diff options
author | Silvio Fricke <silvio.fricke@gmail.com> | 2016-10-28 10:14:11 +0200 |
---|---|---|
committer | Jonathan Corbet <corbet@lwn.net> | 2016-10-28 10:55:01 -0600 |
commit | e7f08ffb1855c482b0220cac12669ea06039da6d (patch) | |
tree | 590fd0d1875ab59983517c0d89acba4545c9b622 /Documentation/core-api | |
parent | 24755a55b01ffbf6ed128c1dd4028c05a2b0b1ef (diff) | |
download | linux-e7f08ffb1855c482b0220cac12669ea06039da6d.tar.bz2 |
Documentation/workqueue.txt: convert to ReST markup
... and move to Documentation/core-api folder.
Signed-off-by: Silvio Fricke <silvio.fricke@gmail.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Diffstat (limited to 'Documentation/core-api')
-rw-r--r-- | Documentation/core-api/index.rst | 2 | ||||
-rw-r--r-- | Documentation/core-api/workqueue.rst | 394 |
2 files changed, 396 insertions, 0 deletions
diff --git a/Documentation/core-api/index.rst b/Documentation/core-api/index.rst index ed3eb6499e11..f7ef7fda5763 100644 --- a/Documentation/core-api/index.rst +++ b/Documentation/core-api/index.rst @@ -7,6 +7,8 @@ Kernel and driver related documentation. .. toctree:: :maxdepth: 1 + workqueue + .. only:: subproject Indices diff --git a/Documentation/core-api/workqueue.rst b/Documentation/core-api/workqueue.rst new file mode 100644 index 000000000000..ffdec94fbca1 --- /dev/null +++ b/Documentation/core-api/workqueue.rst @@ -0,0 +1,394 @@ +==================================== +Concurrency Managed Workqueue (cmwq) +==================================== + +:Date: September, 2010 +:Author: Tejun Heo <tj@kernel.org> +:Author: Florian Mickler <florian@mickler.org> + + +Introduction +============ + +There are many cases where an asynchronous process execution context +is needed and the workqueue (wq) API is the most commonly used +mechanism for such cases. + +When such an asynchronous execution context is needed, a work item +describing which function to execute is put on a queue. An +independent thread serves as the asynchronous execution context. The +queue is called workqueue and the thread is called worker. + +While there are work items on the workqueue the worker executes the +functions associated with the work items one after the other. When +there is no work item left on the workqueue the worker becomes idle. +When a new work item gets queued, the worker begins executing again. + + +Why cmwq? +========= + +In the original wq implementation, a multi threaded (MT) wq had one +worker thread per CPU and a single threaded (ST) wq had one worker +thread system-wide. A single MT wq needed to keep around the same +number of workers as the number of CPUs. The kernel grew a lot of MT +wq users over the years and with the number of CPU cores continuously +rising, some systems saturated the default 32k PID space just booting +up. + +Although MT wq wasted a lot of resource, the level of concurrency +provided was unsatisfactory. The limitation was common to both ST and +MT wq albeit less severe on MT. Each wq maintained its own separate +worker pool. A MT wq could provide only one execution context per CPU +while a ST wq one for the whole system. Work items had to compete for +those very limited execution contexts leading to various problems +including proneness to deadlocks around the single execution context. + +The tension between the provided level of concurrency and resource +usage also forced its users to make unnecessary tradeoffs like libata +choosing to use ST wq for polling PIOs and accepting an unnecessary +limitation that no two polling PIOs can progress at the same time. As +MT wq don't provide much better concurrency, users which require +higher level of concurrency, like async or fscache, had to implement +their own thread pool. + +Concurrency Managed Workqueue (cmwq) is a reimplementation of wq with +focus on the following goals. + +* Maintain compatibility with the original workqueue API. + +* Use per-CPU unified worker pools shared by all wq to provide + flexible level of concurrency on demand without wasting a lot of + resource. + +* Automatically regulate worker pool and level of concurrency so that + the API users don't need to worry about such details. + + +The Design +========== + +In order to ease the asynchronous execution of functions a new +abstraction, the work item, is introduced. + +A work item is a simple struct that holds a pointer to the function +that is to be executed asynchronously. Whenever a driver or subsystem +wants a function to be executed asynchronously it has to set up a work +item pointing to that function and queue that work item on a +workqueue. + +Special purpose threads, called worker threads, execute the functions +off of the queue, one after the other. If no work is queued, the +worker threads become idle. These worker threads are managed in so +called worker-pools. + +The cmwq design differentiates between the user-facing workqueues that +subsystems and drivers queue work items on and the backend mechanism +which manages worker-pools and processes the queued work items. + +There are two worker-pools, one for normal work items and the other +for high priority ones, for each possible CPU and some extra +worker-pools to serve work items queued on unbound workqueues - the +number of these backing pools is dynamic. + +Subsystems and drivers can create and queue work items through special +workqueue API functions as they see fit. They can influence some +aspects of the way the work items are executed by setting flags on the +workqueue they are putting the work item on. These flags include +things like CPU locality, concurrency limits, priority and more. To +get a detailed overview refer to the API description of +``alloc_workqueue()`` below. + +When a work item is queued to a workqueue, the target worker-pool is +determined according to the queue parameters and workqueue attributes +and appended on the shared worklist of the worker-pool. For example, +unless specifically overridden, a work item of a bound workqueue will +be queued on the worklist of either normal or highpri worker-pool that +is associated to the CPU the issuer is running on. + +For any worker pool implementation, managing the concurrency level +(how many execution contexts are active) is an important issue. cmwq +tries to keep the concurrency at a minimal but sufficient level. +Minimal to save resources and sufficient in that the system is used at +its full capacity. + +Each worker-pool bound to an actual CPU implements concurrency +management by hooking into the scheduler. The worker-pool is notified +whenever an active worker wakes up or sleeps and keeps track of the +number of the currently runnable workers. Generally, work items are +not expected to hog a CPU and consume many cycles. That means +maintaining just enough concurrency to prevent work processing from +stalling should be optimal. As long as there are one or more runnable +workers on the CPU, the worker-pool doesn't start execution of a new +work, but, when the last running worker goes to sleep, it immediately +schedules a new worker so that the CPU doesn't sit idle while there +are pending work items. This allows using a minimal number of workers +without losing execution bandwidth. + +Keeping idle workers around doesn't cost other than the memory space +for kthreads, so cmwq holds onto idle ones for a while before killing +them. + +For unbound workqueues, the number of backing pools is dynamic. +Unbound workqueue can be assigned custom attributes using +``apply_workqueue_attrs()`` and workqueue will automatically create +backing worker pools matching the attributes. The responsibility of +regulating concurrency level is on the users. There is also a flag to +mark a bound wq to ignore the concurrency management. Please refer to +the API section for details. + +Forward progress guarantee relies on that workers can be created when +more execution contexts are necessary, which in turn is guaranteed +through the use of rescue workers. All work items which might be used +on code paths that handle memory reclaim are required to be queued on +wq's that have a rescue-worker reserved for execution under memory +pressure. Else it is possible that the worker-pool deadlocks waiting +for execution contexts to free up. + + +Application Programming Interface (API) +======================================= + +``alloc_workqueue()`` allocates a wq. The original +``create_*workqueue()`` functions are deprecated and scheduled for +removal. ``alloc_workqueue()`` takes three arguments - @``name``, +``@flags`` and ``@max_active``. ``@name`` is the name of the wq and +also used as the name of the rescuer thread if there is one. + +A wq no longer manages execution resources but serves as a domain for +forward progress guarantee, flush and work item attributes. ``@flags`` +and ``@max_active`` control how work items are assigned execution +resources, scheduled and executed. + + +``flags`` +--------- + +``WQ_UNBOUND`` + Work items queued to an unbound wq are served by the special + worker-pools which host workers which are not bound to any + specific CPU. This makes the wq behave as a simple execution + context provider without concurrency management. The unbound + worker-pools try to start execution of work items as soon as + possible. Unbound wq sacrifices locality but is useful for + the following cases. + + * Wide fluctuation in the concurrency level requirement is + expected and using bound wq may end up creating large number + of mostly unused workers across different CPUs as the issuer + hops through different CPUs. + + * Long running CPU intensive workloads which can be better + managed by the system scheduler. + +``WQ_FREEZABLE`` + A freezable wq participates in the freeze phase of the system + suspend operations. Work items on the wq are drained and no + new work item starts execution until thawed. + +``WQ_MEM_RECLAIM`` + All wq which might be used in the memory reclaim paths **MUST** + have this flag set. The wq is guaranteed to have at least one + execution context regardless of memory pressure. + +``WQ_HIGHPRI`` + Work items of a highpri wq are queued to the highpri + worker-pool of the target cpu. Highpri worker-pools are + served by worker threads with elevated nice level. + + Note that normal and highpri worker-pools don't interact with + each other. Each maintain its separate pool of workers and + implements concurrency management among its workers. + +``WQ_CPU_INTENSIVE`` + Work items of a CPU intensive wq do not contribute to the + concurrency level. In other words, runnable CPU intensive + work items will not prevent other work items in the same + worker-pool from starting execution. This is useful for bound + work items which are expected to hog CPU cycles so that their + execution is regulated by the system scheduler. + + Although CPU intensive work items don't contribute to the + concurrency level, start of their executions is still + regulated by the concurrency management and runnable + non-CPU-intensive work items can delay execution of CPU + intensive work items. + + This flag is meaningless for unbound wq. + +Note that the flag ``WQ_NON_REENTRANT`` no longer exists as all +workqueues are now non-reentrant - any work item is guaranteed to be +executed by at most one worker system-wide at any given time. + + +``max_active`` +-------------- + +``@max_active`` determines the maximum number of execution contexts +per CPU which can be assigned to the work items of a wq. For example, +with ``@max_active`` of 16, at most 16 work items of the wq can be +executing at the same time per CPU. + +Currently, for a bound wq, the maximum limit for ``@max_active`` is +512 and the default value used when 0 is specified is 256. For an +unbound wq, the limit is higher of 512 and 4 * +``num_possible_cpus()``. These values are chosen sufficiently high +such that they are not the limiting factor while providing protection +in runaway cases. + +The number of active work items of a wq is usually regulated by the +users of the wq, more specifically, by how many work items the users +may queue at the same time. Unless there is a specific need for +throttling the number of active work items, specifying '0' is +recommended. + +Some users depend on the strict execution ordering of ST wq. The +combination of ``@max_active`` of 1 and ``WQ_UNBOUND`` is used to +achieve this behavior. Work items on such wq are always queued to the +unbound worker-pools and only one work item can be active at any given +time thus achieving the same ordering property as ST wq. + + +Example Execution Scenarios +=========================== + +The following example execution scenarios try to illustrate how cmwq +behave under different configurations. + + Work items w0, w1, w2 are queued to a bound wq q0 on the same CPU. + w0 burns CPU for 5ms then sleeps for 10ms then burns CPU for 5ms + again before finishing. w1 and w2 burn CPU for 5ms then sleep for + 10ms. + +Ignoring all other tasks, works and processing overhead, and assuming +simple FIFO scheduling, the following is one highly simplified version +of possible sequences of events with the original wq. :: + + TIME IN MSECS EVENT + 0 w0 starts and burns CPU + 5 w0 sleeps + 15 w0 wakes up and burns CPU + 20 w0 finishes + 20 w1 starts and burns CPU + 25 w1 sleeps + 35 w1 wakes up and finishes + 35 w2 starts and burns CPU + 40 w2 sleeps + 50 w2 wakes up and finishes + +And with cmwq with ``@max_active`` >= 3, :: + + TIME IN MSECS EVENT + 0 w0 starts and burns CPU + 5 w0 sleeps + 5 w1 starts and burns CPU + 10 w1 sleeps + 10 w2 starts and burns CPU + 15 w2 sleeps + 15 w0 wakes up and burns CPU + 20 w0 finishes + 20 w1 wakes up and finishes + 25 w2 wakes up and finishes + +If ``@max_active`` == 2, :: + + TIME IN MSECS EVENT + 0 w0 starts and burns CPU + 5 w0 sleeps + 5 w1 starts and burns CPU + 10 w1 sleeps + 15 w0 wakes up and burns CPU + 20 w0 finishes + 20 w1 wakes up and finishes + 20 w2 starts and burns CPU + 25 w2 sleeps + 35 w2 wakes up and finishes + +Now, let's assume w1 and w2 are queued to a different wq q1 which has +``WQ_CPU_INTENSIVE`` set, :: + + TIME IN MSECS EVENT + 0 w0 starts and burns CPU + 5 w0 sleeps + 5 w1 and w2 start and burn CPU + 10 w1 sleeps + 15 w2 sleeps + 15 w0 wakes up and burns CPU + 20 w0 finishes + 20 w1 wakes up and finishes + 25 w2 wakes up and finishes + + +Guidelines +========== + +* Do not forget to use ``WQ_MEM_RECLAIM`` if a wq may process work + items which are used during memory reclaim. Each wq with + ``WQ_MEM_RECLAIM`` set has an execution context reserved for it. If + there is dependency among multiple work items used during memory + reclaim, they should be queued to separate wq each with + ``WQ_MEM_RECLAIM``. + +* Unless strict ordering is required, there is no need to use ST wq. + +* Unless there is a specific need, using 0 for @max_active is + recommended. In most use cases, concurrency level usually stays + well under the default limit. + +* A wq serves as a domain for forward progress guarantee + (``WQ_MEM_RECLAIM``, flush and work item attributes. Work items + which are not involved in memory reclaim and don't need to be + flushed as a part of a group of work items, and don't require any + special attribute, can use one of the system wq. There is no + difference in execution characteristics between using a dedicated wq + and a system wq. + +* Unless work items are expected to consume a huge amount of CPU + cycles, using a bound wq is usually beneficial due to the increased + level of locality in wq operations and work item execution. + + +Debugging +========= + +Because the work functions are executed by generic worker threads +there are a few tricks needed to shed some light on misbehaving +workqueue users. + +Worker threads show up in the process list as: :: + + root 5671 0.0 0.0 0 0 ? S 12:07 0:00 [kworker/0:1] + root 5672 0.0 0.0 0 0 ? S 12:07 0:00 [kworker/1:2] + root 5673 0.0 0.0 0 0 ? S 12:12 0:00 [kworker/0:0] + root 5674 0.0 0.0 0 0 ? S 12:13 0:00 [kworker/1:0] + +If kworkers are going crazy (using too much cpu), there are two types +of possible problems: + + 1. Something being scheduled in rapid succession + 2. A single work item that consumes lots of cpu cycles + +The first one can be tracked using tracing: :: + + $ echo workqueue:workqueue_queue_work > /sys/kernel/debug/tracing/set_event + $ cat /sys/kernel/debug/tracing/trace_pipe > out.txt + (wait a few secs) + ^C + +If something is busy looping on work queueing, it would be dominating +the output and the offender can be determined with the work item +function. + +For the second type of problems it should be possible to just check +the stack trace of the offending worker thread. :: + + $ cat /proc/THE_OFFENDING_KWORKER/stack + +The work item's function should be trivially visible in the stack +trace. + + +Kernel Inline Documentations Reference +====================================== + +.. kernel-doc:: include/linux/workqueue.h |