diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /Documentation/io_ordering.txt | |
download | linux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.bz2 |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'Documentation/io_ordering.txt')
-rw-r--r-- | Documentation/io_ordering.txt | 47 |
1 files changed, 47 insertions, 0 deletions
diff --git a/Documentation/io_ordering.txt b/Documentation/io_ordering.txt new file mode 100644 index 000000000000..9faae6f26d32 --- /dev/null +++ b/Documentation/io_ordering.txt @@ -0,0 +1,47 @@ +On some platforms, so-called memory-mapped I/O is weakly ordered. On such +platforms, driver writers are responsible for ensuring that I/O writes to +memory-mapped addresses on their device arrive in the order intended. This is +typically done by reading a 'safe' device or bridge register, causing the I/O +chipset to flush pending writes to the device before any reads are posted. A +driver would usually use this technique immediately prior to the exit of a +critical section of code protected by spinlocks. This would ensure that +subsequent writes to I/O space arrived only after all prior writes (much like a +memory barrier op, mb(), only with respect to I/O). + +A more concrete example from a hypothetical device driver: + + ... +CPU A: spin_lock_irqsave(&dev_lock, flags) +CPU A: val = readl(my_status); +CPU A: ... +CPU A: writel(newval, ring_ptr); +CPU A: spin_unlock_irqrestore(&dev_lock, flags) + ... +CPU B: spin_lock_irqsave(&dev_lock, flags) +CPU B: val = readl(my_status); +CPU B: ... +CPU B: writel(newval2, ring_ptr); +CPU B: spin_unlock_irqrestore(&dev_lock, flags) + ... + +In the case above, the device may receive newval2 before it receives newval, +which could cause problems. Fixing it is easy enough though: + + ... +CPU A: spin_lock_irqsave(&dev_lock, flags) +CPU A: val = readl(my_status); +CPU A: ... +CPU A: writel(newval, ring_ptr); +CPU A: (void)readl(safe_register); /* maybe a config register? */ +CPU A: spin_unlock_irqrestore(&dev_lock, flags) + ... +CPU B: spin_lock_irqsave(&dev_lock, flags) +CPU B: val = readl(my_status); +CPU B: ... +CPU B: writel(newval2, ring_ptr); +CPU B: (void)readl(safe_register); /* maybe a config register? */ +CPU B: spin_unlock_irqrestore(&dev_lock, flags) + +Here, the reads from safe_register will cause the I/O chipset to flush any +pending writes before actually posting the read to the chipset, preventing +possible data corruption. |