diff options
author | SeongJae Park <sj38.park@gmail.com> | 2019-11-22 00:41:21 +0100 |
---|---|---|
committer | Jonathan Corbet <corbet@lwn.net> | 2019-11-22 10:00:40 -0700 |
commit | 18b68475c5ef2a7bde2e151729f0c10c17e05fa6 (patch) | |
tree | b19599e6c4f5338c7e0dd8218d02d98fd656ef39 | |
parent | bf3b965bc45c87c0bb49d834d1bfff263e522d59 (diff) | |
download | linux-18b68475c5ef2a7bde2e151729f0c10c17e05fa6.tar.bz2 |
docs/memory-barriers.txt/kokr: Fix style, spacing and grammar in I/O section
Translate this commit to Korean:
0cde62a46e88 ("docs/memory-barriers.txt: Fix style, spacing and grammar in I/O section")
Signed-off-by: SeongJae Park <sj38.park@gmail.com>
Link: https://lore.kernel.org/r/20191121234125.28032-4-sj38.park@gmail.com
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
-rw-r--r-- | Documentation/translations/ko_KR/memory-barriers.txt | 112 |
1 files changed, 60 insertions, 52 deletions
diff --git a/Documentation/translations/ko_KR/memory-barriers.txt b/Documentation/translations/ko_KR/memory-barriers.txt index aeb0e58ec7ce..6ae6d24ba60e 100644 --- a/Documentation/translations/ko_KR/memory-barriers.txt +++ b/Documentation/translations/ko_KR/memory-barriers.txt @@ -2480,75 +2480,83 @@ I/O 액세스를 통한 주변장치와의 통신은 아키텍쳐와 기기에 (*) readX(), writeX(): - readX() 와 writeX() MMIO 액세스 함수는 접근되는 주변장치로의 포인터를 - __iomem * 패러미터로 받습니다. 디폴트 I/O 기능으로 매핑되는 포인터 (예: - ioremap() 으로 반환되는 것) 의 순서 보장은 다음과 같습니다: - - 1. 같은 주변장치로의 모든 readX() 와 writeX() 액세스는 각자에 대해 - 순서지어집니다. 예를 들어, CPU 의 특정 디바이스로의 MMIO 레지스터 - 쓰기는 프로그램 순서대로 도착할 것이 보장됩니다. - - 2. CPU 에 의한 특정 주변장치로의 writeX() 는 모든 앞선 CPU 의 메모리 - 쓰기가 완료되기를 먼저 기다립니다. 예를 들어, dma_alloc_coherent() 를 - 통해 할당된 전송용 DMA 버퍼로의 CPU 의 쓰기는 이 전송을 시작시키기 위해 - CPU 가 MMIO 컨트롤 레지스터에 쓰기를 할 때 DMA 엔진에 보일 것이 - 보장됩니다. - - 3. CPU 에 의한 주변장치로의 readX() 는 모든 뒤따르는 CPU 의 메모리 - 읽기가 시작되기 전에 완료됩니다. 예를 들어, dma_alloc_coherent() 를 - 통해 할당된 수신용 DMA 버퍼로부터의 CPU 의 읽기는 이 DMA 수신의 완료를 - 표시하는 DMA 엔진의 MMIO 상태 레지스터 읽기 후에는 오염된 데이터를 읽지 - 않을 것이 보장됩니다. - - 4. CPU 에 의한 주변장치로의 readX() 는 모든 뒤따르는 delay() 루프가 수행을 - 시작하기 전에 완료됩니다. 예를 들어, CPU 의 특정 주변장치로의 두개의 - MMIO 레지스터 쓰기가 행해지는데 첫번째 쓰기가 readX() 를 통해 곧바로 - 읽어졌고 이어 두번째 writeX() 전에 udelay(1) 이 호출되었다면 이 두개의 - 쓰기는 최소 1us 의 간격을 두고 행해질 것이 보장됩니다. - - 디폴트가 아닌 기능을 통해 얻어지는 __iomem 포인터 (예: ioremap_wc() 를 - 통해 리턴되는 것) 는 이런 보장사항들 중 다수를 제공하지 않을 수 있습니다. + readX() 와 writeX() MMIO 액세스 함수는 접근되는 주변장치로의 포인터를 + __iomem * 패러미터로 받습니다. 디폴트 I/O 기능으로 매핑되는 포인터 + (예: ioremap() 으로 반환되는 것) 의 순서 보장은 다음과 같습니다: + + 1. 같은 주변장치로의 모든 readX() 와 writeX() 액세스는 각자에 대해 + 순서지어집니다. 예를 들어, CPU 의 특정 디바이스로의 MMIO 레지스터 + 쓰기는 프로그램 순서대로 도착할 것이 보장됩니다. + + 2. CPU 에 의한 특정 주변장치로의 writeX() 는 모든 앞선 CPU 의 메모리 + 쓰기가 완료되기를 먼저 기다립니다. 예를 들어, dma_alloc_coherent() + 를 통해 할당된 전송용 DMA 버퍼로의 CPU 의 쓰기는 이 전송을 + 시작시키기 위해 CPU 가 MMIO 컨트롤 레지스터에 쓰기를 할 때 DMA + 엔진에 보일 것이 보장됩니다. + + 3. CPU 에 의한 주변장치로의 readX() 는 모든 뒤따르는 CPU 의 메모리 + 읽기가 시작되기 전에 완료됩니다. 예를 들어, dma_alloc_coherent() 를 + 통해 할당된 수신용 DMA 버퍼로부터의 CPU 의 읽기는 이 DMA 수신의 + 완료를 표시하는 DMA 엔진의 MMIO 상태 레지스터 읽기 후에는 오염된 + 데이터를 읽지 않을 것이 보장됩니다. + + 4. CPU 에 의한 주변장치로의 readX() 는 모든 뒤따르는 delay() 루프가 + 수행을 시작하기 전에 완료됩니다. 예를 들어, CPU 의 특정 + 주변장치로의 두개의 MMIO 레지스터 쓰기가 행해지는데 첫번째 쓰기가 + readX() 를 통해 곧바로 읽어졌고 이어 두번째 writeX() 전에 udelay(1) + 이 호출되었다면 이 두개의 쓰기는 최소 1us 의 간격을 두고 행해질 것이 + 보장됩니다: + + writel(42, DEVICE_REGISTER_0); // 디바이스에 도착함... + readl(DEVICE_REGISTER_0); + udelay(1); + writel(42, DEVICE_REGISTER_1); // ...이것보다 최소 1us 전에. + + 디폴트가 아닌 기능을 통해 얻어지는 __iomem 포인터 (예: ioremap_wc() 를 + 통해 리턴되는 것) 의 순서 속성은 실제 아키텍쳐에 의존적이어서 이런 + 종류의 매핑으로의 액세스는 앞서 설명된 보장사항에 의존할 수 없습니다. (*) readX_relaxed(), writeX_relaxed() - 이것들은 readX() 와 writeX() 랑 비슷하지만, 더 완화된 메모리 순서 보장을 - 제공합니다. 구체적으로, 이것들은 일반적 메모리 액세스나 delay() 루프 - (예:앞의 2-4 항목) 에 대해 순서를 보장하지 않습니다만 디폴트 I/O 기능으로 - 매핑된 __iomem 포인터에 대해 동작할 때 같은 주변장치로의 액세스에는 순서가 - 맞춰질 것이 보장됩니다. + 이것들은 readX() 와 writeX() 랑 비슷하지만, 더 완화된 메모리 순서 + 보장을 제공합니다. 구체적으로, 이것들은 일반적 메모리 액세스나 delay() + 루프 (예:앞의 2-4 항목) 에 대해 순서를 보장하지 않습니다만 디폴트 I/O + 기능으로 매핑된 __iomem 포인터에 대해 동작할 때 같은 주변장치로의 + 액세스에는 순서가 맞춰질 것이 보장됩니다. (*) readsX(), writesX(): - readsX() 와 writesX() MMIO 액세스 함수는 DMA 를 수행하는데 적절치 않은, - 주변장치 내의 메모리 매핑된 레지스터 기반 FIFO 로의 액세스를 위해 - 설계되었습니다. 따라서, 이 기능들은 앞서 설명된 readX_relaxed() 와 - writeX_relaxed() 의 순서 보장만을 제공합니다. + readsX() 와 writesX() MMIO 액세스 함수는 DMA 를 수행하는데 적절치 않은, + 주변장치 내의 메모리 매핑된 레지스터 기반 FIFO 로의 액세스를 위해 + 설계되었습니다. 따라서, 이 기능들은 앞서 설명된 readX_relaxed() 와 + writeX_relaxed() 의 순서 보장만을 제공합니다. (*) inX(), outX(): - inX() 와 outX() 액세스 함수는 일부 아키텍쳐 (특히 x86) 에서는 특수한 - 명령어를 필요로 하며 포트에 매핑되는, 과거의 유산인 I/O 주변장치로의 - 접근을 위해 만들어졌습니다. + inX() 와 outX() 액세스 함수는 일부 아키텍쳐 (특히 x86) 에서는 특수한 + 명령어를 필요로 하며 포트에 매핑되는, 과거의 유산인 I/O 주변장치로의 + 접근을 위해 만들어졌습니다. - 많은 CPU 아키텍쳐가 결국은 이런 주변장치를 내부의 가상 메모리 매핑을 통해 - 접근하기 때문에, inX() 와 outX() 가 제공하는 이식성 있는 순서 보장은 - 디폴트 I/O 기능을 통한 매핑을 접근할 때의 readX() 와 writeX() 에 의해 - 제공되는 것과 각각 동일합니다. + 많은 CPU 아키텍쳐가 결국은 이런 주변장치를 내부의 가상 메모리 매핑을 + 통해 접근하기 때문에, inX() 와 outX() 가 제공하는 이식성 있는 순서 + 보장은 디폴트 I/O 기능을 통한 매핑을 접근할 때의 readX() 와 writeX() 에 + 의해 제공되는 것과 각각 동일합니다. - 디바이스 드라이버는 outX() 가 리턴하기 전에 해당 I/O 주변장치로부터의 완료 - 응답을 기다리는 쓰기 트랜잭션을 만들어 낸다고 기대할 수도 있습니다. 이는 - 모든 아키텍쳐에서 보장되지는 않고, 따라서 이식성 있는 순서 규칙의 일부분이 - 아닙니다. + 디바이스 드라이버는 outX() 가 리턴하기 전에 해당 I/O 주변장치로부터의 + 완료 응답을 기다리는 쓰기 트랜잭션을 만들어 낸다고 기대할 수도 + 있습니다. 이는 모든 아키텍쳐에서 보장되지는 않고, 따라서 이식성 있는 + 순서 규칙의 일부분이 아닙니다. (*) insX(), outsX(): - 앞에서와 같이, insX() 와 outsX() 액세스 함수는 디폴트 I/O 기능을 통한 - 매핑을 접근할 때 각각 readX() 와 writeX() 와 같은 순서 보장을 제공합니다. + 앞에서와 같이, insX() 와 outsX() 액세스 함수는 디폴트 I/O 기능을 통한 + 매핑을 접근할 때 각각 readX() 와 writeX() 와 같은 순서 보장을 + 제공합니다. (*) ioreadX(), iowriteX() - 이것들은 inX()/outX() 나 readX()/writeX() 처럼 실제로 수행하는 액세스의 - 종류에 따라 적절하게 수행될 것입니다. + 이것들은 inX()/outX() 나 readX()/writeX() 처럼 실제로 수행하는 액세스의 + 종류에 따라 적절하게 수행될 것입니다. 이 모든 액세스 함수들은 아랫단의 주변장치가 little-endian 이라 가정하며, 따라서 big-endian 아키텍쳐에서는 byte-swapping 오퍼레이션을 수행합니다. |