ for emphasis of the device type, similar to use of 'br' in bridge names. valid_lft forever preferred_lft forever inet6 fe80::ff:fe00:202/64 scope link valid_lft forever preferred_lft forever - 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master vrf-red state UP group default qlen 1000 + 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000 link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2 valid_lft forever preferred_lft forever @@ -227,11 +236,11 @@ for emphasis of the device type, similar to use of 'br' in bridge names. valid_lft forever preferred_lft forever inet6 fe80::ff:fe00:203/64 scope link valid_lft forever preferred_lft forever - 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master vrf-red state DOWN group default qlen 1000 + 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN group default qlen 1000 link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff Or in brief format: - $ ip -br addr show master vrf-red + $ ip -br addr show vrf red eth1 UP 10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64 eth2 UP 10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64 eth5 DOWN @@ -241,10 +250,11 @@ for emphasis of the device type, similar to use of 'br' in bridge names. To show routes for a VRF use the ip command to display the table associated with the VRF device: + $ ip [-6] route show vrf NAME $ ip [-6] route show table ID For example: - $ ip route show table vrf-red + $ ip route show vrf red prohibit default broadcast 10.2.1.0 dev eth1 proto kernel scope link src 10.2.1.2 10.2.1.0/24 dev eth1 proto kernel scope link src 10.2.1.2 @@ -255,7 +265,7 @@ for emphasis of the device type, similar to use of 'br' in bridge names. local 10.2.2.2 dev eth2 proto kernel scope host src 10.2.2.2 broadcast 10.2.2.255 dev eth2 proto kernel scope link src 10.2.2.2 - $ ip -6 route show table vrf-red + $ ip -6 route show vrf red local 2002:1:: dev lo proto none metric 0 pref medium local 2002:1::2 dev lo proto none metric 0 pref medium 2002:1::/120 dev eth1 proto kernel metric 256 pref medium @@ -268,23 +278,24 @@ for emphasis of the device type, similar to use of 'br' in bridge names. local fe80::ff:fe00:203 dev lo proto none metric 0 pref medium fe80::/64 dev eth1 proto kernel metric 256 pref medium fe80::/64 dev eth2 proto kernel metric 256 pref medium - ff00::/8 dev vrf-red metric 256 pref medium + ff00::/8 dev red metric 256 pref medium ff00::/8 dev eth1 metric 256 pref medium ff00::/8 dev eth2 metric 256 pref medium 8. Route Lookup for a VRF - A test route lookup can be done for a VRF by adding the oif option to ip: - $ ip [-6] route get oif VRF-NAME ADDRESS + A test route lookup can be done for a VRF: + $ ip [-6] route get vrf NAME ADDRESS + $ ip [-6] route get oif NAME ADDRESS For example: - $ ip route get 10.2.1.40 oif vrf-red - 10.2.1.40 dev eth1 table vrf-red src 10.2.1.2 + $ ip route get 10.2.1.40 vrf red + 10.2.1.40 dev eth1 table red src 10.2.1.2 cache - $ ip -6 route get 2002:1::32 oif vrf-red - 2002:1::32 from :: dev eth1 table vrf-red proto kernel src 2002:1::2 metric 256 pref medium + $ ip -6 route get 2002:1::32 vrf red + 2002:1::32 from :: dev eth1 table red proto kernel src 2002:1::2 metric 256 pref medium 9. Removing Network Interface from a VRF @@ -303,46 +314,40 @@ for emphasis of the device type, similar to use of 'br' in bridge names. Commands used in this example: -cat >> /etc/iproute2/rt_tables <<EOF -1 vrf-mgmt -10 vrf-red -66 vrf-blue -81 vrf-green +cat >> /etc/iproute2/rt_tables.d/vrf.conf <<EOF +1 mgmt +10 red +66 blue +81 green EOF function vrf_create { VRF=$1 TBID=$2 - # create VRF device - ip link add vrf-${VRF} type vrf table ${TBID} - # add rules that direct lookups to vrf table - ip ru add pref 200 oif vrf-${VRF} table ${TBID} - ip ru add pref 200 iif vrf-${VRF} table ${TBID} - ip -6 ru add pref 200 oif vrf-${VRF} table ${TBID} - ip -6 ru add pref 200 iif vrf-${VRF} table ${TBID} + # create VRF device + ip link add ${VRF} type vrf table ${TBID} if [ "${VRF}" != "mgmt" ]; then - ip route add table ${TBID} prohibit default + ip route add table ${TBID} unreachable default fi - ip link set dev vrf-${VRF} up - ip link set dev vrf-${VRF} state up + ip link set dev ${VRF} up } vrf_create mgmt 1 -ip link set dev eth0 master vrf-mgmt +ip link set dev eth0 master mgmt vrf_create red 10 -ip link set dev eth1 master vrf-red -ip link set dev eth2 master vrf-red -ip link set dev eth5 master vrf-red +ip link set dev eth1 master red +ip link set dev eth2 master red +ip link set dev eth5 master red vrf_create blue 66 -ip link set dev eth3 master vrf-blue +ip link set dev eth3 master blue vrf_create green 81 -ip link set dev eth4 master vrf-green +ip link set dev eth4 master green Interface addresses from /etc/network/interfaces: |