summaryrefslogtreecommitdiffstats
path: root/Documentation/networking/netlink_mmap.txt
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2013-05-01 14:08:52 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2013-05-01 14:08:52 -0700
commit73287a43cc79ca06629a88d1a199cd283f42456a (patch)
treeacf4456e260115bea77ee31a29f10ce17f0db45c /Documentation/networking/netlink_mmap.txt
parent251df49db3327c64bf917bfdba94491fde2b4ee0 (diff)
parent20074f357da4a637430aec2879c9d864c5d2c23c (diff)
downloadlinux-73287a43cc79ca06629a88d1a199cd283f42456a.tar.bz2
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller: "Highlights (1721 non-merge commits, this has to be a record of some sort): 1) Add 'random' mode to team driver, from Jiri Pirko and Eric Dumazet. 2) Make it so that any driver that supports configuration of multiple MAC addresses can provide the forwarding database add and del calls by providing a default implementation and hooking that up if the driver doesn't have an explicit set of handlers. From Vlad Yasevich. 3) Support GSO segmentation over tunnels and other encapsulating devices such as VXLAN, from Pravin B Shelar. 4) Support L2 GRE tunnels in the flow dissector, from Michael Dalton. 5) Implement Tail Loss Probe (TLP) detection in TCP, from Nandita Dukkipati. 6) In the PHY layer, allow supporting wake-on-lan in situations where the PHY registers have to be written for it to be configured. Use it to support wake-on-lan in mv643xx_eth. From Michael Stapelberg. 7) Significantly improve firewire IPV6 support, from YOSHIFUJI Hideaki. 8) Allow multiple packets to be sent in a single transmission using network coding in batman-adv, from Martin Hundebøll. 9) Add support for T5 cxgb4 chips, from Santosh Rastapur. 10) Generalize the VXLAN forwarding tables so that there is more flexibility in configurating various aspects of the endpoints. From David Stevens. 11) Support RSS and TSO in hardware over GRE tunnels in bxn2x driver, from Dmitry Kravkov. 12) Zero copy support in nfnelink_queue, from Eric Dumazet and Pablo Neira Ayuso. 13) Start adding networking selftests. 14) In situations of overload on the same AF_PACKET fanout socket, or per-cpu packet receive queue, minimize drop by distributing the load to other cpus/fanouts. From Willem de Bruijn and Eric Dumazet. 15) Add support for new payload offset BPF instruction, from Daniel Borkmann. 16) Convert several drivers over to mdoule_platform_driver(), from Sachin Kamat. 17) Provide a minimal BPF JIT image disassembler userspace tool, from Daniel Borkmann. 18) Rewrite F-RTO implementation in TCP to match the final specification of it in RFC4138 and RFC5682. From Yuchung Cheng. 19) Provide netlink socket diag of netlink sockets ("Yo dawg, I hear you like netlink, so I implemented netlink dumping of netlink sockets.") From Andrey Vagin. 20) Remove ugly passing of rtnetlink attributes into rtnl_doit functions, from Thomas Graf. 21) Allow userspace to be able to see if a configuration change occurs in the middle of an address or device list dump, from Nicolas Dichtel. 22) Support RFC3168 ECN protection for ipv6 fragments, from Hannes Frederic Sowa. 23) Increase accuracy of packet length used by packet scheduler, from Jason Wang. 24) Beginning set of changes to make ipv4/ipv6 fragment handling more scalable and less susceptible to overload and locking contention, from Jesper Dangaard Brouer. 25) Get rid of using non-type-safe NLMSG_* macros and use nlmsg_*() instead. From Hong Zhiguo. 26) Optimize route usage in IPVS by avoiding reference counting where possible, from Julian Anastasov. 27) Convert IPVS schedulers to RCU, also from Julian Anastasov. 28) Support cpu fanouts in xt_NFQUEUE netfilter target, from Holger Eitzenberger. 29) Network namespace support for nf_log, ebt_log, xt_LOG, ipt_ULOG, nfnetlink_log, and nfnetlink_queue. From Gao feng. 30) Implement RFC3168 ECN protection, from Hannes Frederic Sowa. 31) Support several new r8169 chips, from Hayes Wang. 32) Support tokenized interface identifiers in ipv6, from Daniel Borkmann. 33) Use usbnet_link_change() helper in USB net driver, from Ming Lei. 34) Add 802.1ad vlan offload support, from Patrick McHardy. 35) Support mmap() based netlink communication, also from Patrick McHardy. 36) Support HW timestamping in mlx4 driver, from Amir Vadai. 37) Rationalize AF_PACKET packet timestamping when transmitting, from Willem de Bruijn and Daniel Borkmann. 38) Bring parity to what's provided by /proc/net/packet socket dumping and the info provided by netlink socket dumping of AF_PACKET sockets. From Nicolas Dichtel. 39) Fix peeking beyond zero sized SKBs in AF_UNIX, from Benjamin Poirier" * git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1722 commits) filter: fix va_list build error af_unix: fix a fatal race with bit fields bnx2x: Prevent memory leak when cnic is absent bnx2x: correct reading of speed capabilities net: sctp: attribute printl with __printf for gcc fmt checks netlink: kconfig: move mmap i/o into netlink kconfig netpoll: convert mutex into a semaphore netlink: Fix skb ref counting. net_sched: act_ipt forward compat with xtables mlx4_en: fix a build error on 32bit arches Revert "bnx2x: allow nvram test to run when device is down" bridge: avoid OOPS if root port not found drivers: net: cpsw: fix kernel warn on cpsw irq enable sh_eth: use random MAC address if no valid one supplied 3c509.c: call SET_NETDEV_DEV for all device types (ISA/ISAPnP/EISA) tg3: fix to append hardware time stamping flags unix/stream: fix peeking with an offset larger than data in queue unix/dgram: fix peeking with an offset larger than data in queue unix/dgram: peek beyond 0-sized skbs openvswitch: Remove unneeded ovs_netdev_get_ifindex() ...
Diffstat (limited to 'Documentation/networking/netlink_mmap.txt')
-rw-r--r--Documentation/networking/netlink_mmap.txt339
1 files changed, 339 insertions, 0 deletions
diff --git a/Documentation/networking/netlink_mmap.txt b/Documentation/networking/netlink_mmap.txt
new file mode 100644
index 000000000000..1c2dab409625
--- /dev/null
+++ b/Documentation/networking/netlink_mmap.txt
@@ -0,0 +1,339 @@
+This file documents how to use memory mapped I/O with netlink.
+
+Author: Patrick McHardy <kaber@trash.net>
+
+Overview
+--------
+
+Memory mapped netlink I/O can be used to increase throughput and decrease
+overhead of unicast receive and transmit operations. Some netlink subsystems
+require high throughput, these are mainly the netfilter subsystems
+nfnetlink_queue and nfnetlink_log, but it can also help speed up large
+dump operations of f.i. the routing database.
+
+Memory mapped netlink I/O used two circular ring buffers for RX and TX which
+are mapped into the processes address space.
+
+The RX ring is used by the kernel to directly construct netlink messages into
+user-space memory without copying them as done with regular socket I/O,
+additionally as long as the ring contains messages no recvmsg() or poll()
+syscalls have to be issued by user-space to get more message.
+
+The TX ring is used to process messages directly from user-space memory, the
+kernel processes all messages contained in the ring using a single sendmsg()
+call.
+
+Usage overview
+--------------
+
+In order to use memory mapped netlink I/O, user-space needs three main changes:
+
+- ring setup
+- conversion of the RX path to get messages from the ring instead of recvmsg()
+- conversion of the TX path to construct messages into the ring
+
+Ring setup is done using setsockopt() to provide the ring parameters to the
+kernel, then a call to mmap() to map the ring into the processes address space:
+
+- setsockopt(fd, SOL_NETLINK, NETLINK_RX_RING, &params, sizeof(params));
+- setsockopt(fd, SOL_NETLINK, NETLINK_TX_RING, &params, sizeof(params));
+- ring = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0)
+
+Usage of either ring is optional, but even if only the RX ring is used the
+mapping still needs to be writable in order to update the frame status after
+processing.
+
+Conversion of the reception path involves calling poll() on the file
+descriptor, once the socket is readable the frames from the ring are
+processsed in order until no more messages are available, as indicated by
+a status word in the frame header.
+
+On kernel side, in order to make use of memory mapped I/O on receive, the
+originating netlink subsystem needs to support memory mapped I/O, otherwise
+it will use an allocated socket buffer as usual and the contents will be
+ copied to the ring on transmission, nullifying most of the performance gains.
+Dumps of kernel databases automatically support memory mapped I/O.
+
+Conversion of the transmit path involves changing message contruction to
+use memory from the TX ring instead of (usually) a buffer declared on the
+stack and setting up the frame header approriately. Optionally poll() can
+be used to wait for free frames in the TX ring.
+
+Structured and definitions for using memory mapped I/O are contained in
+<linux/netlink.h>.
+
+RX and TX rings
+----------------
+
+Each ring contains a number of continous memory blocks, containing frames of
+fixed size dependant on the parameters used for ring setup.
+
+Ring: [ block 0 ]
+ [ frame 0 ]
+ [ frame 1 ]
+ [ block 1 ]
+ [ frame 2 ]
+ [ frame 3 ]
+ ...
+ [ block n ]
+ [ frame 2 * n ]
+ [ frame 2 * n + 1 ]
+
+The blocks are only visible to the kernel, from the point of view of user-space
+the ring just contains the frames in a continous memory zone.
+
+The ring parameters used for setting up the ring are defined as follows:
+
+struct nl_mmap_req {
+ unsigned int nm_block_size;
+ unsigned int nm_block_nr;
+ unsigned int nm_frame_size;
+ unsigned int nm_frame_nr;
+};
+
+Frames are grouped into blocks, where each block is a continous region of memory
+and holds nm_block_size / nm_frame_size frames. The total number of frames in
+the ring is nm_frame_nr. The following invariants hold:
+
+- frames_per_block = nm_block_size / nm_frame_size
+
+- nm_frame_nr = frames_per_block * nm_block_nr
+
+Some parameters are constrained, specifically:
+
+- nm_block_size must be a multiple of the architectures memory page size.
+ The getpagesize() function can be used to get the page size.
+
+- nm_frame_size must be equal or larger to NL_MMAP_HDRLEN, IOW a frame must be
+ able to hold at least the frame header
+
+- nm_frame_size must be smaller or equal to nm_block_size
+
+- nm_frame_size must be a multiple of NL_MMAP_MSG_ALIGNMENT
+
+- nm_frame_nr must equal the actual number of frames as specified above.
+
+When the kernel can't allocate phsyically continous memory for a ring block,
+it will fall back to use physically discontinous memory. This might affect
+performance negatively, in order to avoid this the nm_frame_size parameter
+should be chosen to be as small as possible for the required frame size and
+the number of blocks should be increased instead.
+
+Ring frames
+------------
+
+Each frames contain a frame header, consisting of a synchronization word and some
+meta-data, and the message itself.
+
+Frame: [ header message ]
+
+The frame header is defined as follows:
+
+struct nl_mmap_hdr {
+ unsigned int nm_status;
+ unsigned int nm_len;
+ __u32 nm_group;
+ /* credentials */
+ __u32 nm_pid;
+ __u32 nm_uid;
+ __u32 nm_gid;
+};
+
+- nm_status is used for synchronizing processing between the kernel and user-
+ space and specifies ownership of the frame as well as the operation to perform
+
+- nm_len contains the length of the message contained in the data area
+
+- nm_group specified the destination multicast group of message
+
+- nm_pid, nm_uid and nm_gid contain the netlink pid, UID and GID of the sending
+ process. These values correspond to the data available using SOCK_PASSCRED in
+ the SCM_CREDENTIALS cmsg.
+
+The possible values in the status word are:
+
+- NL_MMAP_STATUS_UNUSED:
+ RX ring: frame belongs to the kernel and contains no message
+ for user-space. Approriate action is to invoke poll()
+ to wait for new messages.
+
+ TX ring: frame belongs to user-space and can be used for
+ message construction.
+
+- NL_MMAP_STATUS_RESERVED:
+ RX ring only: frame is currently used by the kernel for message
+ construction and contains no valid message yet.
+ Appropriate action is to invoke poll() to wait for
+ new messages.
+
+- NL_MMAP_STATUS_VALID:
+ RX ring: frame contains a valid message. Approriate action is
+ to process the message and release the frame back to
+ the kernel by setting the status to
+ NL_MMAP_STATUS_UNUSED or queue the frame by setting the
+ status to NL_MMAP_STATUS_SKIP.
+
+ TX ring: the frame contains a valid message from user-space to
+ be processed by the kernel. After completing processing
+ the kernel will release the frame back to user-space by
+ setting the status to NL_MMAP_STATUS_UNUSED.
+
+- NL_MMAP_STATUS_COPY:
+ RX ring only: a message is ready to be processed but could not be
+ stored in the ring, either because it exceeded the
+ frame size or because the originating subsystem does
+ not support memory mapped I/O. Appropriate action is
+ to invoke recvmsg() to receive the message and release
+ the frame back to the kernel by setting the status to
+ NL_MMAP_STATUS_UNUSED.
+
+- NL_MMAP_STATUS_SKIP:
+ RX ring only: user-space queued the message for later processing, but
+ processed some messages following it in the ring. The
+ kernel should skip this frame when looking for unused
+ frames.
+
+The data area of a frame begins at a offset of NL_MMAP_HDRLEN relative to the
+frame header.
+
+TX limitations
+--------------
+
+Kernel processing usually involves validation of the message received by
+user-space, then processing its contents. The kernel must assure that
+userspace is not able to modify the message contents after they have been
+validated. In order to do so, the message is copied from the ring frame
+to an allocated buffer if either of these conditions is false:
+
+- only a single mapping of the ring exists
+- the file descriptor is not shared between processes
+
+This means that for threaded programs, the kernel will fall back to copying.
+
+Example
+-------
+
+Ring setup:
+
+ unsigned int block_size = 16 * getpagesize();
+ struct nl_mmap_req req = {
+ .nm_block_size = block_size,
+ .nm_block_nr = 64,
+ .nm_frame_size = 16384,
+ .nm_frame_nr = 64 * block_size / 16384,
+ };
+ unsigned int ring_size;
+ void *rx_ring, *tx_ring;
+
+ /* Configure ring parameters */
+ if (setsockopt(fd, NETLINK_RX_RING, &req, sizeof(req)) < 0)
+ exit(1);
+ if (setsockopt(fd, NETLINK_TX_RING, &req, sizeof(req)) < 0)
+ exit(1)
+
+ /* Calculate size of each invididual ring */
+ ring_size = req.nm_block_nr * req.nm_block_size;
+
+ /* Map RX/TX rings. The TX ring is located after the RX ring */
+ rx_ring = mmap(NULL, 2 * ring_size, PROT_READ | PROT_WRITE,
+ MAP_SHARED, fd, 0);
+ if ((long)rx_ring == -1L)
+ exit(1);
+ tx_ring = rx_ring + ring_size:
+
+Message reception:
+
+This example assumes some ring parameters of the ring setup are available.
+
+ unsigned int frame_offset = 0;
+ struct nl_mmap_hdr *hdr;
+ struct nlmsghdr *nlh;
+ unsigned char buf[16384];
+ ssize_t len;
+
+ while (1) {
+ struct pollfd pfds[1];
+
+ pfds[0].fd = fd;
+ pfds[0].events = POLLIN | POLLERR;
+ pfds[0].revents = 0;
+
+ if (poll(pfds, 1, -1) < 0 && errno != -EINTR)
+ exit(1);
+
+ /* Check for errors. Error handling omitted */
+ if (pfds[0].revents & POLLERR)
+ <handle error>
+
+ /* If no new messages, poll again */
+ if (!(pfds[0].revents & POLLIN))
+ continue;
+
+ /* Process all frames */
+ while (1) {
+ /* Get next frame header */
+ hdr = rx_ring + frame_offset;
+
+ if (hdr->nm_status == NL_MMAP_STATUS_VALID)
+ /* Regular memory mapped frame */
+ nlh = (void *hdr) + NL_MMAP_HDRLEN;
+ len = hdr->nm_len;
+
+ /* Release empty message immediately. May happen
+ * on error during message construction.
+ */
+ if (len == 0)
+ goto release;
+ } else if (hdr->nm_status == NL_MMAP_STATUS_COPY) {
+ /* Frame queued to socket receive queue */
+ len = recv(fd, buf, sizeof(buf), MSG_DONTWAIT);
+ if (len <= 0)
+ break;
+ nlh = buf;
+ } else
+ /* No more messages to process, continue polling */
+ break;
+
+ process_msg(nlh);
+release:
+ /* Release frame back to the kernel */
+ hdr->nm_status = NL_MMAP_STATUS_UNUSED;
+
+ /* Advance frame offset to next frame */
+ frame_offset = (frame_offset + frame_size) % ring_size;
+ }
+ }
+
+Message transmission:
+
+This example assumes some ring parameters of the ring setup are available.
+A single message is constructed and transmitted, to send multiple messages
+at once they would be constructed in consecutive frames before a final call
+to sendto().
+
+ unsigned int frame_offset = 0;
+ struct nl_mmap_hdr *hdr;
+ struct nlmsghdr *nlh;
+ struct sockaddr_nl addr = {
+ .nl_family = AF_NETLINK,
+ };
+
+ hdr = tx_ring + frame_offset;
+ if (hdr->nm_status != NL_MMAP_STATUS_UNUSED)
+ /* No frame available. Use poll() to avoid. */
+ exit(1);
+
+ nlh = (void *)hdr + NL_MMAP_HDRLEN;
+
+ /* Build message */
+ build_message(nlh);
+
+ /* Fill frame header: length and status need to be set */
+ hdr->nm_len = nlh->nlmsg_len;
+ hdr->nm_status = NL_MMAP_STATUS_VALID;
+
+ if (sendto(fd, NULL, 0, 0, &addr, sizeof(addr)) < 0)
+ exit(1);
+
+ /* Advance frame offset to next frame */
+ frame_offset = (frame_offset + frame_size) % ring_size;