diff options
author | Jiri Kosina <jkosina@suse.cz> | 2012-04-08 21:48:52 +0200 |
---|---|---|
committer | Jiri Kosina <jkosina@suse.cz> | 2012-04-08 21:48:52 +0200 |
commit | e75d660672ddd11704b7f0fdb8ff21968587b266 (patch) | |
tree | ccb9c107744c10b553c0373e450bee3971d16c00 /Documentation/devicetree | |
parent | 61282f37927143e45b03153f3e7b48d6b702147a (diff) | |
parent | 0034102808e0dbbf3a2394b82b1bb40b5778de9e (diff) | |
download | linux-e75d660672ddd11704b7f0fdb8ff21968587b266.tar.bz2 |
Merge branch 'master' into for-next
Merge with latest Linus' tree, as I have incoming patches
that fix code that is newer than current HEAD of for-next.
Conflicts:
drivers/net/ethernet/realtek/r8169.c
Diffstat (limited to 'Documentation/devicetree')
56 files changed, 1934 insertions, 37 deletions
diff --git a/Documentation/devicetree/bindings/arm/atmel-aic.txt b/Documentation/devicetree/bindings/arm/atmel-aic.txt new file mode 100644 index 000000000000..aabca4f83402 --- /dev/null +++ b/Documentation/devicetree/bindings/arm/atmel-aic.txt @@ -0,0 +1,38 @@ +* Advanced Interrupt Controller (AIC) + +Required properties: +- compatible: Should be "atmel,<chip>-aic" +- interrupt-controller: Identifies the node as an interrupt controller. +- interrupt-parent: For single AIC system, it is an empty property. +- #interrupt-cells: The number of cells to define the interrupts. It sould be 2. + The first cell is the IRQ number (aka "Peripheral IDentifier" on datasheet). + The second cell is used to specify flags: + bits[3:0] trigger type and level flags: + 1 = low-to-high edge triggered. + 2 = high-to-low edge triggered. + 4 = active high level-sensitive. + 8 = active low level-sensitive. + Valid combinations are 1, 2, 3, 4, 8. + Default flag for internal sources should be set to 4 (active high). +- reg: Should contain AIC registers location and length + +Examples: + /* + * AIC + */ + aic: interrupt-controller@fffff000 { + compatible = "atmel,at91rm9200-aic"; + interrupt-controller; + interrupt-parent; + #interrupt-cells = <2>; + reg = <0xfffff000 0x200>; + }; + + /* + * An interrupt generating device that is wired to an AIC. + */ + dma: dma-controller@ffffec00 { + compatible = "atmel,at91sam9g45-dma"; + reg = <0xffffec00 0x200>; + interrupts = <21 4>; + }; diff --git a/Documentation/devicetree/bindings/arm/atmel-at91.txt b/Documentation/devicetree/bindings/arm/atmel-at91.txt new file mode 100644 index 000000000000..ecc81e368715 --- /dev/null +++ b/Documentation/devicetree/bindings/arm/atmel-at91.txt @@ -0,0 +1,92 @@ +Atmel AT91 device tree bindings. +================================ + +PIT Timer required properties: +- compatible: Should be "atmel,at91sam9260-pit" +- reg: Should contain registers location and length +- interrupts: Should contain interrupt for the PIT which is the IRQ line + shared across all System Controller members. + +TC/TCLIB Timer required properties: +- compatible: Should be "atmel,<chip>-pit". + <chip> can be "at91rm9200" or "at91sam9x5" +- reg: Should contain registers location and length +- interrupts: Should contain all interrupts for the TC block + Note that you can specify several interrupt cells if the TC + block has one interrupt per channel. + +Examples: + +One interrupt per TC block: + tcb0: timer@fff7c000 { + compatible = "atmel,at91rm9200-tcb"; + reg = <0xfff7c000 0x100>; + interrupts = <18 4>; + }; + +One interrupt per TC channel in a TC block: + tcb1: timer@fffdc000 { + compatible = "atmel,at91rm9200-tcb"; + reg = <0xfffdc000 0x100>; + interrupts = <26 4 27 4 28 4>; + }; + +RSTC Reset Controller required properties: +- compatible: Should be "atmel,<chip>-rstc". + <chip> can be "at91sam9260" or "at91sam9g45" +- reg: Should contain registers location and length + +Example: + + rstc@fffffd00 { + compatible = "atmel,at91sam9260-rstc"; + reg = <0xfffffd00 0x10>; + }; + +RAMC SDRAM/DDR Controller required properties: +- compatible: Should be "atmel,at91sam9260-sdramc", + "atmel,at91sam9g45-ddramc", +- reg: Should contain registers location and length + For at91sam9263 and at91sam9g45 you must specify 2 entries. + +Examples: + + ramc0: ramc@ffffe800 { + compatible = "atmel,at91sam9g45-ddramc"; + reg = <0xffffe800 0x200>; + }; + + ramc0: ramc@ffffe400 { + compatible = "atmel,at91sam9g45-ddramc"; + reg = <0xffffe400 0x200 + 0xffffe600 0x200>; + }; + +SHDWC Shutdown Controller + +required properties: +- compatible: Should be "atmel,<chip>-shdwc". + <chip> can be "at91sam9260", "at91sam9rl" or "at91sam9x5". +- reg: Should contain registers location and length + +optional properties: +- atmel,wakeup-mode: String, operation mode of the wakeup mode. + Supported values are: "none", "high", "low", "any". +- atmel,wakeup-counter: Counter on Wake-up 0 (between 0x0 and 0xf). + +optional at91sam9260 properties: +- atmel,wakeup-rtt-timer: boolean to enable Real-time Timer Wake-up. + +optional at91sam9rl properties: +- atmel,wakeup-rtc-timer: boolean to enable Real-time Clock Wake-up. +- atmel,wakeup-rtt-timer: boolean to enable Real-time Timer Wake-up. + +optional at91sam9x5 properties: +- atmel,wakeup-rtc-timer: boolean to enable Real-time Clock Wake-up. + +Example: + + rstc@fffffd00 { + compatible = "atmel,at91sam9260-rstc"; + reg = <0xfffffd00 0x10>; + }; diff --git a/Documentation/devicetree/bindings/arm/atmel-pmc.txt b/Documentation/devicetree/bindings/arm/atmel-pmc.txt new file mode 100644 index 000000000000..389bed5056e8 --- /dev/null +++ b/Documentation/devicetree/bindings/arm/atmel-pmc.txt @@ -0,0 +1,11 @@ +* Power Management Controller (PMC) + +Required properties: +- compatible: Should be "atmel,at91rm9200-pmc" +- reg: Should contain PMC registers location and length + +Examples: + pmc: pmc@fffffc00 { + compatible = "atmel,at91rm9200-pmc"; + reg = <0xfffffc00 0x100>; + }; diff --git a/Documentation/devicetree/bindings/arm/exynos/power_domain.txt b/Documentation/devicetree/bindings/arm/exynos/power_domain.txt new file mode 100644 index 000000000000..6528e215c5fe --- /dev/null +++ b/Documentation/devicetree/bindings/arm/exynos/power_domain.txt @@ -0,0 +1,21 @@ +* Samsung Exynos Power Domains + +Exynos processors include support for multiple power domains which are used +to gate power to one or more peripherals on the processor. + +Required Properties: +- compatiable: should be one of the following. + * samsung,exynos4210-pd - for exynos4210 type power domain. +- reg: physical base address of the controller and length of memory mapped + region. + +Optional Properties: +- samsung,exynos4210-pd-off: Specifies that the power domain is in turned-off + state during boot and remains to be turned-off until explicitly turned-on. + +Example: + + lcd0: power-domain-lcd0 { + compatible = "samsung,exynos4210-pd"; + reg = <0x10023C00 0x10>; + }; diff --git a/Documentation/devicetree/bindings/arm/fsl.txt b/Documentation/devicetree/bindings/arm/fsl.txt index 54bdddadf1cf..bfbc771a65f8 100644 --- a/Documentation/devicetree/bindings/arm/fsl.txt +++ b/Documentation/devicetree/bindings/arm/fsl.txt @@ -28,3 +28,25 @@ Required root node properties: i.MX6 Quad SABRE Lite Board Required root node properties: - compatible = "fsl,imx6q-sabrelite", "fsl,imx6q"; + +Generic i.MX boards +------------------- + +No iomux setup is done for these boards, so this must have been configured +by the bootloader for boards to work with the generic bindings. + +i.MX27 generic board +Required root node properties: + - compatible = "fsl,imx27"; + +i.MX51 generic board +Required root node properties: + - compatible = "fsl,imx51"; + +i.MX53 generic board +Required root node properties: + - compatible = "fsl,imx53"; + +i.MX6q generic board +Required root node properties: + - compatible = "fsl,imx6q"; diff --git a/Documentation/devicetree/bindings/arm/mrvl.txt b/Documentation/devicetree/bindings/arm/mrvl.txt new file mode 100644 index 000000000000..d8de933e9d81 --- /dev/null +++ b/Documentation/devicetree/bindings/arm/mrvl.txt @@ -0,0 +1,6 @@ +Marvell Platforms Device Tree Bindings +---------------------------------------------------- + +PXA168 Aspenite Board +Required root node properties: + - compatible = "mrvl,pxa168-aspenite", "mrvl,pxa168"; diff --git a/Documentation/devicetree/bindings/arm/omap/intc.txt b/Documentation/devicetree/bindings/arm/omap/intc.txt new file mode 100644 index 000000000000..f2583e6ec060 --- /dev/null +++ b/Documentation/devicetree/bindings/arm/omap/intc.txt @@ -0,0 +1,27 @@ +* OMAP Interrupt Controller + +OMAP2/3 are using a TI interrupt controller that can support several +configurable number of interrupts. + +Main node required properties: + +- compatible : should be: + "ti,omap2-intc" +- interrupt-controller : Identifies the node as an interrupt controller +- #interrupt-cells : Specifies the number of cells needed to encode an + interrupt source. The type shall be a <u32> and the value shall be 1. + + The cell contains the interrupt number in the range [0-128]. +- ti,intc-size: Number of interrupts handled by the interrupt controller. +- reg: physical base address and size of the intc registers map. + +Example: + + intc: interrupt-controller@1 { + compatible = "ti,omap2-intc"; + interrupt-controller; + #interrupt-cells = <1>; + ti,intc-size = <96>; + reg = <0x48200000 0x1000>; + }; + diff --git a/Documentation/devicetree/bindings/arm/omap/omap.txt b/Documentation/devicetree/bindings/arm/omap/omap.txt index edc618a8aab2..e78e8bccac30 100644 --- a/Documentation/devicetree/bindings/arm/omap/omap.txt +++ b/Documentation/devicetree/bindings/arm/omap/omap.txt @@ -41,3 +41,9 @@ Boards: - OMAP4 PandaBoard : Low cost community board compatible = "ti,omap4-panda", "ti,omap4430" + +- OMAP3 EVM : Software Developement Board for OMAP35x, AM/DM37x + compatible = "ti,omap3-evm", "ti,omap3" + +- AM335X EVM : Software Developement Board for AM335x + compatible = "ti,am335x-evm", "ti,am33xx", "ti,omap3" diff --git a/Documentation/devicetree/bindings/arm/spear.txt b/Documentation/devicetree/bindings/arm/spear.txt new file mode 100644 index 000000000000..f8e54f092328 --- /dev/null +++ b/Documentation/devicetree/bindings/arm/spear.txt @@ -0,0 +1,8 @@ +ST SPEAr Platforms Device Tree Bindings +--------------------------------------- + +Boards with the ST SPEAr600 SoC shall have the following properties: + +Required root node property: + +compatible = "st,spear600"; diff --git a/Documentation/devicetree/bindings/arm/tegra/emc.txt b/Documentation/devicetree/bindings/arm/tegra/emc.txt new file mode 100644 index 000000000000..09335f8eee00 --- /dev/null +++ b/Documentation/devicetree/bindings/arm/tegra/emc.txt @@ -0,0 +1,100 @@ +Embedded Memory Controller + +Properties: +- name : Should be emc +- #address-cells : Should be 1 +- #size-cells : Should be 0 +- compatible : Should contain "nvidia,tegra20-emc". +- reg : Offset and length of the register set for the device +- nvidia,use-ram-code : If present, the sub-nodes will be addressed + and chosen using the ramcode board selector. If omitted, only one + set of tables can be present and said tables will be used + irrespective of ram-code configuration. + +Child device nodes describe the memory settings for different configurations and clock rates. + +Example: + + emc@7000f400 { + #address-cells = < 1 >; + #size-cells = < 0 >; + compatible = "nvidia,tegra20-emc"; + reg = <0x7000f4000 0x200>; + } + + +Embedded Memory Controller ram-code table + +If the emc node has the nvidia,use-ram-code property present, then the +next level of nodes below the emc table are used to specify which settings +apply for which ram-code settings. + +If the emc node lacks the nvidia,use-ram-code property, this level is omitted +and the tables are stored directly under the emc node (see below). + +Properties: + +- name : Should be emc-tables +- nvidia,ram-code : the binary representation of the ram-code board strappings + for which this node (and children) are valid. + + + +Embedded Memory Controller configuration table + +This is a table containing the EMC register settings for the various +operating speeds of the memory controller. They are always located as +subnodes of the emc controller node. + +There are two ways of specifying which tables to use: + +* The simplest is if there is just one set of tables in the device tree, + and they will always be used (based on which frequency is used). + This is the preferred method, especially when firmware can fill in + this information based on the specific system information and just + pass it on to the kernel. + +* The slightly more complex one is when more than one memory configuration + might exist on the system. The Tegra20 platform handles this during + early boot by selecting one out of possible 4 memory settings based + on a 2-pin "ram code" bootstrap setting on the board. The values of + these strappings can be read through a register in the SoC, and thus + used to select which tables to use. + +Properties: +- name : Should be emc-table +- compatible : Should contain "nvidia,tegra20-emc-table". +- reg : either an opaque enumerator to tell different tables apart, or + the valid frequency for which the table should be used (in kHz). +- clock-frequency : the clock frequency for the EMC at which this + table should be used (in kHz). +- nvidia,emc-registers : a 46 word array of EMC registers to be programmed + for operation at the 'clock-frequency' setting. + The order and contents of the registers are: + RC, RFC, RAS, RP, R2W, W2R, R2P, W2P, RD_RCD, WR_RCD, RRD, REXT, + WDV, QUSE, QRST, QSAFE, RDV, REFRESH, BURST_REFRESH_NUM, PDEX2WR, + PDEX2RD, PCHG2PDEN, ACT2PDEN, AR2PDEN, RW2PDEN, TXSR, TCKE, TFAW, + TRPAB, TCLKSTABLE, TCLKSTOP, TREFBW, QUSE_EXTRA, FBIO_CFG6, ODT_WRITE, + ODT_READ, FBIO_CFG5, CFG_DIG_DLL, DLL_XFORM_DQS, DLL_XFORM_QUSE, + ZCAL_REF_CNT, ZCAL_WAIT_CNT, AUTO_CAL_INTERVAL, CFG_CLKTRIM_0, + CFG_CLKTRIM_1, CFG_CLKTRIM_2 + + emc-table@166000 { + reg = <166000>; + compatible = "nvidia,tegra20-emc-table"; + clock-frequency = < 166000 >; + nvidia,emc-registers = < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 >; + }; + + emc-table@333000 { + reg = <333000>; + compatible = "nvidia,tegra20-emc-table"; + clock-frequency = < 333000 >; + nvidia,emc-registers = < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 >; + }; diff --git a/Documentation/devicetree/bindings/arm/tegra/nvidia,tegra20-pmc.txt b/Documentation/devicetree/bindings/arm/tegra/nvidia,tegra20-pmc.txt new file mode 100644 index 000000000000..b5846e21cc2e --- /dev/null +++ b/Documentation/devicetree/bindings/arm/tegra/nvidia,tegra20-pmc.txt @@ -0,0 +1,19 @@ +NVIDIA Tegra Power Management Controller (PMC) + +Properties: +- name : Should be pmc +- compatible : Should contain "nvidia,tegra<chip>-pmc". +- reg : Offset and length of the register set for the device +- nvidia,invert-interrupt : If present, inverts the PMU interrupt signal. + The PMU is an external Power Management Unit, whose interrupt output + signal is fed into the PMC. This signal is optionally inverted, and then + fed into the ARM GIC. The PMC is not involved in the detection or + handling of this interrupt signal, merely its inversion. + +Example: + +pmc@7000f400 { + compatible = "nvidia,tegra20-pmc"; + reg = <0x7000e400 0x400>; + nvidia,invert-interrupt; +}; diff --git a/Documentation/devicetree/bindings/arm/twd.txt b/Documentation/devicetree/bindings/arm/twd.txt new file mode 100644 index 000000000000..75b8610939fa --- /dev/null +++ b/Documentation/devicetree/bindings/arm/twd.txt @@ -0,0 +1,48 @@ +* ARM Timer Watchdog + +ARM 11MP, Cortex-A5 and Cortex-A9 are often associated with a per-core +Timer-Watchdog (aka TWD), which provides both a per-cpu local timer +and watchdog. + +The TWD is usually attached to a GIC to deliver its two per-processor +interrupts. + +** Timer node required properties: + +- compatible : Should be one of: + "arm,cortex-a9-twd-timer" + "arm,cortex-a5-twd-timer" + "arm,arm11mp-twd-timer" + +- interrupts : One interrupt to each core + +- reg : Specify the base address and the size of the TWD timer + register window. + +Example: + + twd-timer@2c000600 { + compatible = "arm,arm11mp-twd-timer""; + reg = <0x2c000600 0x20>; + interrupts = <1 13 0xf01>; + }; + +** Watchdog node properties: + +- compatible : Should be one of: + "arm,cortex-a9-twd-wdt" + "arm,cortex-a5-twd-wdt" + "arm,arm11mp-twd-wdt" + +- interrupts : One interrupt to each core + +- reg : Specify the base address and the size of the TWD watchdog + register window. + +Example: + + twd-watchdog@2c000620 { + compatible = "arm,arm11mp-twd-wdt"; + reg = <0x2c000620 0x20>; + interrupts = <1 14 0xf01>; + }; diff --git a/Documentation/devicetree/bindings/arm/vexpress.txt b/Documentation/devicetree/bindings/arm/vexpress.txt new file mode 100644 index 000000000000..ec8b50cbb2e8 --- /dev/null +++ b/Documentation/devicetree/bindings/arm/vexpress.txt @@ -0,0 +1,146 @@ +ARM Versatile Express boards family +----------------------------------- + +ARM's Versatile Express platform consists of a motherboard and one +or more daughterboards (tiles). The motherboard provides a set of +peripherals. Processor and RAM "live" on the tiles. + +The motherboard and each core tile should be described by a separate +Device Tree source file, with the tile's description including +the motherboard file using a /include/ directive. As the motherboard +can be initialized in one of two different configurations ("memory +maps"), care must be taken to include the correct one. + +Required properties in the root node: +- compatible value: + compatible = "arm,vexpress,<model>", "arm,vexpress"; + where <model> is the full tile model name (as used in the tile's + Technical Reference Manual), eg.: + - for Coretile Express A5x2 (V2P-CA5s): + compatible = "arm,vexpress,v2p-ca5s", "arm,vexpress"; + - for Coretile Express A9x4 (V2P-CA9): + compatible = "arm,vexpress,v2p-ca9", "arm,vexpress"; + If a tile comes in several variants or can be used in more then one + configuration, the compatible value should be: + compatible = "arm,vexpress,<model>,<variant>", \ + "arm,vexpress,<model>", "arm,vexpress"; + eg: + - Coretile Express A15x2 (V2P-CA15) with Tech Chip 1: + compatible = "arm,vexpress,v2p-ca15,tc1", \ + "arm,vexpress,v2p-ca15", "arm,vexpress"; + - LogicTile Express 13MG (V2F-2XV6) running Cortex-A7 (3 cores) SMM: + compatible = "arm,vexpress,v2f-2xv6,ca7x3", \ + "arm,vexpress,v2f-2xv6", "arm,vexpress"; + +Optional properties in the root node: +- tile model name (use name from the tile's Technical Reference + Manual, eg. "V2P-CA5s") + model = "<model>"; +- tile's HBI number (unique ARM's board model ID, visible on the + PCB's silkscreen) in hexadecimal transcription: + arm,hbi = <0xhbi> + eg: + - for Coretile Express A5x2 (V2P-CA5s) HBI-0191: + arm,hbi = <0x191>; + - Coretile Express A9x4 (V2P-CA9) HBI-0225: + arm,hbi = <0x225>; + +Top-level standard "cpus" node is required. It must contain a node +with device_type = "cpu" property for every available core, eg.: + + cpus { + #address-cells = <1>; + #size-cells = <0>; + + cpu@0 { + device_type = "cpu"; + compatible = "arm,cortex-a5"; + reg = <0>; + }; + }; + +The motherboard description file provides a single "motherboard" node +using 2 address cells corresponding to the Static Memory Bus used +between the motherboard and the tile. The first cell defines the Chip +Select (CS) line number, the second cell address offset within the CS. +All interrupt lines between the motherboard and the tile are active +high and are described using single cell. + +Optional properties of the "motherboard" node: +- motherboard's memory map variant: + arm,v2m-memory-map = "<name>"; + where name is one of: + - "rs1" - for RS1 map (i.a. peripherals on CS3); this map is also + referred to as "ARM Cortex-A Series memory map": + arm,v2m-memory-map = "rs1"; + When this property is missing, the motherboard is using the original + memory map (also known as the "Legacy memory map", primarily used + with the original CoreTile Express A9x4) with peripherals on CS7. + +Motherboard .dtsi files provide a set of labelled peripherals that +can be used to obtain required phandle in the tile's "aliases" node: +- UARTs, note that the numbers correspond to the physical connectors + on the motherboard's back panel: + v2m_serial0, v2m_serial1, v2m_serial2 and v2m_serial3 +- I2C controllers: + v2m_i2c_dvi and v2m_i2c_pcie +- SP804 timers: + v2m_timer01 and v2m_timer23 + +Current Linux implementation requires a "arm,v2m_timer" alias +pointing at one of the motherboard's SP804 timers, if it is to be +used as the system timer. This alias should be defined in the +motherboard files. + +The tile description must define "ranges", "interrupt-map-mask" and +"interrupt-map" properties to translate the motherboard's address +and interrupt space into one used by the tile's processor. + +Abbreviated example: + +/dts-v1/; + +/ { + model = "V2P-CA5s"; + arm,hbi = <0x225>; + compatible = "arm,vexpress-v2p-ca5s", "arm,vexpress"; + interrupt-parent = <&gic>; + #address-cells = <1>; + #size-cells = <1>; + + chosen { }; + + aliases { + serial0 = &v2m_serial0; + }; + + cpus { + #address-cells = <1>; + #size-cells = <0>; + + cpu@0 { + device_type = "cpu"; + compatible = "arm,cortex-a5"; + reg = <0>; + }; + }; + + gic: interrupt-controller@2c001000 { + compatible = "arm,cortex-a9-gic"; + #interrupt-cells = <3>; + #address-cells = <0>; + interrupt-controller; + reg = <0x2c001000 0x1000>, + <0x2c000100 0x100>; + }; + + motherboard { + /* CS0 is visible at 0x08000000 */ + ranges = <0 0 0x08000000 0x04000000>; + interrupt-map-mask = <0 0 63>; + /* Active high IRQ 0 is connected to GIC's SPI0 */ + interrupt-map = <0 0 0 &gic 0 0 4>; + }; +}; + +/include/ "vexpress-v2m-rs1.dtsi" diff --git a/Documentation/devicetree/bindings/dma/tegra20-apbdma.txt b/Documentation/devicetree/bindings/dma/tegra20-apbdma.txt new file mode 100644 index 000000000000..90fa7da525b8 --- /dev/null +++ b/Documentation/devicetree/bindings/dma/tegra20-apbdma.txt @@ -0,0 +1,30 @@ +* NVIDIA Tegra APB DMA controller + +Required properties: +- compatible: Should be "nvidia,<chip>-apbdma" +- reg: Should contain DMA registers location and length. This shuld include + all of the per-channel registers. +- interrupts: Should contain all of the per-channel DMA interrupts. + +Examples: + +apbdma: dma@6000a000 { + compatible = "nvidia,tegra20-apbdma"; + reg = <0x6000a000 0x1200>; + interrupts = < 0 136 0x04 + 0 137 0x04 + 0 138 0x04 + 0 139 0x04 + 0 140 0x04 + 0 141 0x04 + 0 142 0x04 + 0 143 0x04 + 0 144 0x04 + 0 145 0x04 + 0 146 0x04 + 0 147 0x04 + 0 148 0x04 + 0 149 0x04 + 0 150 0x04 + 0 151 0x04 >; +}; diff --git a/Documentation/devicetree/bindings/gpio/gpio-omap.txt b/Documentation/devicetree/bindings/gpio/gpio-omap.txt new file mode 100644 index 000000000000..bff51a2fee1e --- /dev/null +++ b/Documentation/devicetree/bindings/gpio/gpio-omap.txt @@ -0,0 +1,36 @@ +OMAP GPIO controller bindings + +Required properties: +- compatible: + - "ti,omap2-gpio" for OMAP2 controllers + - "ti,omap3-gpio" for OMAP3 controllers + - "ti,omap4-gpio" for OMAP4 controllers +- #gpio-cells : Should be two. + - first cell is the pin number + - second cell is used to specify optional parameters (unused) +- gpio-controller : Marks the device node as a GPIO controller. +- #interrupt-cells : Should be 2. +- interrupt-controller: Mark the device node as an interrupt controller + The first cell is the GPIO number. + The second cell is used to specify flags: + bits[3:0] trigger type and level flags: + 1 = low-to-high edge triggered. + 2 = high-to-low edge triggered. + 4 = active high level-sensitive. + 8 = active low level-sensitive. + +OMAP specific properties: +- ti,hwmods: Name of the hwmod associated to the GPIO: + "gpio<X>", <X> being the 1-based instance number from the HW spec + + +Example: + +gpio4: gpio4 { + compatible = "ti,omap4-gpio"; + ti,hwmods = "gpio4"; + #gpio-cells = <2>; + gpio-controller; + #interrupt-cells = <2>; + interrupt-controller; +}; diff --git a/Documentation/devicetree/bindings/gpio/gpio-twl4030.txt b/Documentation/devicetree/bindings/gpio/gpio-twl4030.txt new file mode 100644 index 000000000000..16695d9cf1e8 --- /dev/null +++ b/Documentation/devicetree/bindings/gpio/gpio-twl4030.txt @@ -0,0 +1,23 @@ +twl4030 GPIO controller bindings + +Required properties: +- compatible: + - "ti,twl4030-gpio" for twl4030 GPIO controller +- #gpio-cells : Should be two. + - first cell is the pin number + - second cell is used to specify optional parameters (unused) +- gpio-controller : Marks the device node as a GPIO controller. +- #interrupt-cells : Should be 2. +- interrupt-controller: Mark the device node as an interrupt controller + The first cell is the GPIO number. + The second cell is not used. + +Example: + +twl_gpio: gpio { + compatible = "ti,twl4030-gpio"; + #gpio-cells = <2>; + gpio-controller; + #interrupt-cells = <2>; + interrupt-controller; +}; diff --git a/Documentation/devicetree/bindings/gpio/gpio_atmel.txt b/Documentation/devicetree/bindings/gpio/gpio_atmel.txt new file mode 100644 index 000000000000..66efc804806a --- /dev/null +++ b/Documentation/devicetree/bindings/gpio/gpio_atmel.txt @@ -0,0 +1,20 @@ +* Atmel GPIO controller (PIO) + +Required properties: +- compatible: "atmel,<chip>-gpio", where <chip> is at91rm9200 or at91sam9x5. +- reg: Should contain GPIO controller registers location and length +- interrupts: Should be the port interrupt shared by all the pins. +- #gpio-cells: Should be two. The first cell is the pin number and + the second cell is used to specify optional parameters (currently + unused). +- gpio-controller: Marks the device node as a GPIO controller. + +Example: + pioA: gpio@fffff200 { + compatible = "atmel,at91rm9200-gpio"; + reg = <0xfffff200 0x100>; + interrupts = <2 4>; + #gpio-cells = <2>; + gpio-controller; + }; + diff --git a/Documentation/devicetree/bindings/gpio/gpio_i2c.txt b/Documentation/devicetree/bindings/gpio/gpio_i2c.txt new file mode 100644 index 000000000000..4f8ec947c6bd --- /dev/null +++ b/Documentation/devicetree/bindings/gpio/gpio_i2c.txt @@ -0,0 +1,32 @@ +Device-Tree bindings for i2c gpio driver + +Required properties: + - compatible = "i2c-gpio"; + - gpios: sda and scl gpio + + +Optional properties: + - i2c-gpio,sda-open-drain: sda as open drain + - i2c-gpio,scl-open-drain: scl as open drain + - i2c-gpio,scl-output-only: scl as output only + - i2c-gpio,delay-us: delay between GPIO operations (may depend on each platform) + - i2c-gpio,timeout-ms: timeout to get data + +Example nodes: + +i2c@0 { + compatible = "i2c-gpio"; + gpios = <&pioA 23 0 /* sda */ + &pioA 24 0 /* scl */ + >; + i2c-gpio,sda-open-drain; + i2c-gpio,scl-open-drain; + i2c-gpio,delay-us = <2>; /* ~100 kHz */ + #address-cells = <1>; + #size-cells = <0>; + + rv3029c2@56 { + compatible = "rv3029c2"; + reg = <0x56>; + }; +}; diff --git a/Documentation/devicetree/bindings/gpio/gpio_nvidia.txt b/Documentation/devicetree/bindings/gpio/gpio_nvidia.txt index eb4b530d64e1..023c9526e5f8 100644 --- a/Documentation/devicetree/bindings/gpio/gpio_nvidia.txt +++ b/Documentation/devicetree/bindings/gpio/gpio_nvidia.txt @@ -1,8 +1,40 @@ -NVIDIA Tegra 2 GPIO controller +NVIDIA Tegra GPIO controller Required properties: -- compatible : "nvidia,tegra20-gpio" +- compatible : "nvidia,tegra<chip>-gpio" +- reg : Physical base address and length of the controller's registers. +- interrupts : The interrupt outputs from the controller. For Tegra20, + there should be 7 interrupts specified, and for Tegra30, there should + be 8 interrupts specified. - #gpio-cells : Should be two. The first cell is the pin number and the second cell is used to specify optional parameters: - bit 0 specifies polarity (0 for normal, 1 for inverted) - gpio-controller : Marks the device node as a GPIO controller. +- #interrupt-cells : Should be 2. + The first cell is the GPIO number. + The second cell is used to specify flags: + bits[3:0] trigger type and level flags: + 1 = low-to-high edge triggered. + 2 = high-to-low edge triggered. + 4 = active high level-sensitive. + 8 = active low level-sensitive. + Valid combinations are 1, 2, 3, 4, 8. +- interrupt-controller : Marks the device node as an interrupt controller. + +Example: + +gpio: gpio@6000d000 { + compatible = "nvidia,tegra20-gpio"; + reg = < 0x6000d000 0x1000 >; + interrupts = < 0 32 0x04 + 0 33 0x04 + 0 34 0x04 + 0 35 0x04 + 0 55 0x04 + 0 87 0x04 + 0 89 0x04 >; + #gpio-cells = <2>; + gpio-controller; + #interrupt-cells = <2>; + interrupt-controller; +}; diff --git a/Documentation/devicetree/bindings/gpio/led.txt b/Documentation/devicetree/bindings/gpio/led.txt index 141087cf3107..fd2bd56e7195 100644 --- a/Documentation/devicetree/bindings/gpio/led.txt +++ b/Documentation/devicetree/bindings/gpio/led.txt @@ -7,9 +7,9 @@ Each LED is represented as a sub-node of the gpio-leds device. Each node's name represents the name of the corresponding LED. LED sub-node properties: -- gpios : Should specify the LED's GPIO, see "Specifying GPIO information - for devices" in Documentation/devicetree/booting-without-of.txt. Active - low LEDs should be indicated using flags in the GPIO specifier. +- gpios : Should specify the LED's GPIO, see "gpios property" in + Documentation/devicetree/gpio.txt. Active low LEDs should be + indicated using flags in the GPIO specifier. - label : (optional) The label for this LED. If omitted, the label is taken from the node name (excluding the unit address). - linux,default-trigger : (optional) This parameter, if present, is a diff --git a/Documentation/devicetree/bindings/gpio/mrvl-gpio.txt b/Documentation/devicetree/bindings/gpio/mrvl-gpio.txt new file mode 100644 index 000000000000..1e34cfe5ebea --- /dev/null +++ b/Documentation/devicetree/bindings/gpio/mrvl-gpio.txt @@ -0,0 +1,23 @@ +* Marvell PXA GPIO controller + +Required properties: +- compatible : Should be "mrvl,pxa-gpio" or "mrvl,mmp-gpio" +- reg : Address and length of the register set for the device +- interrupts : Should be the port interrupt shared by all gpio pins, if +- interrupt-name : Should be the name of irq resource. + one number. +- gpio-controller : Marks the device node as a gpio controller. +- #gpio-cells : Should be one. It is the pin number. + +Example: + + gpio: gpio@d4019000 { + compatible = "mrvl,mmp-gpio", "mrvl,pxa-gpio"; + reg = <0xd4019000 0x1000>; + interrupts = <49>, <17>, <18>; + interrupt-name = "gpio_mux", "gpio0", "gpio1"; + gpio-controller; + #gpio-cells = <1>; + interrupt-controller; + #interrupt-cells = <1>; + }; diff --git a/Documentation/devicetree/bindings/gpio/sodaville.txt b/Documentation/devicetree/bindings/gpio/sodaville.txt new file mode 100644 index 000000000000..563eff22b975 --- /dev/null +++ b/Documentation/devicetree/bindings/gpio/sodaville.txt @@ -0,0 +1,48 @@ +GPIO controller on CE4100 / Sodaville SoCs +========================================== + +The bindings for CE4100's GPIO controller match the generic description +which is covered by the gpio.txt file in this folder. + +The only additional property is the intel,muxctl property which holds the +value which is written into the MUXCNTL register. + +There is no compatible property for now because the driver is probed via +PCI id (vendor 0x8086 device 0x2e67). + +The interrupt specifier consists of two cells encoded as follows: + - <1st cell>: The interrupt-number that identifies the interrupt source. + - <2nd cell>: The level-sense information, encoded as follows: + 4 - active high level-sensitive + 8 - active low level-sensitive + +Example of the GPIO device and one user: + + pcigpio: gpio@b,1 { + /* two cells for GPIO and interrupt */ + #gpio-cells = <2>; + #interrupt-cells = <2>; + compatible = "pci8086,2e67.2", + "pci8086,2e67", + "pciclassff0000", + "pciclassff00"; + + reg = <0x15900 0x0 0x0 0x0 0x0>; + /* Interrupt line of the gpio device */ + interrupts = <15 1>; + /* It is an interrupt and GPIO controller itself */ + interrupt-controller; + gpio-controller; + intel,muxctl = <0>; + }; + + testuser@20 { + compatible = "example,testuser"; + /* User the 11th GPIO line as an active high triggered + * level interrupt + */ + interrupts = <11 8>; + interrupt-parent = <&pcigpio>; + /* Use this GPIO also with the gpio functions */ + gpios = <&pcigpio 11 0>; + }; diff --git a/Documentation/devicetree/bindings/i2c/mrvl-i2c.txt b/Documentation/devicetree/bindings/i2c/mrvl-i2c.txt new file mode 100644 index 000000000000..071eb3caae91 --- /dev/null +++ b/Documentation/devicetree/bindings/i2c/mrvl-i2c.txt @@ -0,0 +1,37 @@ +* I2C + +Required properties : + + - reg : Offset and length of the register set for the device + - compatible : should be "mrvl,mmp-twsi" where CHIP is the name of a + compatible processor, e.g. pxa168, pxa910, mmp2, mmp3. + For the pxa2xx/pxa3xx, an additional node "mrvl,pxa-i2c" is required + as shown in the example below. + +Recommended properties : + + - interrupts : <a b> where a is the interrupt number and b is a + field that represents an encoding of the sense and level + information for the interrupt. This should be encoded based on + the information in section 2) depending on the type of interrupt + controller you have. + - interrupt-parent : the phandle for the interrupt controller that + services interrupts for this device. + - mrvl,i2c-polling : Disable interrupt of i2c controller. Polling + status register of i2c controller instead. + - mrvl,i2c-fast-mode : Enable fast mode of i2c controller. + +Examples: + twsi1: i2c@d4011000 { + compatible = "mrvl,mmp-twsi", "mrvl,pxa-i2c"; + reg = <0xd4011000 0x1000>; + interrupts = <7>; + mrvl,i2c-fast-mode; + }; + + twsi2: i2c@d4025000 { + compatible = "mrvl,mmp-twsi", "mrvl,pxa-i2c"; + reg = <0xd4025000 0x1000>; + interrupts = <58>; + }; + diff --git a/Documentation/devicetree/bindings/i2c/sirf-i2c.txt b/Documentation/devicetree/bindings/i2c/sirf-i2c.txt new file mode 100644 index 000000000000..7baf9e133fa8 --- /dev/null +++ b/Documentation/devicetree/bindings/i2c/sirf-i2c.txt @@ -0,0 +1,19 @@ +I2C for SiRFprimaII platforms + +Required properties : +- compatible : Must be "sirf,prima2-i2c" +- reg: physical base address of the controller and length of memory mapped + region. +- interrupts: interrupt number to the cpu. + +Optional properties: +- clock-frequency : Constains desired I2C/HS-I2C bus clock frequency in Hz. + The absence of the propoerty indicates the default frequency 100 kHz. + +Examples : + +i2c0: i2c@b00e0000 { + compatible = "sirf,prima2-i2c"; + reg = <0xb00e0000 0x10000>; + interrupts = <24>; +}; diff --git a/Documentation/devicetree/bindings/input/matrix-keymap.txt b/Documentation/devicetree/bindings/input/matrix-keymap.txt new file mode 100644 index 000000000000..3cd8b98ccd2d --- /dev/null +++ b/Documentation/devicetree/bindings/input/matrix-keymap.txt @@ -0,0 +1,19 @@ +A simple common binding for matrix-connected key boards. Currently targeted at +defining the keys in the scope of linux key codes since that is a stable and +standardized interface at this time. + +Required properties: +- linux,keymap: an array of packed 1-cell entries containing the equivalent + of row, column and linux key-code. The 32-bit big endian cell is packed + as: + row << 24 | column << 16 | key-code + +Optional properties: +Some users of this binding might choose to specify secondary keymaps for +cases where there is a modifier key such as a Fn key. Proposed names +for said properties are "linux,fn-keymap" or with another descriptive +word for the modifier other from "Fn". + +Example: + linux,keymap = < 0x00030012 + 0x0102003a >; diff --git a/Documentation/devicetree/bindings/input/tegra-kbc.txt b/Documentation/devicetree/bindings/input/tegra-kbc.txt index 5ecfa99089b4..72683be6de35 100644 --- a/Documentation/devicetree/bindings/input/tegra-kbc.txt +++ b/Documentation/devicetree/bindings/input/tegra-kbc.txt @@ -3,16 +3,21 @@ Required properties: - compatible: "nvidia,tegra20-kbc" -Optional properties: -- debounce-delay: delay in milliseconds per row scan for debouncing -- repeat-delay: delay in milliseconds before repeat starts -- ghost-filter: enable ghost filtering for this device -- wakeup-source: configure keyboard as a wakeup source for suspend/resume +Optional properties, in addition to those specified by the shared +matrix-keyboard bindings: + +- linux,fn-keymap: a second keymap, same specification as the + matrix-keyboard-controller spec but to be used when the KEY_FN modifier + key is pressed. +- nvidia,debounce-delay-ms: delay in milliseconds per row scan for debouncing +- nvidia,repeat-delay-ms: delay in milliseconds before repeat starts +- nvidia,ghost-filter: enable ghost filtering for this device +- nvidia,wakeup-source: configure keyboard as a wakeup source for suspend/resume Example: keyboard: keyboard { compatible = "nvidia,tegra20-kbc"; reg = <0x7000e200 0x100>; - ghost-filter; + nvidia,ghost-filter; }; diff --git a/Documentation/devicetree/bindings/mmc/ti-omap-hsmmc.txt b/Documentation/devicetree/bindings/mmc/ti-omap-hsmmc.txt new file mode 100644 index 000000000000..dbd4368ab8cc --- /dev/null +++ b/Documentation/devicetree/bindings/mmc/ti-omap-hsmmc.txt @@ -0,0 +1,33 @@ +* TI Highspeed MMC host controller for OMAP + +The Highspeed MMC Host Controller on TI OMAP family +provides an interface for MMC, SD, and SDIO types of memory cards. + +Required properties: +- compatible: + Should be "ti,omap2-hsmmc", for OMAP2 controllers + Should be "ti,omap3-hsmmc", for OMAP3 controllers + Should be "ti,omap4-hsmmc", for OMAP4 controllers +- ti,hwmods: Must be "mmc<n>", n is controller instance starting 1 +- reg : should contain hsmmc registers location and length + +Optional properties: +ti,dual-volt: boolean, supports dual voltage cards +<supply-name>-supply: phandle to the regulator device tree node +"supply-name" examples are "vmmc", "vmmc_aux" etc +ti,bus-width: Number of data lines, default assumed is 1 if the property is missing. +cd-gpios: GPIOs for card detection +wp-gpios: GPIOs for write protection +ti,non-removable: non-removable slot (like eMMC) +ti,needs-special-reset: Requires a special softreset sequence + +Example: + mmc1: mmc@0x4809c000 { + compatible = "ti,omap4-hsmmc"; + reg = <0x4809c000 0x400>; + ti,hwmods = "mmc1"; + ti,dual-volt; + ti,bus-width = <4>; + vmmc-supply = <&vmmc>; /* phandle to regulator node */ + ti,non-removable; + }; diff --git a/Documentation/devicetree/bindings/mtd/arm-versatile.txt b/Documentation/devicetree/bindings/mtd/arm-versatile.txt index 476845db94d0..beace4b89daa 100644 --- a/Documentation/devicetree/bindings/mtd/arm-versatile.txt +++ b/Documentation/devicetree/bindings/mtd/arm-versatile.txt @@ -4,5 +4,5 @@ Required properties: - compatible : must be "arm,versatile-flash"; - bank-width : width in bytes of flash interface. -Optional properties: -- Subnode partition map from mtd flash binding +The device tree may optionally contain sub-nodes describing partitions of the +address space. See partition.txt for more detail. diff --git a/Documentation/devicetree/bindings/mtd/atmel-dataflash.txt b/Documentation/devicetree/bindings/mtd/atmel-dataflash.txt index ef66ddd01da0..1889a4db5b7c 100644 --- a/Documentation/devicetree/bindings/mtd/atmel-dataflash.txt +++ b/Documentation/devicetree/bindings/mtd/atmel-dataflash.txt @@ -3,6 +3,9 @@ Required properties: - compatible : "atmel,<model>", "atmel,<series>", "atmel,dataflash". +The device tree may optionally contain sub-nodes describing partitions of the +address space. See partition.txt for more detail. + Example: flash@1 { diff --git a/Documentation/devicetree/bindings/mtd/atmel-nand.txt b/Documentation/devicetree/bindings/mtd/atmel-nand.txt new file mode 100644 index 000000000000..a20069502f5a --- /dev/null +++ b/Documentation/devicetree/bindings/mtd/atmel-nand.txt @@ -0,0 +1,41 @@ +Atmel NAND flash + +Required properties: +- compatible : "atmel,at91rm9200-nand". +- reg : should specify localbus address and size used for the chip, + and if availlable the ECC. +- atmel,nand-addr-offset : offset for the address latch. +- atmel,nand-cmd-offset : offset for the command latch. +- #address-cells, #size-cells : Must be present if the device has sub-nodes + representing partitions. + +- gpios : specifies the gpio pins to control the NAND device. detect is an + optional gpio and may be set to 0 if not present. + +Optional properties: +- nand-ecc-mode : String, operation mode of the NAND ecc mode, soft by default. + Supported values are: "none", "soft", "hw", "hw_syndrome", "hw_oob_first", + "soft_bch". +- nand-bus-width : 8 or 16 bus width if not present 8 +- nand-on-flash-bbt: boolean to enable on flash bbt option if not present false + +Examples: +nand0: nand@40000000,0 { + compatible = "atmel,at91rm9200-nand"; + #address-cells = <1>; + #size-cells = <1>; + reg = <0x40000000 0x10000000 + 0xffffe800 0x200 + >; + atmel,nand-addr-offset = <21>; /* ale */ + atmel,nand-cmd-offset = <22>; /* cle */ + nand-on-flash-bbt; + nand-ecc-mode = "soft"; + gpios = <&pioC 13 0 /* rdy */ + &pioC 14 0 /* nce */ + 0 /* cd */ + >; + partition@0 { + ... + }; +}; diff --git a/Documentation/devicetree/bindings/mtd/fsl-upm-nand.txt b/Documentation/devicetree/bindings/mtd/fsl-upm-nand.txt index 00f1f546b32e..fce4894f5a98 100644 --- a/Documentation/devicetree/bindings/mtd/fsl-upm-nand.txt +++ b/Documentation/devicetree/bindings/mtd/fsl-upm-nand.txt @@ -19,6 +19,10 @@ Optional properties: read registers (tR). Required if property "gpios" is not used (R/B# pins not connected). +Each flash chip described may optionally contain additional sub-nodes +describing partitions of the address space. See partition.txt for more +detail. + Examples: upm@1,0 { diff --git a/Documentation/devicetree/bindings/mtd/fsmc-nand.txt b/Documentation/devicetree/bindings/mtd/fsmc-nand.txt new file mode 100644 index 000000000000..e2c663b354d2 --- /dev/null +++ b/Documentation/devicetree/bindings/mtd/fsmc-nand.txt @@ -0,0 +1,33 @@ +* FSMC NAND + +Required properties: +- compatible : "st,spear600-fsmc-nand" +- reg : Address range of the mtd chip +- reg-names: Should contain the reg names "fsmc_regs" and "nand_data" +- st,ale-off : Chip specific offset to ALE +- st,cle-off : Chip specific offset to CLE + +Optional properties: +- bank-width : Width (in bytes) of the device. If not present, the width + defaults to 1 byte +- nand-skip-bbtscan: Indicates the the BBT scanning should be skipped + +Example: + + fsmc: flash@d1800000 { + compatible = "st,spear600-fsmc-nand"; + #address-cells = <1>; + #size-cells = <1>; + reg = <0xd1800000 0x1000 /* FSMC Register */ + 0xd2000000 0x4000>; /* NAND Base */ + reg-names = "fsmc_regs", "nand_data"; + st,ale-off = <0x20000>; + st,cle-off = <0x10000>; + + bank-width = <1>; + nand-skip-bbtscan; + + partition@0 { + ... + }; + }; diff --git a/Documentation/devicetree/bindings/mtd/gpio-control-nand.txt b/Documentation/devicetree/bindings/mtd/gpio-control-nand.txt index 719f4dc58df7..36ef07d3c90f 100644 --- a/Documentation/devicetree/bindings/mtd/gpio-control-nand.txt +++ b/Documentation/devicetree/bindings/mtd/gpio-control-nand.txt @@ -25,6 +25,9 @@ Optional properties: GPIO state and before and after command byte writes, this register will be read to ensure that the GPIO accesses have completed. +The device tree may optionally contain sub-nodes describing partitions of the +address space. See partition.txt for more detail. + Examples: gpio-nand@1,0 { diff --git a/Documentation/devicetree/bindings/mtd/mtd-physmap.txt b/Documentation/devicetree/bindings/mtd/mtd-physmap.txt index 80152cb567d9..a63c2bd7de2b 100644 --- a/Documentation/devicetree/bindings/mtd/mtd-physmap.txt +++ b/Documentation/devicetree/bindings/mtd/mtd-physmap.txt @@ -23,27 +23,8 @@ are defined: - vendor-id : Contains the flash chip's vendor id (1 byte). - device-id : Contains the flash chip's device id (1 byte). -In addition to the information on the mtd bank itself, the -device tree may optionally contain additional information -describing partitions of the address space. This can be -used on platforms which have strong conventions about which -portions of a flash are used for what purposes, but which don't -use an on-flash partition table such as RedBoot. - -Each partition is represented as a sub-node of the mtd device. -Each node's name represents the name of the corresponding -partition of the mtd device. - -Flash partitions - - reg : The partition's offset and size within the mtd bank. - - label : (optional) The label / name for this partition. - If omitted, the label is taken from the node name (excluding - the unit address). - - read-only : (optional) This parameter, if present, is a hint to - Linux that this partition should only be mounted - read-only. This is usually used for flash partitions - containing early-boot firmware images or data which should not - be clobbered. +The device tree may optionally contain sub-nodes describing partitions of the +address space. See partition.txt for more detail. Example: diff --git a/Documentation/devicetree/bindings/mtd/nand.txt b/Documentation/devicetree/bindings/mtd/nand.txt new file mode 100644 index 000000000000..03855c8c492a --- /dev/null +++ b/Documentation/devicetree/bindings/mtd/nand.txt @@ -0,0 +1,7 @@ +* MTD generic binding + +- nand-ecc-mode : String, operation mode of the NAND ecc mode. + Supported values are: "none", "soft", "hw", "hw_syndrome", "hw_oob_first", + "soft_bch". +- nand-bus-width : 8 or 16 bus width if not present 8 +- nand-on-flash-bbt: boolean to enable on flash bbt option if not present false diff --git a/Documentation/devicetree/bindings/mtd/partition.txt b/Documentation/devicetree/bindings/mtd/partition.txt new file mode 100644 index 000000000000..f114ce1657c2 --- /dev/null +++ b/Documentation/devicetree/bindings/mtd/partition.txt @@ -0,0 +1,38 @@ +Representing flash partitions in devicetree + +Partitions can be represented by sub-nodes of an mtd device. This can be used +on platforms which have strong conventions about which portions of a flash are +used for what purposes, but which don't use an on-flash partition table such +as RedBoot. + +#address-cells & #size-cells must both be present in the mtd device and be +equal to 1. + +Required properties: +- reg : The partition's offset and size within the mtd bank. + +Optional properties: +- label : The label / name for this partition. If omitted, the label is taken + from the node name (excluding the unit address). +- read-only : This parameter, if present, is a hint to Linux that this + partition should only be mounted read-only. This is usually used for flash + partitions containing early-boot firmware images or data which should not be + clobbered. + +Examples: + + +flash@0 { + #address-cells = <1>; + #size-cells = <1>; + + partition@0 { + label = "u-boot"; + reg = <0x0000000 0x100000>; + read-only; + }; + + uimage@100000 { + reg = <0x0100000 0x200000>; + }; +]; diff --git a/Documentation/devicetree/bindings/mtd/spear_smi.txt b/Documentation/devicetree/bindings/mtd/spear_smi.txt new file mode 100644 index 000000000000..7248aadd89e4 --- /dev/null +++ b/Documentation/devicetree/bindings/mtd/spear_smi.txt @@ -0,0 +1,31 @@ +* SPEAr SMI + +Required properties: +- compatible : "st,spear600-smi" +- reg : Address range of the mtd chip +- #address-cells, #size-cells : Must be present if the device has sub-nodes + representing partitions. +- interrupt-parent: Should be the phandle for the interrupt controller + that services interrupts for this device +- interrupts: Should contain the STMMAC interrupts +- clock-rate : Functional clock rate of SMI in Hz + +Optional properties: +- st,smi-fast-mode : Flash supports read in fast mode + +Example: + + smi: flash@fc000000 { + compatible = "st,spear600-smi"; + #address-cells = <1>; + #size-cells = <1>; + reg = <0xfc000000 0x1000>; + interrupt-parent = <&vic1>; + interrupts = <12>; + clock-rate = <50000000>; /* 50MHz */ + + flash@f8000000 { + st,smi-fast-mode; + ... + }; + }; diff --git a/Documentation/devicetree/bindings/net/stmmac.txt b/Documentation/devicetree/bindings/net/stmmac.txt new file mode 100644 index 000000000000..1f62623f8c3f --- /dev/null +++ b/Documentation/devicetree/bindings/net/stmmac.txt @@ -0,0 +1,28 @@ +* STMicroelectronics 10/100/1000 Ethernet driver (GMAC) + +Required properties: +- compatible: Should be "st,spear600-gmac" +- reg: Address and length of the register set for the device +- interrupt-parent: Should be the phandle for the interrupt controller + that services interrupts for this device +- interrupts: Should contain the STMMAC interrupts +- interrupt-names: Should contain the interrupt names "macirq" + "eth_wake_irq" if this interrupt is supported in the "interrupts" + property +- phy-mode: String, operation mode of the PHY interface. + Supported values are: "mii", "rmii", "gmii", "rgmii". + +Optional properties: +- mac-address: 6 bytes, mac address + +Examples: + + gmac0: ethernet@e0800000 { + compatible = "st,spear600-gmac"; + reg = <0xe0800000 0x8000>; + interrupt-parent = <&vic1>; + interrupts = <24 23>; + interrupt-names = "macirq", "eth_wake_irq"; + mac-address = [000000000000]; /* Filled in by U-Boot */ + phy-mode = "gmii"; + }; diff --git a/Documentation/devicetree/bindings/power_supply/max17042_battery.txt b/Documentation/devicetree/bindings/power_supply/max17042_battery.txt new file mode 100644 index 000000000000..5bc9b685cf8a --- /dev/null +++ b/Documentation/devicetree/bindings/power_supply/max17042_battery.txt @@ -0,0 +1,18 @@ +max17042_battery +~~~~~~~~~~~~~~~~ + +Required properties : + - compatible : "maxim,max17042" + +Optional properties : + - maxim,rsns-microohm : Resistance of rsns resistor in micro Ohms + (datasheet-recommended value is 10000). + Defining this property enables current-sense functionality. + +Example: + + battery-charger@36 { + compatible = "maxim,max17042"; + reg = <0x36>; + maxim,rsns-microohm = <10000>; + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/mpic-msgr.txt b/Documentation/devicetree/bindings/powerpc/fsl/mpic-msgr.txt new file mode 100644 index 000000000000..bc8ded641ab6 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/mpic-msgr.txt @@ -0,0 +1,63 @@ +* FSL MPIC Message Registers + +This binding specifies what properties must be available in the device tree +representation of the message register blocks found in some FSL MPIC +implementations. + +Required properties: + + - compatible: Specifies the compatibility list for the message register + block. The type shall be <string-list> and the value shall be of the form + "fsl,mpic-v<version>-msgr", where <version> is the version number of + the MPIC containing the message registers. + + - reg: Specifies the base physical address(s) and size(s) of the + message register block's addressable register space. The type shall be + <prop-encoded-array>. + + - interrupts: Specifies a list of interrupt-specifiers which are available + for receiving interrupts. Interrupt-specifier consists of two cells: first + cell is interrupt-number and second cell is level-sense. The type shall be + <prop-encoded-array>. + +Optional properties: + + - mpic-msgr-receive-mask: Specifies what registers in the containing block + are allowed to receive interrupts. The value is a bit mask where a set + bit at bit 'n' indicates that message register 'n' can receive interrupts. + Note that "bit 'n'" is numbered from LSB for PPC hardware. The type shall + be <u32>. If not present, then all of the message registers in the block + are available. + +Aliases: + + An alias should be created for every message register block. They are not + required, though. However, a particular implementation of this binding + may require aliases to be present. Aliases are of the form + 'mpic-msgr-block<n>', where <n> is an integer specifying the block's number. + Numbers shall start at 0. + +Example: + + aliases { + mpic-msgr-block0 = &mpic_msgr_block0; + mpic-msgr-block1 = &mpic_msgr_block1; + }; + + mpic_msgr_block0: mpic-msgr-block@41400 { + compatible = "fsl,mpic-v3.1-msgr"; + reg = <0x41400 0x200>; + // Message registers 0 and 2 in this block can receive interrupts on + // sources 0xb0 and 0xb2, respectively. + interrupts = <0xb0 2 0xb2 2>; + mpic-msgr-receive-mask = <0x5>; + }; + + mpic_msgr_block1: mpic-msgr-block@42400 { + compatible = "fsl,mpic-v3.1-msgr"; + reg = <0x42400 0x200>; + // Message registers 0 and 2 in this block can receive interrupts on + // sources 0xb4 and 0xb6, respectively. + interrupts = <0xb4 2 0xb6 2>; + mpic-msgr-receive-mask = <0x5>; + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/mpic.txt b/Documentation/devicetree/bindings/powerpc/fsl/mpic.txt index 2cf38bd841fd..dc5744636a57 100644 --- a/Documentation/devicetree/bindings/powerpc/fsl/mpic.txt +++ b/Documentation/devicetree/bindings/powerpc/fsl/mpic.txt @@ -56,7 +56,27 @@ PROPERTIES to the client. The presence of this property also mandates that any initialization related to interrupt sources shall be limited to sources explicitly referenced in the device tree. - + + - big-endian + Usage: optional + Value type: <empty> + If present the MPIC will be assumed to be big-endian. Some + device-trees omit this property on MPIC nodes even when the MPIC is + in fact big-endian, so certain boards override this property. + + - single-cpu-affinity + Usage: optional + Value type: <empty> + If present the MPIC will be assumed to only be able to route + non-IPI interrupts to a single CPU at a time (EG: Freescale MPIC). + + - last-interrupt-source + Usage: optional + Value type: <u32> + Some MPICs do not correctly report the number of hardware sources + in the global feature registers. If specified, this field will + override the value read from MPIC_GREG_FEATURE_LAST_SRC. + INTERRUPT SPECIFIER DEFINITION Interrupt specifiers consists of 4 cells encoded as diff --git a/Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt b/Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt index 5d586e1ccaf5..5693877ab377 100644 --- a/Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt +++ b/Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt @@ -6,8 +6,10 @@ Required properties: etc.) and the second is "fsl,mpic-msi" or "fsl,ipic-msi" depending on the parent type. -- reg : should contain the address and the length of the shared message - interrupt register set. +- reg : It may contain one or two regions. The first region should contain + the address and the length of the shared message interrupt register set. + The second region should contain the address of aliased MSIIR register for + platforms that have such an alias. - msi-available-ranges: use <start count> style section to define which msi interrupt can be used in the 256 msi interrupts. This property is diff --git a/Documentation/devicetree/bindings/regulator/anatop-regulator.txt b/Documentation/devicetree/bindings/regulator/anatop-regulator.txt new file mode 100644 index 000000000000..357758cb6e92 --- /dev/null +++ b/Documentation/devicetree/bindings/regulator/anatop-regulator.txt @@ -0,0 +1,29 @@ +Anatop Voltage regulators + +Required properties: +- compatible: Must be "fsl,anatop-regulator" +- anatop-reg-offset: Anatop MFD register offset +- anatop-vol-bit-shift: Bit shift for the register +- anatop-vol-bit-width: Number of bits used in the register +- anatop-min-bit-val: Minimum value of this register +- anatop-min-voltage: Minimum voltage of this regulator +- anatop-max-voltage: Maximum voltage of this regulator + +Any property defined as part of the core regulator +binding, defined in regulator.txt, can also be used. + +Example: + + regulator-vddpu { + compatible = "fsl,anatop-regulator"; + regulator-name = "vddpu"; + regulator-min-microvolt = <725000>; + regulator-max-microvolt = <1300000>; + regulator-always-on; + anatop-reg-offset = <0x140>; + anatop-vol-bit-shift = <9>; + anatop-vol-bit-width = <5>; + anatop-min-bit-val = <1>; + anatop-min-voltage = <725000>; + anatop-max-voltage = <1300000>; + }; diff --git a/Documentation/devicetree/bindings/regulator/twl-regulator.txt b/Documentation/devicetree/bindings/regulator/twl-regulator.txt new file mode 100644 index 000000000000..0c3395d55ac1 --- /dev/null +++ b/Documentation/devicetree/bindings/regulator/twl-regulator.txt @@ -0,0 +1,68 @@ +TWL family of regulators + +Required properties: +For twl6030 regulators/LDOs +- compatible: + - "ti,twl6030-vaux1" for VAUX1 LDO + - "ti,twl6030-vaux2" for VAUX2 LDO + - "ti,twl6030-vaux3" for VAUX3 LDO + - "ti,twl6030-vmmc" for VMMC LDO + - "ti,twl6030-vpp" for VPP LDO + - "ti,twl6030-vusim" for VUSIM LDO + - "ti,twl6030-vana" for VANA LDO + - "ti,twl6030-vcxio" for VCXIO LDO + - "ti,twl6030-vdac" for VDAC LDO + - "ti,twl6030-vusb" for VUSB LDO + - "ti,twl6030-v1v8" for V1V8 LDO + - "ti,twl6030-v2v1" for V2V1 LDO + - "ti,twl6030-clk32kg" for CLK32KG RESOURCE + - "ti,twl6030-vdd1" for VDD1 SMPS + - "ti,twl6030-vdd2" for VDD2 SMPS + - "ti,twl6030-vdd3" for VDD3 SMPS +For twl6025 regulators/LDOs +- compatible: + - "ti,twl6025-ldo1" for LDO1 LDO + - "ti,twl6025-ldo2" for LDO2 LDO + - "ti,twl6025-ldo3" for LDO3 LDO + - "ti,twl6025-ldo4" for LDO4 LDO + - "ti,twl6025-ldo5" for LDO5 LDO + - "ti,twl6025-ldo6" for LDO6 LDO + - "ti,twl6025-ldo7" for LDO7 LDO + - "ti,twl6025-ldoln" for LDOLN LDO + - "ti,twl6025-ldousb" for LDOUSB LDO + - "ti,twl6025-smps3" for SMPS3 SMPS + - "ti,twl6025-smps4" for SMPS4 SMPS + - "ti,twl6025-vio" for VIO SMPS +For twl4030 regulators/LDOs +- compatible: + - "ti,twl4030-vaux1" for VAUX1 LDO + - "ti,twl4030-vaux2" for VAUX2 LDO + - "ti,twl5030-vaux2" for VAUX2 LDO + - "ti,twl4030-vaux3" for VAUX3 LDO + - "ti,twl4030-vaux4" for VAUX4 LDO + - "ti,twl4030-vmmc1" for VMMC1 LDO + - "ti,twl4030-vmmc2" for VMMC2 LDO + - "ti,twl4030-vpll1" for VPLL1 LDO + - "ti,twl4030-vpll2" for VPLL2 LDO + - "ti,twl4030-vsim" for VSIM LDO + - "ti,twl4030-vdac" for VDAC LDO + - "ti,twl4030-vintana2" for VINTANA2 LDO + - "ti,twl4030-vio" for VIO LDO + - "ti,twl4030-vdd1" for VDD1 SMPS + - "ti,twl4030-vdd2" for VDD2 SMPS + - "ti,twl4030-vintana1" for VINTANA1 LDO + - "ti,twl4030-vintdig" for VINTDIG LDO + - "ti,twl4030-vusb1v5" for VUSB1V5 LDO + - "ti,twl4030-vusb1v8" for VUSB1V8 LDO + - "ti,twl4030-vusb3v1" for VUSB3V1 LDO + +Optional properties: +- Any optional property defined in bindings/regulator/regulator.txt + +Example: + + xyz: regulator@0 { + compatible = "ti,twl6030-vaux1"; + regulator-min-microvolt = <1000000>; + regulator-max-microvolt = <3000000>; + }; diff --git a/Documentation/devicetree/bindings/rtc/sa1100-rtc.txt b/Documentation/devicetree/bindings/rtc/sa1100-rtc.txt new file mode 100644 index 000000000000..0cda19ad4859 --- /dev/null +++ b/Documentation/devicetree/bindings/rtc/sa1100-rtc.txt @@ -0,0 +1,17 @@ +* Marvell Real Time Clock controller + +Required properties: +- compatible: should be "mrvl,sa1100-rtc" +- reg: physical base address of the controller and length of memory mapped + region. +- interrupts: Should be two. The first interrupt number is the rtc alarm + interrupt and the second interrupt number is the rtc hz interrupt. +- interrupt-names: Assign name of irq resource. + +Example: + rtc: rtc@d4010000 { + compatible = "mrvl,mmp-rtc"; + reg = <0xd4010000 0x1000>; + interrupts = <5>, <6>; + interrupt-name = "rtc 1Hz", "rtc alarm"; + }; diff --git a/Documentation/devicetree/bindings/serial/mrvl-serial.txt b/Documentation/devicetree/bindings/serial/mrvl-serial.txt new file mode 100644 index 000000000000..d744340de887 --- /dev/null +++ b/Documentation/devicetree/bindings/serial/mrvl-serial.txt @@ -0,0 +1,4 @@ +PXA UART controller + +Required properties: +- compatible : should be "mrvl,mmp-uart" or "mrvl,pxa-uart". diff --git a/Documentation/devicetree/bindings/sound/alc5632.txt b/Documentation/devicetree/bindings/sound/alc5632.txt new file mode 100644 index 000000000000..8608f747dcfe --- /dev/null +++ b/Documentation/devicetree/bindings/sound/alc5632.txt @@ -0,0 +1,24 @@ +ALC5632 audio CODEC + +This device supports I2C only. + +Required properties: + + - compatible : "realtek,alc5632" + + - reg : the I2C address of the device. + + - gpio-controller : Indicates this device is a GPIO controller. + + - #gpio-cells : Should be two. The first cell is the pin number and the + second cell is used to specify optional parameters (currently unused). + +Example: + +alc5632: alc5632@1e { + compatible = "realtek,alc5632"; + reg = <0x1a>; + + gpio-controller; + #gpio-cells = <2>; +}; diff --git a/Documentation/devicetree/bindings/sound/imx-audmux.txt b/Documentation/devicetree/bindings/sound/imx-audmux.txt new file mode 100644 index 000000000000..215aa9817213 --- /dev/null +++ b/Documentation/devicetree/bindings/sound/imx-audmux.txt @@ -0,0 +1,13 @@ +Freescale Digital Audio Mux (AUDMUX) device + +Required properties: +- compatible : "fsl,imx21-audmux" for AUDMUX version firstly used on i.MX21, + or "fsl,imx31-audmux" for the version firstly used on i.MX31. +- reg : Should contain AUDMUX registers location and length + +Example: + +audmux@021d8000 { + compatible = "fsl,imx6q-audmux", "fsl,imx31-audmux"; + reg = <0x021d8000 0x4000>; +}; diff --git a/Documentation/devicetree/bindings/sound/soc/codecs/fsl-sgtl5000.txt b/Documentation/devicetree/bindings/sound/sgtl5000.txt index 2c3cd413f042..2c3cd413f042 100644 --- a/Documentation/devicetree/bindings/sound/soc/codecs/fsl-sgtl5000.txt +++ b/Documentation/devicetree/bindings/sound/sgtl5000.txt diff --git a/Documentation/devicetree/bindings/sound/tegra-audio-alc5632.txt b/Documentation/devicetree/bindings/sound/tegra-audio-alc5632.txt new file mode 100644 index 000000000000..b77a97c9101e --- /dev/null +++ b/Documentation/devicetree/bindings/sound/tegra-audio-alc5632.txt @@ -0,0 +1,59 @@ +NVIDIA Tegra audio complex + +Required properties: +- compatible : "nvidia,tegra-audio-alc5632" +- nvidia,model : The user-visible name of this sound complex. +- nvidia,audio-routing : A list of the connections between audio components. + Each entry is a pair of strings, the first being the connection's sink, + the second being the connection's source. Valid names for sources and + sinks are the ALC5632's pins: + + ALC5632 pins: + + * SPK_OUTP + * SPK_OUTN + * HP_OUT_L + * HP_OUT_R + * AUX_OUT_P + * AUX_OUT_N + * LINE_IN_L + * LINE_IN_R + * PHONE_P + * PHONE_N + * MIC1_P + * MIC1_N + * MIC2_P + * MIC2_N + * MICBIAS1 + * DMICDAT + + Board connectors: + + * Headset Stereophone + * Int Spk + * Headset Mic + * Digital Mic + +- nvidia,i2s-controller : The phandle of the Tegra I2S controller +- nvidia,audio-codec : The phandle of the ALC5632 audio codec + +Example: + +sound { + compatible = "nvidia,tegra-audio-alc5632-paz00", + "nvidia,tegra-audio-alc5632"; + + nvidia,model = "Compal PAZ00"; + + nvidia,audio-routing = + "Int Spk", "SPK_OUTP", + "Int Spk", "SPK_OUTN", + "Headset Mic","MICBIAS1", + "MIC1_N", "Headset Mic", + "MIC1_P", "Headset Mic", + "Headset Stereophone", "HP_OUT_R", + "Headset Stereophone", "HP_OUT_L"; + + nvidia,i2s-controller = <&tegra_i2s1>; + nvidia,audio-codec = <&alc5632>; +}; diff --git a/Documentation/devicetree/bindings/spi/omap-spi.txt b/Documentation/devicetree/bindings/spi/omap-spi.txt new file mode 100644 index 000000000000..81df374adbb9 --- /dev/null +++ b/Documentation/devicetree/bindings/spi/omap-spi.txt @@ -0,0 +1,20 @@ +OMAP2+ McSPI device + +Required properties: +- compatible : + - "ti,omap2-spi" for OMAP2 & OMAP3. + - "ti,omap4-spi" for OMAP4+. +- ti,spi-num-cs : Number of chipselect supported by the instance. +- ti,hwmods: Name of the hwmod associated to the McSPI + + +Example: + +mcspi1: mcspi@1 { + #address-cells = <1>; + #size-cells = <0>; + compatible = "ti,omap4-mcspi"; + ti,hwmods = "mcspi1"; + ti,spi-num-cs = <4>; +}; + diff --git a/Documentation/devicetree/bindings/tty/serial/efm32-uart.txt b/Documentation/devicetree/bindings/tty/serial/efm32-uart.txt new file mode 100644 index 000000000000..6588b6950a7f --- /dev/null +++ b/Documentation/devicetree/bindings/tty/serial/efm32-uart.txt @@ -0,0 +1,14 @@ +* Energymicro efm32 UART + +Required properties: +- compatible : Should be "efm32,uart" +- reg : Address and length of the register set +- interrupts : Should contain uart interrupt + +Example: + +uart@0x4000c400 { + compatible = "efm32,uart"; + reg = <0x4000c400 0x400>; + interrupts = <15>; +}; diff --git a/Documentation/devicetree/bindings/usb/atmel-usb.txt b/Documentation/devicetree/bindings/usb/atmel-usb.txt new file mode 100644 index 000000000000..60bd2150a3e6 --- /dev/null +++ b/Documentation/devicetree/bindings/usb/atmel-usb.txt @@ -0,0 +1,49 @@ +Atmel SOC USB controllers + +OHCI + +Required properties: + - compatible: Should be "atmel,at91rm9200-ohci" for USB controllers + used in host mode. + - num-ports: Number of ports. + - atmel,vbus-gpio: If present, specifies a gpio that needs to be + activated for the bus to be powered. + - atmel,oc-gpio: If present, specifies a gpio that needs to be + activated for the overcurrent detection. + +usb0: ohci@00500000 { + compatible = "atmel,at91rm9200-ohci", "usb-ohci"; + reg = <0x00500000 0x100000>; + interrupts = <20 4>; + num-ports = <2>; +}; + +EHCI + +Required properties: + - compatible: Should be "atmel,at91sam9g45-ehci" for USB controllers + used in host mode. + +usb1: ehci@00800000 { + compatible = "atmel,at91sam9g45-ehci", "usb-ehci"; + reg = <0x00800000 0x100000>; + interrupts = <22 4>; +}; + +AT91 USB device controller + +Required properties: + - compatible: Should be "atmel,at91rm9200-udc" + - reg: Address and length of the register set for the device + - interrupts: Should contain macb interrupt + +Optional properties: + - atmel,vbus-gpio: If present, specifies a gpio that needs to be + activated for the bus to be powered. + +usb1: gadget@fffa4000 { + compatible = "atmel,at91rm9200-udc"; + reg = <0xfffa4000 0x4000>; + interrupts = <10 4>; + atmel,vbus-gpio = <&pioC 5 0>; +}; diff --git a/Documentation/devicetree/bindings/usb/tegra-usb.txt b/Documentation/devicetree/bindings/usb/tegra-usb.txt index 035d63d5646d..007005ddbe12 100644 --- a/Documentation/devicetree/bindings/usb/tegra-usb.txt +++ b/Documentation/devicetree/bindings/usb/tegra-usb.txt @@ -11,3 +11,16 @@ Required properties : - phy_type : Should be one of "ulpi" or "utmi". - nvidia,vbus-gpio : If present, specifies a gpio that needs to be activated for the bus to be powered. + +Optional properties: + - dr_mode : dual role mode. Indicates the working mode for + nvidia,tegra20-ehci compatible controllers. Can be "host", "peripheral", + or "otg". Default to "host" if not defined for backward compatibility. + host means this is a host controller + peripheral means it is device controller + otg means it can operate as either ("on the go") + - nvidia,has-legacy-mode : boolean indicates whether this controller can + operate in legacy mode (as APX 2500 / 2600). In legacy mode some + registers are accessed through the APB_MISC base address instead of + the USB controller. Since this is a legacy issue it probably does not + warrant a compatible string of its own. diff --git a/Documentation/devicetree/bindings/vendor-prefixes.txt b/Documentation/devicetree/bindings/vendor-prefixes.txt index ecc6a6cd26c1..82ac057a24a9 100644 --- a/Documentation/devicetree/bindings/vendor-prefixes.txt +++ b/Documentation/devicetree/bindings/vendor-prefixes.txt @@ -30,9 +30,11 @@ national National Semiconductor nintendo Nintendo nvidia NVIDIA nxp NXP Semiconductors +picochip Picochip Ltd powervr Imagination Technologies qcom Qualcomm, Inc. ramtron Ramtron International +realtek Realtek Semiconductor Corp. samsung Samsung Semiconductor sbs Smart Battery System schindler Schindler diff --git a/Documentation/devicetree/usage-model.txt b/Documentation/devicetree/usage-model.txt new file mode 100644 index 000000000000..c5a80099b71c --- /dev/null +++ b/Documentation/devicetree/usage-model.txt @@ -0,0 +1,412 @@ +Linux and the Device Tree +------------------------- +The Linux usage model for device tree data + +Author: Grant Likely <grant.likely@secretlab.ca> + +This article describes how Linux uses the device tree. An overview of +the device tree data format can be found on the device tree usage page +at devicetree.org[1]. + +[1] http://devicetree.org/Device_Tree_Usage + +The "Open Firmware Device Tree", or simply Device Tree (DT), is a data +structure and language for describing hardware. More specifically, it +is a description of hardware that is readable by an operating system +so that the operating system doesn't need to hard code details of the +machine. + +Structurally, the DT is a tree, or acyclic graph with named nodes, and +nodes may have an arbitrary number of named properties encapsulating +arbitrary data. A mechanism also exists to create arbitrary +links from one node to another outside of the natural tree structure. + +Conceptually, a common set of usage conventions, called 'bindings', +is defined for how data should appear in the tree to describe typical +hardware characteristics including data busses, interrupt lines, GPIO +connections, and peripheral devices. + +As much as possible, hardware is described using existing bindings to +maximize use of existing support code, but since property and node +names are simply text strings, it is easy to extend existing bindings +or create new ones by defining new nodes and properties. Be wary, +however, of creating a new binding without first doing some homework +about what already exists. There are currently two different, +incompatible, bindings for i2c busses that came about because the new +binding was created without first investigating how i2c devices were +already being enumerated in existing systems. + +1. History +---------- +The DT was originally created by Open Firmware as part of the +communication method for passing data from Open Firmware to a client +program (like to an operating system). An operating system used the +Device Tree to discover the topology of the hardware at runtime, and +thereby support a majority of available hardware without hard coded +information (assuming drivers were available for all devices). + +Since Open Firmware is commonly used on PowerPC and SPARC platforms, +the Linux support for those architectures has for a long time used the +Device Tree. + +In 2005, when PowerPC Linux began a major cleanup and to merge 32-bit +and 64-bit support, the decision was made to require DT support on all +powerpc platforms, regardless of whether or not they used Open +Firmware. To do this, a DT representation called the Flattened Device +Tree (FDT) was created which could be passed to the kernel as a binary +blob without requiring a real Open Firmware implementation. U-Boot, +kexec, and other bootloaders were modified to support both passing a +Device Tree Binary (dtb) and to modify a dtb at boot time. DT was +also added to the PowerPC boot wrapper (arch/powerpc/boot/*) so that +a dtb could be wrapped up with the kernel image to support booting +existing non-DT aware firmware. + +Some time later, FDT infrastructure was generalized to be usable by +all architectures. At the time of this writing, 6 mainlined +architectures (arm, microblaze, mips, powerpc, sparc, and x86) and 1 +out of mainline (nios) have some level of DT support. + +2. Data Model +------------- +If you haven't already read the Device Tree Usage[1] page, +then go read it now. It's okay, I'll wait.... + +2.1 High Level View +------------------- +The most important thing to understand is that the DT is simply a data +structure that describes the hardware. There is nothing magical about +it, and it doesn't magically make all hardware configuration problems +go away. What it does do is provide a language for decoupling the +hardware configuration from the board and device driver support in the +Linux kernel (or any other operating system for that matter). Using +it allows board and device support to become data driven; to make +setup decisions based on data passed into the kernel instead of on +per-machine hard coded selections. + +Ideally, data driven platform setup should result in less code +duplication and make it easier to support a wide range of hardware +with a single kernel image. + +Linux uses DT data for three major purposes: +1) platform identification, +2) runtime configuration, and +3) device population. + +2.2 Platform Identification +--------------------------- +First and foremost, the kernel will use data in the DT to identify the +specific machine. In a perfect world, the specific platform shouldn't +matter to the kernel because all platform details would be described +perfectly by the device tree in a consistent and reliable manner. +Hardware is not perfect though, and so the kernel must identify the +machine during early boot so that it has the opportunity to run +machine-specific fixups. + +In the majority of cases, the machine identity is irrelevant, and the +kernel will instead select setup code based on the machine's core +CPU or SoC. On ARM for example, setup_arch() in +arch/arm/kernel/setup.c will call setup_machine_fdt() in +arch/arm/kernel/devicetree.c which searches through the machine_desc +table and selects the machine_desc which best matches the device tree +data. It determines the best match by looking at the 'compatible' +property in the root device tree node, and comparing it with the +dt_compat list in struct machine_desc. + +The 'compatible' property contains a sorted list of strings starting +with the exact name of the machine, followed by an optional list of +boards it is compatible with sorted from most compatible to least. For +example, the root compatible properties for the TI BeagleBoard and its +successor, the BeagleBoard xM board might look like: + + compatible = "ti,omap3-beagleboard", "ti,omap3450", "ti,omap3"; + compatible = "ti,omap3-beagleboard-xm", "ti,omap3450", "ti,omap3"; + +Where "ti,omap3-beagleboard-xm" specifies the exact model, it also +claims that it compatible with the OMAP 3450 SoC, and the omap3 family +of SoCs in general. You'll notice that the list is sorted from most +specific (exact board) to least specific (SoC family). + +Astute readers might point out that the Beagle xM could also claim +compatibility with the original Beagle board. However, one should be +cautioned about doing so at the board level since there is typically a +high level of change from one board to another, even within the same +product line, and it is hard to nail down exactly what is meant when one +board claims to be compatible with another. For the top level, it is +better to err on the side of caution and not claim one board is +compatible with another. The notable exception would be when one +board is a carrier for another, such as a CPU module attached to a +carrier board. + +One more note on compatible values. Any string used in a compatible +property must be documented as to what it indicates. Add +documentation for compatible strings in Documentation/devicetree/bindings. + +Again on ARM, for each machine_desc, the kernel looks to see if +any of the dt_compat list entries appear in the compatible property. +If one does, then that machine_desc is a candidate for driving the +machine. After searching the entire table of machine_descs, +setup_machine_fdt() returns the 'most compatible' machine_desc based +on which entry in the compatible property each machine_desc matches +against. If no matching machine_desc is found, then it returns NULL. + +The reasoning behind this scheme is the observation that in the majority +of cases, a single machine_desc can support a large number of boards +if they all use the same SoC, or same family of SoCs. However, +invariably there will be some exceptions where a specific board will +require special setup code that is not useful in the generic case. +Special cases could be handled by explicitly checking for the +troublesome board(s) in generic setup code, but doing so very quickly +becomes ugly and/or unmaintainable if it is more than just a couple of +cases. + +Instead, the compatible list allows a generic machine_desc to provide +support for a wide common set of boards by specifying "less +compatible" value in the dt_compat list. In the example above, +generic board support can claim compatibility with "ti,omap3" or +"ti,omap3450". If a bug was discovered on the original beagleboard +that required special workaround code during early boot, then a new +machine_desc could be added which implements the workarounds and only +matches on "ti,omap3-beagleboard". + +PowerPC uses a slightly different scheme where it calls the .probe() +hook from each machine_desc, and the first one returning TRUE is used. +However, this approach does not take into account the priority of the +compatible list, and probably should be avoided for new architecture +support. + +2.3 Runtime configuration +------------------------- +In most cases, a DT will be the sole method of communicating data from +firmware to the kernel, so also gets used to pass in runtime and +configuration data like the kernel parameters string and the location +of an initrd image. + +Most of this data is contained in the /chosen node, and when booting +Linux it will look something like this: + + chosen { + bootargs = "console=ttyS0,115200 loglevel=8"; + initrd-start = <0xc8000000>; + initrd-end = <0xc8200000>; + }; + +The bootargs property contains the kernel arguments, and the initrd-* +properties define the address and size of an initrd blob. The +chosen node may also optionally contain an arbitrary number of +additional properties for platform-specific configuration data. + +During early boot, the architecture setup code calls of_scan_flat_dt() +several times with different helper callbacks to parse device tree +data before paging is setup. The of_scan_flat_dt() code scans through +the device tree and uses the helpers to extract information required +during early boot. Typically the early_init_dt_scan_chosen() helper +is used to parse the chosen node including kernel parameters, +early_init_dt_scan_root() to initialize the DT address space model, +and early_init_dt_scan_memory() to determine the size and +location of usable RAM. + +On ARM, the function setup_machine_fdt() is responsible for early +scanning of the device tree after selecting the correct machine_desc +that supports the board. + +2.4 Device population +--------------------- +After the board has been identified, and after the early configuration data +has been parsed, then kernel initialization can proceed in the normal +way. At some point in this process, unflatten_device_tree() is called +to convert the data into a more efficient runtime representation. +This is also when machine-specific setup hooks will get called, like +the machine_desc .init_early(), .init_irq() and .init_machine() hooks +on ARM. The remainder of this section uses examples from the ARM +implementation, but all architectures will do pretty much the same +thing when using a DT. + +As can be guessed by the names, .init_early() is used for any machine- +specific setup that needs to be executed early in the boot process, +and .init_irq() is used to set up interrupt handling. Using a DT +doesn't materially change the behaviour of either of these functions. +If a DT is provided, then both .init_early() and .init_irq() are able +to call any of the DT query functions (of_* in include/linux/of*.h) to +get additional data about the platform. + +The most interesting hook in the DT context is .init_machine() which +is primarily responsible for populating the Linux device model with +data about the platform. Historically this has been implemented on +embedded platforms by defining a set of static clock structures, +platform_devices, and other data in the board support .c file, and +registering it en-masse in .init_machine(). When DT is used, then +instead of hard coding static devices for each platform, the list of +devices can be obtained by parsing the DT, and allocating device +structures dynamically. + +The simplest case is when .init_machine() is only responsible for +registering a block of platform_devices. A platform_device is a concept +used by Linux for memory or I/O mapped devices which cannot be detected +by hardware, and for 'composite' or 'virtual' devices (more on those +later). While there is no 'platform device' terminology for the DT, +platform devices roughly correspond to device nodes at the root of the +tree and children of simple memory mapped bus nodes. + +About now is a good time to lay out an example. Here is part of the +device tree for the NVIDIA Tegra board. + +/{ + compatible = "nvidia,harmony", "nvidia,tegra20"; + #address-cells = <1>; + #size-cells = <1>; + interrupt-parent = <&intc>; + + chosen { }; + aliases { }; + + memory { + device_type = "memory"; + reg = <0x00000000 0x40000000>; + }; + + soc { + compatible = "nvidia,tegra20-soc", "simple-bus"; + #address-cells = <1>; + #size-cells = <1>; + ranges; + + intc: interrupt-controller@50041000 { + compatible = "nvidia,tegra20-gic"; + interrupt-controller; + #interrupt-cells = <1>; + reg = <0x50041000 0x1000>, < 0x50040100 0x0100 >; + }; + + serial@70006300 { + compatible = "nvidia,tegra20-uart"; + reg = <0x70006300 0x100>; + interrupts = <122>; + }; + + i2s1: i2s@70002800 { + compatible = "nvidia,tegra20-i2s"; + reg = <0x70002800 0x100>; + interrupts = <77>; + codec = <&wm8903>; + }; + + i2c@7000c000 { + compatible = "nvidia,tegra20-i2c"; + #address-cells = <1>; + #size-cells = <0>; + reg = <0x7000c000 0x100>; + interrupts = <70>; + + wm8903: codec@1a { + compatible = "wlf,wm8903"; + reg = <0x1a>; + interrupts = <347>; + }; + }; + }; + + sound { + compatible = "nvidia,harmony-sound"; + i2s-controller = <&i2s1>; + i2s-codec = <&wm8903>; + }; +}; + +At .machine_init() time, Tegra board support code will need to look at +this DT and decide which nodes to create platform_devices for. +However, looking at the tree, it is not immediately obvious what kind +of device each node represents, or even if a node represents a device +at all. The /chosen, /aliases, and /memory nodes are informational +nodes that don't describe devices (although arguably memory could be +considered a device). The children of the /soc node are memory mapped +devices, but the codec@1a is an i2c device, and the sound node +represents not a device, but rather how other devices are connected +together to create the audio subsystem. I know what each device is +because I'm familiar with the board design, but how does the kernel +know what to do with each node? + +The trick is that the kernel starts at the root of the tree and looks +for nodes that have a 'compatible' property. First, it is generally +assumed that any node with a 'compatible' property represents a device +of some kind, and second, it can be assumed that any node at the root +of the tree is either directly attached to the processor bus, or is a +miscellaneous system device that cannot be described any other way. +For each of these nodes, Linux allocates and registers a +platform_device, which in turn may get bound to a platform_driver. + +Why is using a platform_device for these nodes a safe assumption? +Well, for the way that Linux models devices, just about all bus_types +assume that its devices are children of a bus controller. For +example, each i2c_client is a child of an i2c_master. Each spi_device +is a child of an SPI bus. Similarly for USB, PCI, MDIO, etc. The +same hierarchy is also found in the DT, where I2C device nodes only +ever appear as children of an I2C bus node. Ditto for SPI, MDIO, USB, +etc. The only devices which do not require a specific type of parent +device are platform_devices (and amba_devices, but more on that +later), which will happily live at the base of the Linux /sys/devices +tree. Therefore, if a DT node is at the root of the tree, then it +really probably is best registered as a platform_device. + +Linux board support code calls of_platform_populate(NULL, NULL, NULL) +to kick off discovery of devices at the root of the tree. The +parameters are all NULL because when starting from the root of the +tree, there is no need to provide a starting node (the first NULL), a +parent struct device (the last NULL), and we're not using a match +table (yet). For a board that only needs to register devices, +.init_machine() can be completely empty except for the +of_platform_populate() call. + +In the Tegra example, this accounts for the /soc and /sound nodes, but +what about the children of the SoC node? Shouldn't they be registered +as platform devices too? For Linux DT support, the generic behaviour +is for child devices to be registered by the parent's device driver at +driver .probe() time. So, an i2c bus device driver will register a +i2c_client for each child node, an SPI bus driver will register +its spi_device children, and similarly for other bus_types. +According to that model, a driver could be written that binds to the +SoC node and simply registers platform_devices for each of its +children. The board support code would allocate and register an SoC +device, a (theoretical) SoC device driver could bind to the SoC device, +and register platform_devices for /soc/interrupt-controller, /soc/serial, +/soc/i2s, and /soc/i2c in its .probe() hook. Easy, right? + +Actually, it turns out that registering children of some +platform_devices as more platform_devices is a common pattern, and the +device tree support code reflects that and makes the above example +simpler. The second argument to of_platform_populate() is an +of_device_id table, and any node that matches an entry in that table +will also get its child nodes registered. In the tegra case, the code +can look something like this: + +static void __init harmony_init_machine(void) +{ + /* ... */ + of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL); +} + +"simple-bus" is defined in the ePAPR 1.0 specification as a property +meaning a simple memory mapped bus, so the of_platform_populate() code +could be written to just assume simple-bus compatible nodes will +always be traversed. However, we pass it in as an argument so that +board support code can always override the default behaviour. + +[Need to add discussion of adding i2c/spi/etc child devices] + +Appendix A: AMBA devices +------------------------ + +ARM Primecells are a certain kind of device attached to the ARM AMBA +bus which include some support for hardware detection and power +management. In Linux, struct amba_device and the amba_bus_type is +used to represent Primecell devices. However, the fiddly bit is that +not all devices on an AMBA bus are Primecells, and for Linux it is +typical for both amba_device and platform_device instances to be +siblings of the same bus segment. + +When using the DT, this creates problems for of_platform_populate() +because it must decide whether to register each node as either a +platform_device or an amba_device. This unfortunately complicates the +device creation model a little bit, but the solution turns out not to +be too invasive. If a node is compatible with "arm,amba-primecell", then +of_platform_populate() will register it as an amba_device instead of a +platform_device. |