diff options
author | Markus Stockhausen <stockhausen@collogia.de> | 2015-02-22 09:59:49 +0100 |
---|---|---|
committer | Herbert Xu <herbert@gondor.apana.org.au> | 2015-03-01 23:02:28 +1300 |
commit | 1c201e6420729f0aca9c844bb941ee2dd2b6c3c0 (patch) | |
tree | f85dee72ffba981696b656c60caff199cabbda61 | |
parent | 0c5f9aea2e9c1f4a60321127064d03a0331add99 (diff) | |
download | linux-1c201e6420729f0aca9c844bb941ee2dd2b6c3c0.tar.bz2 |
crypto: powerpc/aes - assembler core
The assembler AES encryption and decryption core routines.
Implemented & optimized for big endian. Nevertheless they
work on little endian too.
For most efficient reuse in (higher level) block cipher
routines they are implemented as "fast" call modules without
any stack handling or register saving. The caller must
take care of that part.
Signed-off-by: Markus Stockhausen <stockhausen@collogia.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-rw-r--r-- | arch/powerpc/crypto/aes-spe-core.S | 351 |
1 files changed, 351 insertions, 0 deletions
diff --git a/arch/powerpc/crypto/aes-spe-core.S b/arch/powerpc/crypto/aes-spe-core.S new file mode 100644 index 000000000000..5dc6bce90a77 --- /dev/null +++ b/arch/powerpc/crypto/aes-spe-core.S @@ -0,0 +1,351 @@ +/* + * Fast AES implementation for SPE instruction set (PPC) + * + * This code makes use of the SPE SIMD instruction set as defined in + * http://cache.freescale.com/files/32bit/doc/ref_manual/SPEPIM.pdf + * Implementation is based on optimization guide notes from + * http://cache.freescale.com/files/32bit/doc/app_note/AN2665.pdf + * + * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de> + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the Free + * Software Foundation; either version 2 of the License, or (at your option) + * any later version. + * + */ + +#include <asm/ppc_asm.h> +#include "aes-spe-regs.h" + +#define EAD(in, bpos) \ + rlwimi rT0,in,28-((bpos+3)%4)*8,20,27; + +#define DAD(in, bpos) \ + rlwimi rT1,in,24-((bpos+3)%4)*8,24,31; + +#define LWH(out, off) \ + evlwwsplat out,off(rT0); /* load word high */ + +#define LWL(out, off) \ + lwz out,off(rT0); /* load word low */ + +#define LBZ(out, tab, off) \ + lbz out,off(tab); /* load byte */ + +#define LAH(out, in, bpos, off) \ + EAD(in, bpos) /* calc addr + load word high */ \ + LWH(out, off) + +#define LAL(out, in, bpos, off) \ + EAD(in, bpos) /* calc addr + load word low */ \ + LWL(out, off) + +#define LAE(out, in, bpos) \ + EAD(in, bpos) /* calc addr + load enc byte */ \ + LBZ(out, rT0, 8) + +#define LBE(out) \ + LBZ(out, rT0, 8) /* load enc byte */ + +#define LAD(out, in, bpos) \ + DAD(in, bpos) /* calc addr + load dec byte */ \ + LBZ(out, rT1, 0) + +#define LBD(out) \ + LBZ(out, rT1, 0) + +/* + * ppc_encrypt_block: The central encryption function for a single 16 bytes + * block. It does no stack handling or register saving to support fast calls + * via bl/blr. It expects that caller has pre-xored input data with first + * 4 words of encryption key into rD0-rD3. Pointer/counter registers must + * have also been set up before (rT0, rKP, CTR). Output is stored in rD0-rD3 + * and rW0-rW3 and caller must execute a final xor on the ouput registers. + * All working registers rD0-rD3 & rW0-rW7 are overwritten during processing. + * + */ +_GLOBAL(ppc_encrypt_block) + LAH(rW4, rD1, 2, 4) + LAH(rW6, rD0, 3, 0) + LAH(rW3, rD0, 1, 8) +ppc_encrypt_block_loop: + LAH(rW0, rD3, 0, 12) + LAL(rW0, rD0, 0, 12) + LAH(rW1, rD1, 0, 12) + LAH(rW2, rD2, 1, 8) + LAL(rW2, rD3, 1, 8) + LAL(rW3, rD1, 1, 8) + LAL(rW4, rD2, 2, 4) + LAL(rW6, rD1, 3, 0) + LAH(rW5, rD3, 2, 4) + LAL(rW5, rD0, 2, 4) + LAH(rW7, rD2, 3, 0) + evldw rD1,16(rKP) + EAD(rD3, 3) + evxor rW2,rW2,rW4 + LWL(rW7, 0) + evxor rW2,rW2,rW6 + EAD(rD2, 0) + evxor rD1,rD1,rW2 + LWL(rW1, 12) + evxor rD1,rD1,rW0 + evldw rD3,24(rKP) + evmergehi rD0,rD0,rD1 + EAD(rD1, 2) + evxor rW3,rW3,rW5 + LWH(rW4, 4) + evxor rW3,rW3,rW7 + EAD(rD0, 3) + evxor rD3,rD3,rW3 + LWH(rW6, 0) + evxor rD3,rD3,rW1 + EAD(rD0, 1) + evmergehi rD2,rD2,rD3 + LWH(rW3, 8) + LAH(rW0, rD3, 0, 12) + LAL(rW0, rD0, 0, 12) + LAH(rW1, rD1, 0, 12) + LAH(rW2, rD2, 1, 8) + LAL(rW2, rD3, 1, 8) + LAL(rW3, rD1, 1, 8) + LAL(rW4, rD2, 2, 4) + LAL(rW6, rD1, 3, 0) + LAH(rW5, rD3, 2, 4) + LAL(rW5, rD0, 2, 4) + LAH(rW7, rD2, 3, 0) + evldw rD1,32(rKP) + EAD(rD3, 3) + evxor rW2,rW2,rW4 + LWL(rW7, 0) + evxor rW2,rW2,rW6 + EAD(rD2, 0) + evxor rD1,rD1,rW2 + LWL(rW1, 12) + evxor rD1,rD1,rW0 + evldw rD3,40(rKP) + evmergehi rD0,rD0,rD1 + EAD(rD1, 2) + evxor rW3,rW3,rW5 + LWH(rW4, 4) + evxor rW3,rW3,rW7 + EAD(rD0, 3) + evxor rD3,rD3,rW3 + LWH(rW6, 0) + evxor rD3,rD3,rW1 + EAD(rD0, 1) + evmergehi rD2,rD2,rD3 + LWH(rW3, 8) + addi rKP,rKP,32 + bdnz ppc_encrypt_block_loop + LAH(rW0, rD3, 0, 12) + LAL(rW0, rD0, 0, 12) + LAH(rW1, rD1, 0, 12) + LAH(rW2, rD2, 1, 8) + LAL(rW2, rD3, 1, 8) + LAL(rW3, rD1, 1, 8) + LAL(rW4, rD2, 2, 4) + LAH(rW5, rD3, 2, 4) + LAL(rW6, rD1, 3, 0) + LAL(rW5, rD0, 2, 4) + LAH(rW7, rD2, 3, 0) + evldw rD1,16(rKP) + EAD(rD3, 3) + evxor rW2,rW2,rW4 + LWL(rW7, 0) + evxor rW2,rW2,rW6 + EAD(rD2, 0) + evxor rD1,rD1,rW2 + LWL(rW1, 12) + evxor rD1,rD1,rW0 + evldw rD3,24(rKP) + evmergehi rD0,rD0,rD1 + EAD(rD1, 0) + evxor rW3,rW3,rW5 + LBE(rW2) + evxor rW3,rW3,rW7 + EAD(rD0, 1) + evxor rD3,rD3,rW3 + LBE(rW6) + evxor rD3,rD3,rW1 + EAD(rD0, 0) + evmergehi rD2,rD2,rD3 + LBE(rW1) + LAE(rW0, rD3, 0) + LAE(rW1, rD0, 0) + LAE(rW4, rD2, 1) + LAE(rW5, rD3, 1) + LAE(rW3, rD2, 0) + LAE(rW7, rD1, 1) + rlwimi rW0,rW4,8,16,23 + rlwimi rW1,rW5,8,16,23 + LAE(rW4, rD1, 2) + LAE(rW5, rD2, 2) + rlwimi rW2,rW6,8,16,23 + rlwimi rW3,rW7,8,16,23 + LAE(rW6, rD3, 2) + LAE(rW7, rD0, 2) + rlwimi rW0,rW4,16,8,15 + rlwimi rW1,rW5,16,8,15 + LAE(rW4, rD0, 3) + LAE(rW5, rD1, 3) + rlwimi rW2,rW6,16,8,15 + lwz rD0,32(rKP) + rlwimi rW3,rW7,16,8,15 + lwz rD1,36(rKP) + LAE(rW6, rD2, 3) + LAE(rW7, rD3, 3) + rlwimi rW0,rW4,24,0,7 + lwz rD2,40(rKP) + rlwimi rW1,rW5,24,0,7 + lwz rD3,44(rKP) + rlwimi rW2,rW6,24,0,7 + rlwimi rW3,rW7,24,0,7 + blr + +/* + * ppc_decrypt_block: The central decryption function for a single 16 bytes + * block. It does no stack handling or register saving to support fast calls + * via bl/blr. It expects that caller has pre-xored input data with first + * 4 words of encryption key into rD0-rD3. Pointer/counter registers must + * have also been set up before (rT0, rKP, CTR). Output is stored in rD0-rD3 + * and rW0-rW3 and caller must execute a final xor on the ouput registers. + * All working registers rD0-rD3 & rW0-rW7 are overwritten during processing. + * + */ +_GLOBAL(ppc_decrypt_block) + LAH(rW0, rD1, 0, 12) + LAH(rW6, rD0, 3, 0) + LAH(rW3, rD0, 1, 8) +ppc_decrypt_block_loop: + LAH(rW1, rD3, 0, 12) + LAL(rW0, rD2, 0, 12) + LAH(rW2, rD2, 1, 8) + LAL(rW2, rD3, 1, 8) + LAH(rW4, rD3, 2, 4) + LAL(rW4, rD0, 2, 4) + LAL(rW6, rD1, 3, 0) + LAH(rW5, rD1, 2, 4) + LAH(rW7, rD2, 3, 0) + LAL(rW7, rD3, 3, 0) + LAL(rW3, rD1, 1, 8) + evldw rD1,16(rKP) + EAD(rD0, 0) + evxor rW4,rW4,rW6 + LWL(rW1, 12) + evxor rW0,rW0,rW4 + EAD(rD2, 2) + evxor rW0,rW0,rW2 + LWL(rW5, 4) + evxor rD1,rD1,rW0 + evldw rD3,24(rKP) + evmergehi rD0,rD0,rD1 + EAD(rD1, 0) + evxor rW3,rW3,rW7 + LWH(rW0, 12) + evxor rW3,rW3,rW1 + EAD(rD0, 3) + evxor rD3,rD3,rW3 + LWH(rW6, 0) + evxor rD3,rD3,rW5 + EAD(rD0, 1) + evmergehi rD2,rD2,rD3 + LWH(rW3, 8) + LAH(rW1, rD3, 0, 12) + LAL(rW0, rD2, 0, 12) + LAH(rW2, rD2, 1, 8) + LAL(rW2, rD3, 1, 8) + LAH(rW4, rD3, 2, 4) + LAL(rW4, rD0, 2, 4) + LAL(rW6, rD1, 3, 0) + LAH(rW5, rD1, 2, 4) + LAH(rW7, rD2, 3, 0) + LAL(rW7, rD3, 3, 0) + LAL(rW3, rD1, 1, 8) + evldw rD1,32(rKP) + EAD(rD0, 0) + evxor rW4,rW4,rW6 + LWL(rW1, 12) + evxor rW0,rW0,rW4 + EAD(rD2, 2) + evxor rW0,rW0,rW2 + LWL(rW5, 4) + evxor rD1,rD1,rW0 + evldw rD3,40(rKP) + evmergehi rD0,rD0,rD1 + EAD(rD1, 0) + evxor rW3,rW3,rW7 + LWH(rW0, 12) + evxor rW3,rW3,rW1 + EAD(rD0, 3) + evxor rD3,rD3,rW3 + LWH(rW6, 0) + evxor rD3,rD3,rW5 + EAD(rD0, 1) + evmergehi rD2,rD2,rD3 + LWH(rW3, 8) + addi rKP,rKP,32 + bdnz ppc_decrypt_block_loop + LAH(rW1, rD3, 0, 12) + LAL(rW0, rD2, 0, 12) + LAH(rW2, rD2, 1, 8) + LAL(rW2, rD3, 1, 8) + LAH(rW4, rD3, 2, 4) + LAL(rW4, rD0, 2, 4) + LAL(rW6, rD1, 3, 0) + LAH(rW5, rD1, 2, 4) + LAH(rW7, rD2, 3, 0) + LAL(rW7, rD3, 3, 0) + LAL(rW3, rD1, 1, 8) + evldw rD1,16(rKP) + EAD(rD0, 0) + evxor rW4,rW4,rW6 + LWL(rW1, 12) + evxor rW0,rW0,rW4 + EAD(rD2, 2) + evxor rW0,rW0,rW2 + LWL(rW5, 4) + evxor rD1,rD1,rW0 + evldw rD3,24(rKP) + evmergehi rD0,rD0,rD1 + DAD(rD1, 0) + evxor rW3,rW3,rW7 + LBD(rW0) + evxor rW3,rW3,rW1 + DAD(rD0, 1) + evxor rD3,rD3,rW3 + LBD(rW6) + evxor rD3,rD3,rW5 + DAD(rD0, 0) + evmergehi rD2,rD2,rD3 + LBD(rW3) + LAD(rW2, rD3, 0) + LAD(rW1, rD2, 0) + LAD(rW4, rD2, 1) + LAD(rW5, rD3, 1) + LAD(rW7, rD1, 1) + rlwimi rW0,rW4,8,16,23 + rlwimi rW1,rW5,8,16,23 + LAD(rW4, rD3, 2) + LAD(rW5, rD0, 2) + rlwimi rW2,rW6,8,16,23 + rlwimi rW3,rW7,8,16,23 + LAD(rW6, rD1, 2) + LAD(rW7, rD2, 2) + rlwimi rW0,rW4,16,8,15 + rlwimi rW1,rW5,16,8,15 + LAD(rW4, rD0, 3) + LAD(rW5, rD1, 3) + rlwimi rW2,rW6,16,8,15 + lwz rD0,32(rKP) + rlwimi rW3,rW7,16,8,15 + lwz rD1,36(rKP) + LAD(rW6, rD2, 3) + LAD(rW7, rD3, 3) + rlwimi rW0,rW4,24,0,7 + lwz rD2,40(rKP) + rlwimi rW1,rW5,24,0,7 + lwz rD3,44(rKP) + rlwimi rW2,rW6,24,0,7 + rlwimi rW3,rW7,24,0,7 + blr |