From 5884cc13263221bd8f296f5f424237c7734b7e6a Mon Sep 17 00:00:00 2001 From: Sebastian Reichel Date: Sun, 10 Jun 2012 23:59:35 +0200 Subject: add code generating some nice graphics --- invoice/graph/cairoplot.py | 2336 ++++++++++++++++++++++++++++++++++++++++++++ invoice/graph/graphs.py | 141 +++ invoice/graph/series.py | 1140 +++++++++++++++++++++ 3 files changed, 3617 insertions(+) create mode 100755 invoice/graph/cairoplot.py create mode 100755 invoice/graph/graphs.py create mode 100755 invoice/graph/series.py (limited to 'invoice') diff --git a/invoice/graph/cairoplot.py b/invoice/graph/cairoplot.py new file mode 100755 index 0000000..a15f329 --- /dev/null +++ b/invoice/graph/cairoplot.py @@ -0,0 +1,2336 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- + +# CairoPlot.py +# +# Copyright (c) 2008 Rodrigo Moreira Araújo +# +# Author: Rodrigo Moreiro Araujo +# +# This program is free software; you can redistribute it and/or +# modify it under the terms of the GNU Lesser General Public License +# as published by the Free Software Foundation; either version 2 of +# the License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public +# License along with this program; if not, write to the Free Software +# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 +# USA + +#Contributor: João S. O. Bueno + +#TODO: review BarPlot Code +#TODO: x_label colision problem on Horizontal Bar Plot +#TODO: y_label's eat too much space on HBP + + +__version__ = 1.2 + +import cairo +import math +import random +from series import Series, Group, Data + +HORZ = 0 +VERT = 1 +NORM = 2 + +COLORS = {"red" : (1.0,0.0,0.0,1.0), "lime" : (0.0,1.0,0.0,1.0), "blue" : (0.0,0.0,1.0,1.0), + "maroon" : (0.5,0.0,0.0,1.0), "green" : (0.0,0.5,0.0,1.0), "navy" : (0.0,0.0,0.5,1.0), + "yellow" : (1.0,1.0,0.0,1.0), "magenta" : (1.0,0.0,1.0,1.0), "cyan" : (0.0,1.0,1.0,1.0), + "orange" : (1.0,0.5,0.0,1.0), "white" : (1.0,1.0,1.0,1.0), "black" : (0.0,0.0,0.0,1.0), + "gray" : (0.5,0.5,0.5,1.0), "light_gray" : (0.9,0.9,0.9,1.0), + "transparent" : (0.0,0.0,0.0,0.0)} + +THEMES = {"black_red" : [(0.0,0.0,0.0,1.0), (1.0,0.0,0.0,1.0)], + "red_green_blue" : [(1.0,0.0,0.0,1.0), (0.0,1.0,0.0,1.0), (0.0,0.0,1.0,1.0)], + "red_orange_yellow" : [(1.0,0.2,0.0,1.0), (1.0,0.7,0.0,1.0), (1.0,1.0,0.0,1.0)], + "yellow_orange_red" : [(1.0,1.0,0.0,1.0), (1.0,0.7,0.0,1.0), (1.0,0.2,0.0,1.0)], + "rainbow" : [(1.0,0.0,0.0,1.0), (1.0,0.5,0.0,1.0), (1.0,1.0,0.0,1.0), (0.0,1.0,0.0,1.0), (0.0,0.0,1.0,1.0), (0.3, 0.0, 0.5,1.0), (0.5, 0.0, 1.0, 1.0)]} + +def colors_from_theme( theme, series_length, mode = 'solid' ): + colors = [] + if theme not in THEMES.keys() : + raise Exception, "Theme not defined" + color_steps = THEMES[theme] + n_colors = len(color_steps) + if series_length <= n_colors: + colors = [color + tuple([mode]) for color in color_steps[0:n_colors]] + else: + iterations = [(series_length - n_colors)/(n_colors - 1) for i in color_steps[:-1]] + over_iterations = (series_length - n_colors) % (n_colors - 1) + for i in range(n_colors - 1): + if over_iterations <= 0: + break + iterations[i] += 1 + over_iterations -= 1 + for index,color in enumerate(color_steps[:-1]): + colors.append(color + tuple([mode])) + if iterations[index] == 0: + continue + next_color = color_steps[index+1] + color_step = ((next_color[0] - color[0])/(iterations[index] + 1), + (next_color[1] - color[1])/(iterations[index] + 1), + (next_color[2] - color[2])/(iterations[index] + 1), + (next_color[3] - color[3])/(iterations[index] + 1)) + for i in range( iterations[index] ): + colors.append((color[0] + color_step[0]*(i+1), + color[1] + color_step[1]*(i+1), + color[2] + color_step[2]*(i+1), + color[3] + color_step[3]*(i+1), + mode)) + colors.append(color_steps[-1] + tuple([mode])) + return colors + + +def other_direction(direction): + "explicit is better than implicit" + if direction == HORZ: + return VERT + else: + return HORZ + +#Class definition + +class Plot(object): + def __init__(self, + surface=None, + data=None, + width=640, + height=480, + background=None, + border = 0, + x_labels = None, + y_labels = None, + series_colors = None): + random.seed(2) + self.create_surface(surface, width, height) + self.dimensions = {} + self.dimensions[HORZ] = width + self.dimensions[VERT] = height + self.context = cairo.Context(self.surface) + self.labels={} + self.labels[HORZ] = x_labels + self.labels[VERT] = y_labels + self.load_series(data, x_labels, y_labels, series_colors) + self.font_size = 10 + self.set_background (background) + self.border = border + self.borders = {} + self.line_color = (0.5, 0.5, 0.5) + self.line_width = 0.5 + self.label_color = (0.0, 0.0, 0.0) + self.grid_color = (0.8, 0.8, 0.8) + + def create_surface(self, surface, width=None, height=None): + self.filename = None + if isinstance(surface, cairo.Surface): + self.surface = surface + return + if not type(surface) in (str, unicode): + raise TypeError("Surface should be either a Cairo surface or a filename, not %s" % surface) + sufix = surface.rsplit(".")[-1].lower() + self.filename = surface + if sufix == "png": + self.surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, width, height) + elif sufix == "ps": + self.surface = cairo.PSSurface(surface, width, height) + elif sufix == "pdf": + self.surface = cairo.PSSurface(surface, width, height) + else: + if sufix != "svg": + self.filename += ".svg" + self.surface = cairo.SVGSurface(self.filename, width, height) + + def commit(self): + try: + self.context.show_page() + if self.filename and self.filename.endswith(".png"): + self.surface.write_to_png(self.filename) + else: + self.surface.finish() + except cairo.Error: + pass + + def load_series (self, data, x_labels=None, y_labels=None, series_colors=None): + self.series_labels = [] + self.series = None + + #The pretty way + #if not isinstance(data, Series): + # # Not an instance of Series + # self.series = Series(data) + #else: + # self.series = data + # + #self.series_labels = self.series.get_names() + + #TODO: Remove on next version + # The ugly way, keeping retrocompatibility... + if callable(data) or type(data) is list and callable(data[0]): # Lambda or List of lambdas + self.series = data + self.series_labels = None + elif isinstance(data, Series): # Instance of Series + self.series = data + self.series_labels = data.get_names() + else: # Anything else + self.series = Series(data) + self.series_labels = self.series.get_names() + + #TODO: allow user passed series_widths + self.series_widths = [1.0 for group in self.series] + + #TODO: Remove on next version + self.process_colors( series_colors ) + + def process_colors( self, series_colors, length = None, mode = 'solid' ): + #series_colors might be None, a theme, a string of colors names or a list of color tuples + if length is None : + length = len( self.series.to_list() ) + + #no colors passed + if not series_colors: + #Randomize colors + self.series_colors = [ [random.random() for i in range(3)] + [1.0, mode] for series in range( length ) ] + else: + #Just theme pattern + if not hasattr( series_colors, "__iter__" ): + theme = series_colors + self.series_colors = colors_from_theme( theme.lower(), length ) + + #Theme pattern and mode + elif not hasattr(series_colors, '__delitem__') and not hasattr( series_colors[0], "__iter__" ): + theme = series_colors[0] + mode = series_colors[1] + self.series_colors = colors_from_theme( theme.lower(), length, mode ) + + #List + else: + self.series_colors = series_colors + for index, color in enumerate( self.series_colors ): + #element is a color name + if not hasattr(color, "__iter__"): + self.series_colors[index] = COLORS[color.lower()] + tuple([mode]) + #element is rgb tuple instead of rgba + elif len( color ) == 3 : + self.series_colors[index] += (1.0,mode) + #element has 4 elements, might be rgba tuple or rgb tuple with mode + elif len( color ) == 4 : + #last element is mode + if not hasattr(color[3], "__iter__"): + self.series_colors[index] += tuple([color[3]]) + self.series_colors[index][3] = 1.0 + #last element is alpha + else: + self.series_colors[index] += tuple([mode]) + + def get_width(self): + return self.surface.get_width() + + def get_height(self): + return self.surface.get_height() + + def set_background(self, background): + if background is None: + self.background = (0.0,0.0,0.0,0.0) + elif type(background) in (cairo.LinearGradient, tuple): + self.background = background + elif not hasattr(background,"__iter__"): + colors = background.split(" ") + if len(colors) == 1 and colors[0] in COLORS: + self.background = COLORS[background] + elif len(colors) > 1: + self.background = cairo.LinearGradient(self.dimensions[HORZ] / 2, 0, self.dimensions[HORZ] / 2, self.dimensions[VERT]) + for index,color in enumerate(colors): + self.background.add_color_stop_rgba(float(index)/(len(colors)-1),*COLORS[color]) + else: + raise TypeError ("Background should be either cairo.LinearGradient or a 3/4-tuple, not %s" % type(background)) + + def render_background(self): + if isinstance(self.background, cairo.LinearGradient): + self.context.set_source(self.background) + else: + self.context.set_source_rgba(*self.background) + self.context.rectangle(0,0, self.dimensions[HORZ], self.dimensions[VERT]) + self.context.fill() + + def render_bounding_box(self): + self.context.set_source_rgba(*self.line_color) + self.context.set_line_width(self.line_width) + self.context.rectangle(self.border, self.border, + self.dimensions[HORZ] - 2 * self.border, + self.dimensions[VERT] - 2 * self.border) + self.context.stroke() + + def render(self): + pass + +class ScatterPlot( Plot ): + def __init__(self, + surface=None, + data=None, + errorx=None, + errory=None, + width=640, + height=480, + background=None, + border=0, + axis = False, + dash = False, + discrete = False, + dots = 0, + grid = False, + series_legend = False, + x_labels = None, + y_labels = None, + x_bounds = None, + y_bounds = None, + z_bounds = None, + x_title = None, + y_title = None, + series_colors = None, + circle_colors = None ): + + self.bounds = {} + self.bounds[HORZ] = x_bounds + self.bounds[VERT] = y_bounds + self.bounds[NORM] = z_bounds + self.titles = {} + self.titles[HORZ] = x_title + self.titles[VERT] = y_title + self.max_value = {} + self.axis = axis + self.discrete = discrete + self.dots = dots + self.grid = grid + self.series_legend = series_legend + self.variable_radius = False + self.x_label_angle = math.pi / 2.5 + self.circle_colors = circle_colors + + Plot.__init__(self, surface, data, width, height, background, border, x_labels, y_labels, series_colors) + + self.dash = None + if dash: + if hasattr(dash, "keys"): + self.dash = [dash[key] for key in self.series_labels] + elif max([hasattr(item,'__delitem__') for item in data]) : + self.dash = dash + else: + self.dash = [dash] + + self.load_errors(errorx, errory) + + def convert_list_to_tuple(self, data): + #Data must be converted from lists of coordinates to a single + # list of tuples + out_data = zip(*data) + if len(data) == 3: + self.variable_radius = True + return out_data + + def load_series(self, data, x_labels = None, y_labels = None, series_colors=None): + #TODO: In cairoplot 2.0 keep only the Series instances + + # Convert Data and Group to Series + if isinstance(data, Data) or isinstance(data, Group): + data = Series(data) + + # Series + if isinstance(data, Series): + for group in data: + for item in group: + if len(item) is 3: + self.variable_radius = True + + #Dictionary with lists + if hasattr(data, "keys") : + if hasattr( data.values()[0][0], "__delitem__" ) : + for key in data.keys() : + data[key] = self.convert_list_to_tuple(data[key]) + elif len(data.values()[0][0]) == 3: + self.variable_radius = True + #List + elif hasattr(data[0], "__delitem__") : + #List of lists + if hasattr(data[0][0], "__delitem__") : + for index,value in enumerate(data) : + data[index] = self.convert_list_to_tuple(value) + #List + elif type(data[0][0]) != type((0,0)): + data = self.convert_list_to_tuple(data) + #Three dimensional data + elif len(data[0][0]) == 3: + self.variable_radius = True + + #List with three dimensional tuples + elif len(data[0]) == 3: + self.variable_radius = True + Plot.load_series(self, data, x_labels, y_labels, series_colors) + self.calc_boundaries() + self.calc_labels() + + def load_errors(self, errorx, errory): + self.errors = None + if errorx == None and errory == None: + return + self.errors = {} + self.errors[HORZ] = None + self.errors[VERT] = None + #asimetric errors + if errorx and hasattr(errorx[0], "__delitem__"): + self.errors[HORZ] = errorx + #simetric errors + elif errorx: + self.errors[HORZ] = [errorx] + #asimetric errors + if errory and hasattr(errory[0], "__delitem__"): + self.errors[VERT] = errory + #simetric errors + elif errory: + self.errors[VERT] = [errory] + + def calc_labels(self): + if not self.labels[HORZ]: + amplitude = self.bounds[HORZ][1] - self.bounds[HORZ][0] + if amplitude % 10: #if horizontal labels need floating points + self.labels[HORZ] = ["%.2lf" % (float(self.bounds[HORZ][0] + (amplitude * i / 10.0))) for i in range(11) ] + else: + self.labels[HORZ] = ["%d" % (int(self.bounds[HORZ][0] + (amplitude * i / 10.0))) for i in range(11) ] + if not self.labels[VERT]: + amplitude = self.bounds[VERT][1] - self.bounds[VERT][0] + if amplitude % 10: #if vertical labels need floating points + self.labels[VERT] = ["%.2lf" % (float(self.bounds[VERT][0] + (amplitude * i / 10.0))) for i in range(11) ] + else: + self.labels[VERT] = ["%d" % (int(self.bounds[VERT][0] + (amplitude * i / 10.0))) for i in range(11) ] + + def calc_extents(self, direction): + self.context.set_font_size(self.font_size * 0.8) + self.max_value[direction] = max(self.context.text_extents(item)[2] for item in self.labels[direction]) + self.borders[other_direction(direction)] = self.max_value[direction] + self.border + 20 + + def calc_boundaries(self): + #HORZ = 0, VERT = 1, NORM = 2 + min_data_value = [0,0,0] + max_data_value = [0,0,0] + + for group in self.series: + if type(group[0].content) in (int, float, long): + group = [Data((index, item.content)) for index,item in enumerate(group)] + + for point in group: + for index, item in enumerate(point.content): + if item > max_data_value[index]: + max_data_value[index] = item + elif item < min_data_value[index]: + min_data_value[index] = item + + if not self.bounds[HORZ]: + self.bounds[HORZ] = (min_data_value[HORZ], max_data_value[HORZ]) + if not self.bounds[VERT]: + self.bounds[VERT] = (min_data_value[VERT], max_data_value[VERT]) + if not self.bounds[NORM]: + self.bounds[NORM] = (min_data_value[NORM], max_data_value[NORM]) + + def calc_all_extents(self): + self.calc_extents(HORZ) + self.calc_extents(VERT) + + self.plot_height = self.dimensions[VERT] - 2 * self.borders[VERT] + self.plot_width = self.dimensions[HORZ] - 2* self.borders[HORZ] + + self.plot_top = self.dimensions[VERT] - self.borders[VERT] + + def calc_steps(self): + #Calculates all the x, y, z and color steps + series_amplitude = [self.bounds[index][1] - self.bounds[index][0] for index in range(3)] + + if series_amplitude[HORZ]: + self.horizontal_step = float (self.plot_width) / series_amplitude[HORZ] + else: + self.horizontal_step = 0.00 + + if series_amplitude[VERT]: + self.vertical_step = float (self.plot_height) / series_amplitude[VERT] + else: + self.vertical_step = 0.00 + + if series_amplitude[NORM]: + if self.variable_radius: + self.z_step = float (self.bounds[NORM][1]) / series_amplitude[NORM] + if self.circle_colors: + self.circle_color_step = tuple([float(self.circle_colors[1][i]-self.circle_colors[0][i])/series_amplitude[NORM] for i in range(4)]) + else: + self.z_step = 0.00 + self.circle_color_step = ( 0.0, 0.0, 0.0, 0.0 ) + + def get_circle_color(self, value): + return tuple( [self.circle_colors[0][i] + value*self.circle_color_step[i] for i in range(4)] ) + + def render(self): + self.calc_all_extents() + self.calc_steps() + self.render_background() + self.render_bounding_box() + if self.axis: + self.render_axis() + if self.grid: + self.render_grid() + self.render_labels() + self.render_plot() + if self.errors: + self.render_errors() + if self.series_legend and self.series_labels: + self.render_legend() + + def render_axis(self): + #Draws both the axis lines and their titles + cr = self.context + cr.set_source_rgba(*self.line_color) + cr.move_to(self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT]) + cr.line_to(self.borders[HORZ], self.borders[VERT]) + cr.stroke() + + cr.move_to(self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT]) + cr.line_to(self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT]) + cr.stroke() + + cr.set_source_rgba(*self.label_color) + self.context.set_font_size( 1.2 * self.font_size ) + if self.titles[HORZ]: + title_width,title_height = cr.text_extents(self.titles[HORZ])[2:4] + cr.move_to( self.dimensions[HORZ]/2 - title_width/2, self.borders[VERT] - title_height/2 ) + cr.show_text( self.titles[HORZ] ) + + if self.titles[VERT]: + title_width,title_height = cr.text_extents(self.titles[VERT])[2:4] + cr.move_to( self.dimensions[HORZ] - self.borders[HORZ] + title_height/2, self.dimensions[VERT]/2 - title_width/2) + cr.save() + cr.rotate( math.pi/2 ) + cr.show_text( self.titles[VERT] ) + cr.restore() + + def render_grid(self): + cr = self.context + horizontal_step = float( self.plot_height ) / ( len( self.labels[VERT] ) - 1 ) + vertical_step = float( self.plot_width ) / ( len( self.labels[HORZ] ) - 1 ) + + x = self.borders[HORZ] + vertical_step + y = self.plot_top - horizontal_step + + for label in self.labels[HORZ][:-1]: + cr.set_source_rgba(*self.grid_color) + cr.move_to(x, self.dimensions[VERT] - self.borders[VERT]) + cr.line_to(x, self.borders[VERT]) + cr.stroke() + x += vertical_step + for label in self.labels[VERT][:-1]: + cr.set_source_rgba(*self.grid_color) + cr.move_to(self.borders[HORZ], y) + cr.line_to(self.dimensions[HORZ] - self.borders[HORZ], y) + cr.stroke() + y -= horizontal_step + + def render_labels(self): + self.context.set_font_size(self.font_size * 0.8) + self.render_horz_labels() + self.render_vert_labels() + + def render_horz_labels(self): + cr = self.context + step = float( self.plot_width ) / ( len( self.labels[HORZ] ) - 1 ) + x = self.borders[HORZ] + y = self.dimensions[VERT] - self.borders[VERT] + 5 + + # store rotation matrix from the initial state + rotation_matrix = cr.get_matrix() + rotation_matrix.rotate(self.x_label_angle) + + cr.set_source_rgba(*self.label_color) + + for item in self.labels[HORZ]: + width = cr.text_extents(item)[2] + cr.move_to(x, y) + cr.save() + cr.set_matrix(rotation_matrix) + cr.show_text(item) + cr.restore() + x += step + + def render_vert_labels(self): + cr = self.context + step = ( self.plot_height ) / ( len( self.labels[VERT] ) - 1 ) + y = self.plot_top + cr.set_source_rgba(*self.label_color) + for item in self.labels[VERT]: + width = cr.text_extents(item)[2] + cr.move_to(self.borders[HORZ] - width - 5,y) + cr.show_text(item) + y -= step + + def render_legend(self): + cr = self.context + cr.set_font_size(self.font_size) + cr.set_line_width(self.line_width) + + widest_word = max(self.series_labels, key = lambda item: self.context.text_extents(item)[2]) + tallest_word = max(self.series_labels, key = lambda item: self.context.text_extents(item)[3]) + max_width = self.context.text_extents(widest_word)[2] + max_height = self.context.text_extents(tallest_word)[3] * 1.1 + + color_box_height = max_height / 2 + color_box_width = color_box_height * 2 + + #Draw a bounding box + bounding_box_width = max_width + color_box_width + 15 + bounding_box_height = (len(self.series_labels)+0.5) * max_height + cr.set_source_rgba(1,1,1) + cr.rectangle(self.dimensions[HORZ] - self.borders[HORZ] - bounding_box_width, self.borders[VERT], + bounding_box_width, bounding_box_height) + cr.fill() + + cr.set_source_rgba(*self.line_color) + cr.set_line_width(self.line_width) + cr.rectangle(self.dimensions[HORZ] - self.borders[HORZ] - bounding_box_width, self.borders[VERT], + bounding_box_width, bounding_box_height) + cr.stroke() + + for idx,key in enumerate(self.series_labels): + #Draw color box + cr.set_source_rgba(*self.series_colors[idx][:4]) + cr.rectangle(self.dimensions[HORZ] - self.borders[HORZ] - max_width - color_box_width - 10, + self.borders[VERT] + color_box_height + (idx*max_height) , + color_box_width, color_box_height) + cr.fill() + + cr.set_source_rgba(0, 0, 0) + cr.rectangle(self.dimensions[HORZ] - self.borders[HORZ] - max_width - color_box_width - 10, + self.borders[VERT] + color_box_height + (idx*max_height), + color_box_width, color_box_height) + cr.stroke() + + #Draw series labels + cr.set_source_rgba(0, 0, 0) + cr.move_to(self.dimensions[HORZ] - self.borders[HORZ] - max_width - 5, self.borders[VERT] + ((idx+1)*max_height)) + cr.show_text(key) + + def render_errors(self): + cr = self.context + cr.rectangle(self.borders[HORZ], self.borders[VERT], self.plot_width, self.plot_height) + cr.clip() + radius = self.dots + x0 = self.borders[HORZ] - self.bounds[HORZ][0]*self.horizontal_step + y0 = self.borders[VERT] - self.bounds[VERT][0]*self.vertical_step + for index, group in enumerate(self.series): + cr.set_source_rgba(*self.series_colors[index][:4]) + for number, data in enumerate(group): + x = x0 + self.horizontal_step * data.content[0] + y = self.dimensions[VERT] - y0 - self.vertical_step * data.content[1] + if self.errors[HORZ]: + cr.move_to(x, y) + x1 = x - self.horizontal_step * self.errors[HORZ][0][number] + cr.line_to(x1, y) + cr.line_to(x1, y - radius) + cr.line_to(x1, y + radius) + cr.stroke() + if self.errors[HORZ] and len(self.errors[HORZ]) == 2: + cr.move_to(x, y) + x1 = x + self.horizontal_step * self.errors[HORZ][1][number] + cr.line_to(x1, y) + cr.line_to(x1, y - radius) + cr.line_to(x1, y + radius) + cr.stroke() + if self.errors[VERT]: + cr.move_to(x, y) + y1 = y + self.vertical_step * self.errors[VERT][0][number] + cr.line_to(x, y1) + cr.line_to(x - radius, y1) + cr.line_to(x + radius, y1) + cr.stroke() + if self.errors[VERT] and len(self.errors[VERT]) == 2: + cr.move_to(x, y) + y1 = y - self.vertical_step * self.errors[VERT][1][number] + cr.line_to(x, y1) + cr.line_to(x - radius, y1) + cr.line_to(x + radius, y1) + cr.stroke() + + + def render_plot(self): + cr = self.context + if self.discrete: + cr.rectangle(self.borders[HORZ], self.borders[VERT], self.plot_width, self.plot_height) + cr.clip() + x0 = self.borders[HORZ] - self.bounds[HORZ][0]*self.horizontal_step + y0 = self.borders[VERT] - self.bounds[VERT][0]*self.vertical_step + radius = self.dots + for number, group in enumerate (self.series): + cr.set_source_rgba(*self.series_colors[number][:4]) + for data in group : + if self.variable_radius: + radius = data.content[2]*self.z_step + if self.circle_colors: + cr.set_source_rgba( *self.get_circle_color( data.content[2]) ) + x = x0 + self.horizontal_step*data.content[0] + y = y0 + self.vertical_step*data.content[1] + cr.arc(x, self.dimensions[VERT] - y, radius, 0, 2*math.pi) + cr.fill() + else: + cr.rectangle(self.borders[HORZ], self.borders[VERT], self.plot_width, self.plot_height) + cr.clip() + x0 = self.borders[HORZ] - self.bounds[HORZ][0]*self.horizontal_step + y0 = self.borders[VERT] - self.bounds[VERT][0]*self.vertical_step + radius = self.dots + for number, group in enumerate (self.series): + last_data = None + cr.set_source_rgba(*self.series_colors[number][:4]) + for data in group : + x = x0 + self.horizontal_step*data.content[0] + y = y0 + self.vertical_step*data.content[1] + if self.dots: + if self.variable_radius: + radius = data.content[2]*self.z_step + cr.arc(x, self.dimensions[VERT] - y, radius, 0, 2*math.pi) + cr.fill() + if last_data : + old_x = x0 + self.horizontal_step*last_data.content[0] + old_y = y0 + self.vertical_step*last_data.content[1] + cr.move_to( old_x, self.dimensions[VERT] - old_y ) + cr.line_to( x, self.dimensions[VERT] - y) + cr.set_line_width(self.series_widths[number]) + + # Display line as dash line + if self.dash and self.dash[number]: + s = self.series_widths[number] + cr.set_dash([s*3, s*3], 0) + + cr.stroke() + cr.set_dash([]) + last_data = data + +class DotLinePlot(ScatterPlot): + def __init__(self, + surface=None, + data=None, + width=640, + height=480, + background=None, + border=0, + axis = False, + dash = False, + dots = 0, + grid = False, + series_legend = False, + x_labels = None, + y_labels = None, + x_bounds = None, + y_bounds = None, + x_title = None, + y_title = None, + series_colors = None): + + ScatterPlot.__init__(self, surface, data, None, None, width, height, background, border, + axis, dash, False, dots, grid, series_legend, x_labels, y_labels, + x_bounds, y_bounds, None, x_title, y_title, series_colors, None ) + + + def load_series(self, data, x_labels = None, y_labels = None, series_colors=None): + Plot.load_series(self, data, x_labels, y_labels, series_colors) + for group in self.series : + for index,data in enumerate(group): + group[index].content = (index, data.content) + + self.calc_boundaries() + self.calc_labels() + +class FunctionPlot(ScatterPlot): + def __init__(self, + surface=None, + data=None, + width=640, + height=480, + background=None, + border=0, + axis = False, + discrete = False, + dots = 0, + grid = False, + series_legend = False, + x_labels = None, + y_labels = None, + x_bounds = None, + y_bounds = None, + x_title = None, + y_title = None, + series_colors = None, + step = 1): + + self.function = data + self.step = step + self.discrete = discrete + + data, x_bounds = self.load_series_from_function( self.function, x_bounds ) + + ScatterPlot.__init__(self, surface, data, None, None, width, height, background, border, + axis, False, discrete, dots, grid, series_legend, x_labels, y_labels, + x_bounds, y_bounds, None, x_title, y_title, series_colors, None ) + + def load_series(self, data, x_labels = None, y_labels = None, series_colors=None): + Plot.load_series(self, data, x_labels, y_labels, series_colors) + + if len(self.series[0][0]) is 1: + for group_id, group in enumerate(self.series) : + for index,data in enumerate(group): + group[index].content = (self.bounds[HORZ][0] + self.step*index, data.content) + + self.calc_boundaries() + self.calc_labels() + + def load_series_from_function( self, function, x_bounds ): + #TODO: Add the possibility for the user to define multiple functions with different discretization parameters + + #This function converts a function, a list of functions or a dictionary + #of functions into its corresponding array of data + series = Series() + + if isinstance(function, Group) or isinstance(function, Data): + function = Series(function) + + # If is instance of Series + if isinstance(function, Series): + # Overwrite any bounds passed by the function + x_bounds = (function.range[0],function.range[-1]) + + #if no bounds are provided + if x_bounds == None: + x_bounds = (0,10) + + + #TODO: Finish the dict translation + if hasattr(function, "keys"): #dictionary: + for key in function.keys(): + group = Group(name=key) + #data[ key ] = [] + i = x_bounds[0] + while i <= x_bounds[1] : + group.add_data(function[ key ](i)) + #data[ key ].append( function[ key ](i) ) + i += self.step + series.add_group(group) + + elif hasattr(function, "__delitem__"): #list of functions + for index,f in enumerate( function ) : + group = Group() + #data.append( [] ) + i = x_bounds[0] + while i <= x_bounds[1] : + group.add_data(f(i)) + #data[ index ].append( f(i) ) + i += self.step + series.add_group(group) + + elif isinstance(function, Series): # instance of Series + series = function + + else: #function + group = Group() + i = x_bounds[0] + while i <= x_bounds[1] : + group.add_data(function(i)) + i += self.step + series.add_group(group) + + + return series, x_bounds + + def calc_labels(self): + if not self.labels[HORZ]: + self.labels[HORZ] = [] + i = self.bounds[HORZ][0] + while i<=self.bounds[HORZ][1]: + self.labels[HORZ].append(str(i)) + i += float(self.bounds[HORZ][1] - self.bounds[HORZ][0])/10 + ScatterPlot.calc_labels(self) + + def render_plot(self): + if not self.discrete: + ScatterPlot.render_plot(self) + else: + last = None + cr = self.context + for number, group in enumerate (self.series): + cr.set_source_rgba(*self.series_colors[number][:4]) + x0 = self.borders[HORZ] - self.bounds[HORZ][0]*self.horizontal_step + y0 = self.borders[VERT] - self.bounds[VERT][0]*self.vertical_step + for data in group: + x = x0 + self.horizontal_step * data.content[0] + y = y0 + self.vertical_step * data.content[1] + cr.move_to(x, self.dimensions[VERT] - y) + cr.line_to(x, self.plot_top) + cr.set_line_width(self.series_widths[number]) + cr.stroke() + if self.dots: + cr.new_path() + cr.arc(x, self.dimensions[VERT] - y, 3, 0, 2.1 * math.pi) + cr.close_path() + cr.fill() + +class BarPlot(Plot): + def __init__(self, + surface = None, + data = None, + width = 640, + height = 480, + background = "white light_gray", + border = 0, + display_values = False, + grid = False, + rounded_corners = False, + stack = False, + three_dimension = False, + x_labels = None, + y_labels = None, + x_bounds = None, + y_bounds = None, + series_colors = None, + main_dir = None): + + self.bounds = {} + self.bounds[HORZ] = x_bounds + self.bounds[VERT] = y_bounds + self.display_values = display_values + self.grid = grid + self.rounded_corners = rounded_corners + self.stack = stack + self.three_dimension = three_dimension + self.x_label_angle = math.pi / 2.5 + self.main_dir = main_dir + self.max_value = {} + self.plot_dimensions = {} + self.steps = {} + self.value_label_color = (0.5,0.5,0.5,1.0) + + Plot.__init__(self, surface, data, width, height, background, border, x_labels, y_labels, series_colors) + + def load_series(self, data, x_labels = None, y_labels = None, series_colors = None): + Plot.load_series(self, data, x_labels, y_labels, series_colors) + self.calc_boundaries() + + def process_colors(self, series_colors): + #Data for a BarPlot might be a List or a List of Lists. + #On the first case, colors must be generated for all bars, + #On the second, colors must be generated for each of the inner lists. + + #TODO: Didn't get it... + #if hasattr(self.data[0], '__getitem__'): + # length = max(len(series) for series in self.data) + #else: + # length = len( self.data ) + + length = max(len(group) for group in self.series) + + Plot.process_colors( self, series_colors, length, 'linear') + + def calc_boundaries(self): + if not self.bounds[self.main_dir]: + if self.stack: + max_data_value = max(sum(group.to_list()) for group in self.series) + else: + max_data_value = max(max(group.to_list()) for group in self.series) + self.bounds[self.main_dir] = (0, max_data_value) + if not self.bounds[other_direction(self.main_dir)]: + self.bounds[other_direction(self.main_dir)] = (0, len(self.series)) + + def calc_extents(self, direction): + self.max_value[direction] = 0 + if self.labels[direction]: + widest_word = max(self.labels[direction], key = lambda item: self.context.text_extents(item)[2]) + self.max_value[direction] = self.context.text_extents(widest_word)[3 - direction] + self.borders[other_direction(direction)] = (2-direction)*self.max_value[direction] + self.border + direction*(5) + else: + self.borders[other_direction(direction)] = self.border + + def calc_horz_extents(self): + self.calc_extents(HORZ) + + def calc_vert_extents(self): + self.calc_extents(VERT) + + def calc_all_extents(self): + self.calc_horz_extents() + self.calc_vert_extents() + other_dir = other_direction(self.main_dir) + self.value_label = 0 + if self.display_values: + if self.stack: + self.value_label = self.context.text_extents(str(max(sum(group.to_list()) for group in self.series)))[2 + self.main_dir] + else: + self.value_label = self.context.text_extents(str(max(max(group.to_list()) for group in self.series)))[2 + self.main_dir] + if self.labels[self.main_dir]: + self.plot_dimensions[self.main_dir] = self.dimensions[self.main_dir] - 2*self.borders[self.main_dir] - self.value_label + else: + self.plot_dimensions[self.main_dir] = self.dimensions[self.main_dir] - self.borders[self.main_dir] - 1.2*self.border - self.value_label + self.plot_dimensions[other_dir] = self.dimensions[other_dir] - self.borders[other_dir] - self.border + self.plot_top = self.dimensions[VERT] - self.borders[VERT] + + def calc_steps(self): + other_dir = other_direction(self.main_dir) + self.series_amplitude = self.bounds[self.main_dir][1] - self.bounds[self.main_dir][0] + if self.series_amplitude: + self.steps[self.main_dir] = float(self.plot_dimensions[self.main_dir])/self.series_amplitude + else: + self.steps[self.main_dir] = 0.00 + series_length = len(self.series) + self.steps[other_dir] = float(self.plot_dimensions[other_dir])/(series_length + 0.1*(series_length + 1)) + self.space = 0.1*self.steps[other_dir] + + def render(self): + self.calc_all_extents() + self.calc_steps() + self.render_background() + self.render_bounding_box() + if self.grid: + self.render_grid() + if self.three_dimension: + self.render_ground() + if self.display_values: + self.render_values() + self.render_labels() + self.render_plot() + if self.series_labels: + self.render_legend() + + def draw_3d_rectangle_front(self, x0, y0, x1, y1, shift): + self.context.rectangle(x0-shift, y0+shift, x1-x0, y1-y0) + + def draw_3d_rectangle_side(self, x0, y0, x1, y1, shift): + self.context.move_to(x1-shift,y0+shift) + self.context.line_to(x1, y0) + self.context.line_to(x1, y1) + self.context.line_to(x1-shift, y1+shift) + self.context.line_to(x1-shift, y0+shift) + self.context.close_path() + + def draw_3d_rectangle_top(self, x0, y0, x1, y1, shift): + self.context.move_to(x0-shift,y0+shift) + self.context.line_to(x0, y0) + self.context.line_to(x1, y0) + self.context.line_to(x1-shift, y0+shift) + self.context.line_to(x0-shift, y0+shift) + self.context.close_path() + + def draw_round_rectangle(self, x0, y0, x1, y1): + self.context.arc(x0+5, y0+5, 5, -math.pi, -math.pi/2) + self.context.line_to(x1-5, y0) + self.context.arc(x1-5, y0+5, 5, -math.pi/2, 0) + self.context.line_to(x1, y1-5) + self.context.arc(x1-5, y1-5, 5, 0, math.pi/2) + self.context.line_to(x0+5, y1) + self.context.arc(x0+5, y1-5, 5, math.pi/2, math.pi) + self.context.line_to(x0, y0+5) + self.context.close_path() + + def render_ground(self): + self.draw_3d_rectangle_front(self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT], + self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10) + self.context.fill() + + self.draw_3d_rectangle_side (self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT], + self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10) + self.context.fill() + + self.draw_3d_rectangle_top (self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT], + self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10) + self.context.fill() + + def render_labels(self): + self.context.set_font_size(self.font_size * 0.8) + if self.labels[HORZ]: + self.render_horz_labels() + if self.labels[VERT]: + self.render_vert_labels() + + def render_legend(self): + cr = self.context + cr.set_font_size(self.font_size) + cr.set_line_width(self.line_width) + + widest_word = max(self.series_labels, key = lambda item: self.context.text_extents(item)[2]) + tallest_word = max(self.series_labels, key = lambda item: self.context.text_extents(item)[3]) + max_width = self.context.text_extents(widest_word)[2] + max_height = self.context.text_extents(tallest_word)[3] * 1.1 + 5 + + color_box_height = max_height / 2 + color_box_width = color_box_height * 2 + + #Draw a bounding box + bounding_box_width = max_width + color_box_width + 15 + bounding_box_height = (len(self.series_labels)+0.5) * max_height + cr.set_source_rgba(1,1,1) + cr.rectangle(self.dimensions[HORZ] - self.border - bounding_box_width, self.border, + bounding_box_width, bounding_box_height) + cr.fill() + + cr.set_source_rgba(*self.line_color) + cr.set_line_width(self.line_width) + cr.rectangle(self.dimensions[HORZ] - self.border - bounding_box_width, self.border, + bounding_box_width, bounding_box_height) + cr.stroke() + + for idx,key in enumerate(self.series_labels): + #Draw color box + cr.set_source_rgba(*self.series_colors[idx][:4]) + cr.rectangle(self.dimensions[HORZ] - self.border - max_width - color_box_width - 10, + self.border + color_box_height + (idx*max_height) , + color_box_width, color_box_height) + cr.fill() + + cr.set_source_rgba(0, 0, 0) + cr.rectangle(self.dimensions[HORZ] - self.border - max_width - color_box_width - 10, + self.border + color_box_height + (idx*max_height), + color_box_width, color_box_height) + cr.stroke() + + #Draw series labels + cr.set_source_rgba(0, 0, 0) + cr.move_to(self.dimensions[HORZ] - self.border - max_width - 5, self.border + ((idx+1)*max_height)) + cr.show_text(key) + + +class HorizontalBarPlot(BarPlot): + def __init__(self, + surface = None, + data = None, + width = 640, + height = 480, + background = "white light_gray", + border = 0, + display_values = False, + grid = False, + rounded_corners = False, + stack = False, + three_dimension = False, + series_labels = None, + x_labels = None, + y_labels = None, + x_bounds = None, + y_bounds = None, + series_colors = None): + + BarPlot.__init__(self, surface, data, width, height, background, border, + display_values, grid, rounded_corners, stack, three_dimension, + x_labels, y_labels, x_bounds, y_bounds, series_colors, HORZ) + self.series_labels = series_labels + + def calc_vert_extents(self): + self.calc_extents(VERT) + if self.labels[HORZ] and not self.labels[VERT]: + self.borders[HORZ] += 10 + + def draw_rectangle_bottom(self, x0, y0, x1, y1): + self.context.arc(x0+5, y1-5, 5, math.pi/2, math.pi) + self.context.line_to(x0, y0+5) + self.context.arc(x0+5, y0+5, 5, -math.pi, -math.pi/2) + self.context.line_to(x1, y0) + self.context.line_to(x1, y1) + self.context.line_to(x0+5, y1) + self.context.close_path() + + def draw_rectangle_top(self, x0, y0, x1, y1): + self.context.arc(x1-5, y0+5, 5, -math.pi/2, 0) + self.context.line_to(x1, y1-5) + self.context.arc(x1-5, y1-5, 5, 0, math.pi/2) + self.context.line_to(x0, y1) + self.context.line_to(x0, y0) + self.context.line_to(x1, y0) + self.context.close_path() + + def draw_rectangle(self, index, length, x0, y0, x1, y1): + if length == 1: + BarPlot.draw_rectangle(self, x0, y0, x1, y1) + elif index == 0: + self.draw_rectangle_bottom(x0, y0, x1, y1) + elif index == length-1: + self.draw_rectangle_top(x0, y0, x1, y1) + else: + self.context.rectangle(x0, y0, x1-x0, y1-y0) + + #TODO: Review BarPlot.render_grid code + def render_grid(self): + self.context.set_source_rgba(0.8, 0.8, 0.8) + if self.labels[HORZ]: + self.context.set_font_size(self.font_size * 0.8) + step = (self.dimensions[HORZ] - 2*self.borders[HORZ] - self.value_label)/(len(self.labels[HORZ])-1) + x = self.borders[HORZ] + next_x = 0 + for item in self.labels[HORZ]: + width = self.context.text_extents(item)[2] + if x - width/2 > next_x and x - width/2 > self.border: + self.context.move_to(x, self.border) + self.context.line_to(x, self.dimensions[VERT] - self.borders[VERT]) + self.context.stroke() + next_x = x + width/2 + x += step + else: + lines = 11 + horizontal_step = float(self.plot_dimensions[HORZ])/(lines-1) + x = self.borders[HORZ] + for y in xrange(0, lines): + self.context.move_to(x, self.border) + self.context.line_to(x, self.dimensions[VERT] - self.borders[VERT]) + self.context.stroke() + x += horizontal_step + + def render_horz_labels(self): + step = (self.dimensions[HORZ] - 2*self.borders[HORZ])/(len(self.labels[HORZ])-1) + x = self.borders[HORZ] + next_x = 0 + + for item in self.labels[HORZ]: + self.context.set_source_rgba(*self.label_color) + width = self.context.text_extents(item)[2] + if x - width/2 > next_x and x - width/2 > self.border: + self.context.move_to(x - width/2, self.dimensions[VERT] - self.borders[VERT] + self.max_value[HORZ] + 3) + self.context.show_text(item) + next_x = x + width/2 + x += step + + def render_vert_labels(self): + series_length = len(self.labels[VERT]) + step = (self.plot_dimensions[VERT] - (series_length + 1)*self.space)/(len(self.labels[VERT])) + y = self.border + step/2 + self.space + + for item in self.labels[VERT]: + self.context.set_source_rgba(*self.label_color) + width, height = self.context.text_extents(item)[2:4] + self.context.move_to(self.borders[HORZ] - width - 5, y + height/2) + self.context.show_text(item) + y += step + self.space + self.labels[VERT].reverse() + + def render_values(self): + self.context.set_source_rgba(*self.value_label_color) + self.context.set_font_size(self.font_size * 0.8) + if self.stack: + for i,group in enumerate(self.series): + value = sum(group.to_list()) + height = self.context.text_extents(str(value))[3] + x = self.borders[HORZ] + value*self.steps[HORZ] + 2 + y = self.borders[VERT] + (i+0.5)*self.steps[VERT] + (i+1)*self.space + height/2 + self.context.move_to(x, y) + self.context.show_text(str(value)) + else: + for i,group in enumerate(self.series): + inner_step = self.steps[VERT]/len(group) + y0 = self.border + i*self.steps[VERT] + (i+1)*self.space + for number,data in enumerate(group): + height = self.context.text_extents(str(data.content))[3] + self.context.move_to(self.borders[HORZ] + data.content*self.steps[HORZ] + 2, y0 + 0.5*inner_step + height/2, ) + self.context.show_text(str(data.content)) + y0 += inner_step + + def render_plot(self): + if self.stack: + for i,group in enumerate(self.series): + x0 = self.borders[HORZ] + y0 = self.borders[VERT] + i*self.steps[VERT] + (i+1)*self.space + for number,data in enumerate(group): + if self.series_colors[number][4] in ('radial','linear') : + linear = cairo.LinearGradient( data.content*self.steps[HORZ]/2, y0, data.content*self.steps[HORZ]/2, y0 + self.steps[VERT] ) + color = self.series_colors[number] + linear.add_color_stop_rgba(0.0, 3.5*color[0]/5.0, 3.5*color[1]/5.0, 3.5*color[2]/5.0,1.0) + linear.add_color_stop_rgba(1.0, *color[:4]) + self.context.set_source(linear) + elif self.series_colors[number][4] == 'solid': + self.context.set_source_rgba(*self.series_colors[number][:4]) + if self.rounded_corners: + self.draw_rectangle(number, len(group), x0, y0, x0+data.content*self.steps[HORZ], y0+self.steps[VERT]) + self.context.fill() + else: + self.context.rectangle(x0, y0, data.content*self.steps[HORZ], self.steps[VERT]) + self.context.fill() + x0 += data.content*self.steps[HORZ] + else: + for i,group in enumerate(self.series): + inner_step = self.steps[VERT]/len(group) + x0 = self.borders[HORZ] + y0 = self.border + i*self.steps[VERT] + (i+1)*self.space + for number,data in enumerate(group): + linear = cairo.LinearGradient(data.content*self.steps[HORZ]/2, y0, data.content*self.steps[HORZ]/2, y0 + inner_step) + color = self.series_colors[number] + linear.add_color_stop_rgba(0.0, 3.5*color[0]/5.0, 3.5*color[1]/5.0, 3.5*color[2]/5.0,1.0) + linear.add_color_stop_rgba(1.0, *color[:4]) + self.context.set_source(linear) + if self.rounded_corners and data.content != 0: + BarPlot.draw_round_rectangle(self,x0, y0, x0 + data.content*self.steps[HORZ], y0 + inner_step) + self.context.fill() + else: + self.context.rectangle(x0, y0, data.content*self.steps[HORZ], inner_step) + self.context.fill() + y0 += inner_step + +class VerticalBarPlot(BarPlot): + def __init__(self, + surface = None, + data = None, + width = 640, + height = 480, + background = "white light_gray", + border = 0, + display_values = False, + grid = False, + rounded_corners = False, + stack = False, + three_dimension = False, + series_labels = None, + x_labels = None, + y_labels = None, + x_bounds = None, + y_bounds = None, + series_colors = None): + + BarPlot.__init__(self, surface, data, width, height, background, border, + display_values, grid, rounded_corners, stack, three_dimension, + x_labels, y_labels, x_bounds, y_bounds, series_colors, VERT) + self.series_labels = series_labels + + def calc_vert_extents(self): + self.calc_extents(VERT) + if self.labels[VERT] and not self.labels[HORZ]: + self.borders[VERT] += 10 + + def draw_rectangle_bottom(self, x0, y0, x1, y1): + self.context.move_to(x1,y1) + self.context.arc(x1-5, y1-5, 5, 0, math.pi/2) + self.context.line_to(x0+5, y1) + self.context.arc(x0+5, y1-5, 5, math.pi/2, math.pi) + self.context.line_to(x0, y0) + self.context.line_to(x1, y0) + self.context.line_to(x1, y1) + self.context.close_path() + + def draw_rectangle_top(self, x0, y0, x1, y1): + self.context.arc(x0+5, y0+5, 5, -math.pi, -math.pi/2) + self.context.line_to(x1-5, y0) + self.context.arc(x1-5, y0+5, 5, -math.pi/2, 0) + self.context.line_to(x1, y1) + self.context.line_to(x0, y1) + self.context.line_to(x0, y0) + self.context.close_path() + + def draw_rectangle(self, index, length, x0, y0, x1, y1): + if length == 1: + BarPlot.draw_rectangle(self, x0, y0, x1, y1) + elif index == 0: + self.draw_rectangle_bottom(x0, y0, x1, y1) + elif index == length-1: + self.draw_rectangle_top(x0, y0, x1, y1) + else: + self.context.rectangle(x0, y0, x1-x0, y1-y0) + + def render_grid(self): + self.context.set_source_rgba(0.8, 0.8, 0.8) + if self.labels[VERT]: + lines = len(self.labels[VERT]) + vertical_step = float(self.plot_dimensions[self.main_dir])/(lines-1) + y = self.borders[VERT] + self.value_label + else: + lines = 11 + vertical_step = float(self.plot_dimensions[self.main_dir])/(lines-1) + y = 1.2*self.border + self.value_label + for x in xrange(0, lines): + self.context.move_to(self.borders[HORZ], y) + self.context.line_to(self.dimensions[HORZ] - self.border, y) + self.context.stroke() + y += vertical_step + + def render_ground(self): + self.draw_3d_rectangle_front(self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT], + self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10) + self.context.fill() + + self.draw_3d_rectangle_side (self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT], + self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10) + self.context.fill() + + self.draw_3d_rectangle_top (self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT], + self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10) + self.context.fill() + + def render_horz_labels(self): + series_length = len(self.labels[HORZ]) + step = float (self.plot_dimensions[HORZ] - (series_length + 1)*self.space)/len(self.labels[HORZ]) + x = self.borders[HORZ] + step/2 + self.space + next_x = 0 + + for item in self.labels[HORZ]: + self.context.set_source_rgba(*self.label_color) + width = self.context.text_extents(item)[2] + if x - width/2 > next_x and x - width/2 > self.borders[HORZ]: + self.context.move_to(x - width/2, self.dimensions[VERT] - self.borders[VERT] + self.max_value[HORZ] + 3) + self.context.show_text(item) + next_x = x + width/2 + x += step + self.space + + def render_vert_labels(self): + self.context.set_source_rgba(*self.label_color) + y = self.borders[VERT] + self.value_label + step = (self.dimensions[VERT] - 2*self.borders[VERT] - self.value_label)/(len(self.labels[VERT]) - 1) + self.labels[VERT].reverse() + for item in self.labels[VERT]: + width, height = self.context.text_extents(item)[2:4] + self.context.move_to(self.borders[HORZ] - width - 5, y + height/2) + self.context.show_text(item) + y += step + self.labels[VERT].reverse() + + def render_values(self): + self.context.set_source_rgba(*self.value_label_color) + self.context.set_font_size(self.font_size * 0.8) + if self.stack: + for i,group in enumerate(self.series): + value = sum(group.to_list()) + width = self.context.text_extents(str(value))[2] + x = self.borders[HORZ] + (i+0.5)*self.steps[HORZ] + (i+1)*self.space - width/2 + y = value*self.steps[VERT] + 2 + self.context.move_to(x, self.plot_top-y) + self.context.show_text(str(value)) + else: + for i,group in enumerate(self.series): + inner_step = self.steps[HORZ]/len(group) + x0 = self.borders[HORZ] + i*self.steps[HORZ] + (i+1)*self.space + for number,data in enumerate(group): + width = self.context.text_extents(str(data.content))[2] + self.context.move_to(x0 + 0.5*inner_step - width/2, self.plot_top - data.content*self.steps[VERT] - 2) + self.context.show_text(str(data.content)) + x0 += inner_step + + def render_plot(self): + if self.stack: + for i,group in enumerate(self.series): + x0 = self.borders[HORZ] + i*self.steps[HORZ] + (i+1)*self.space + y0 = 0 + for number,data in enumerate(group): + if self.series_colors[number][4] in ('linear','radial'): + linear = cairo.LinearGradient( x0, data.content*self.steps[VERT]/2, x0 + self.steps[HORZ], data.content*self.steps[VERT]/2 ) + color = self.series_colors[number] + linear.add_color_stop_rgba(0.0, 3.5*color[0]/5.0, 3.5*color[1]/5.0, 3.5*color[2]/5.0,1.0) + linear.add_color_stop_rgba(1.0, *color[:4]) + self.context.set_source(linear) + elif self.series_colors[number][4] == 'solid': + self.context.set_source_rgba(*self.series_colors[number][:4]) + if self.rounded_corners: + self.draw_rectangle(number, len(group), x0, self.plot_top - y0 - data.content*self.steps[VERT], x0 + self.steps[HORZ], self.plot_top - y0) + self.context.fill() + else: + self.context.rectangle(x0, self.plot_top - y0 - data.content*self.steps[VERT], self.steps[HORZ], data.content*self.steps[VERT]) + self.context.fill() + y0 += data.content*self.steps[VERT] + else: + for i,group in enumerate(self.series): + inner_step = self.steps[HORZ]/len(group) + y0 = self.borders[VERT] + x0 = self.borders[HORZ] + i*self.steps[HORZ] + (i+1)*self.space + for number,data in enumerate(group): + if self.series_colors[number][4] == 'linear': + linear = cairo.LinearGradient( x0, data.content*self.steps[VERT]/2, x0 + inner_step, data.content*self.steps[VERT]/2 ) + color = self.series_colors[number] + linear.add_color_stop_rgba(0.0, 3.5*color[0]/5.0, 3.5*color[1]/5.0, 3.5*color[2]/5.0,1.0) + linear.add_color_stop_rgba(1.0, *color[:4]) + self.context.set_source(linear) + elif self.series_colors[number][4] == 'solid': + self.context.set_source_rgba(*self.series_colors[number][:4]) + if self.rounded_corners and data.content != 0: + BarPlot.draw_round_rectangle(self, x0, self.plot_top - data.content*self.steps[VERT], x0+inner_step, self.plot_top) + self.context.fill() + elif self.three_dimension: + self.draw_3d_rectangle_front(x0, self.plot_top - data.content*self.steps[VERT], x0+inner_step, self.plot_top, 5) + self.context.fill() + self.draw_3d_rectangle_side(x0, self.plot_top - data.content*self.steps[VERT], x0+inner_step, self.plot_top, 5) + self.context.fill() + self.draw_3d_rectangle_top(x0, self.plot_top - data.content*self.steps[VERT], x0+inner_step, self.plot_top, 5) + self.context.fill() + else: + self.context.rectangle(x0, self.plot_top - data.content*self.steps[VERT], inner_step, data.content*self.steps[VERT]) + self.context.fill() + + x0 += inner_step + +class StreamChart(VerticalBarPlot): + def __init__(self, + surface = None, + data = None, + width = 640, + height = 480, + background = "white light_gray", + border = 0, + grid = False, + series_legend = None, + x_labels = None, + x_bounds = None, + y_bounds = None, + series_colors = None): + + VerticalBarPlot.__init__(self, surface, data, width, height, background, border, + False, grid, False, True, False, + None, x_labels, None, x_bounds, y_bounds, series_colors) + + def calc_steps(self): + other_dir = other_direction(self.main_dir) + self.series_amplitude = self.bounds[self.main_dir][1] - self.bounds[self.main_dir][0] + if self.series_amplitude: + self.steps[self.main_dir] = float(self.plot_dimensions[self.main_dir])/self.series_amplitude + else: + self.steps[self.main_dir] = 0.00 + series_length = len(self.data) + self.steps[other_dir] = float(self.plot_dimensions[other_dir])/series_length + + def render_legend(self): + pass + + def ground(self, index): + sum_values = sum(self.data[index]) + return -0.5*sum_values + + def calc_angles(self): + middle = self.plot_top - self.plot_dimensions[VERT]/2.0 + self.angles = [tuple([0.0 for x in range(len(self.data)+1)])] + for x_index in range(1, len(self.data)-1): + t = [] + x0 = self.borders[HORZ] + (0.5 + x_index - 1)*self.steps[HORZ] + x2 = self.borders[HORZ] + (0.5 + x_index + 1)*self.steps[HORZ] + y0 = middle - self.ground(x_index-1)*self.steps[VERT] + y2 = middle - self.ground(x_index+1)*self.steps[VERT] + t.append(math.atan(float(y0-y2)/(x0-x2))) + for data_index in range(len(self.data[x_index])): + x0 = self.borders[HORZ] + (0.5 + x_index - 1)*self.steps[HORZ] + x2 = self.borders[HORZ] + (0.5 + x_index + 1)*self.steps[HORZ] + y0 = middle - self.ground(x_index-1)*self.steps[VERT] - self.data[x_index-1][data_index]*self.steps[VERT] + y2 = middle - self.ground(x_index+1)*self.steps[VERT] - self.data[x_index+1][data_index]*self.steps[VERT] + + for i in range(0,data_index): + y0 -= self.data[x_index-1][i]*self.steps[VERT] + y2 -= self.data[x_index+1][i]*self.steps[VERT] + + if data_index == len(self.data[0])-1 and False: + self.context.set_source_rgba(0.0,0.0,0.0,0.3) + self.context.move_to(x0,y0) + self.context.line_to(x2,y2) + self.context.stroke() + self.context.arc(x0,y0,2,0,2*math.pi) + self.context.fill() + t.append(math.atan(float(y0-y2)/(x0-x2))) + self.angles.append(tuple(t)) + self.angles.append(tuple([0.0 for x in range(len(self.data)+1)])) + + def render_plot(self): + self.calc_angles() + middle = self.plot_top - self.plot_dimensions[VERT]/2.0 + p = 0.4*self.steps[HORZ] + for data_index in range(len(self.data[0])-1,-1,-1): + self.context.set_source_rgba(*self.series_colors[data_index][:4]) + + #draw the upper line + for x_index in range(len(self.data)-1) : + x1 = self.borders[HORZ] + (0.5 + x_index)*self.steps[HORZ] + y1 = middle - self.ground(x_index)*self.steps[VERT] - self.data[x_index][data_index]*self.steps[VERT] + x2 = self.borders[HORZ] + (0.5 + x_index + 1)*self.steps[HORZ] + y2 = middle - self.ground(x_index + 1)*self.steps[VERT] - self.data[x_index + 1][data_index]*self.steps[VERT] + + for i in range(0,data_index): + y1 -= self.data[x_index][i]*self.steps[VERT] + y2 -= self.data[x_index+1][i]*self.steps[VERT] + + if x_index == 0: + self.context.move_to(x1,y1) + + ang1 = self.angles[x_index][data_index+1] + ang2 = self.angles[x_index+1][data_index+1] + math.pi + self.context.curve_to(x1+p*math.cos(ang1),y1+p*math.sin(ang1), + x2+p*math.cos(ang2),y2+p*math.sin(ang2), + x2,y2) + + for x_index in range(len(self.data)-1,0,-1) : + x1 = self.borders[HORZ] + (0.5 + x_index)*self.steps[HORZ] + y1 = middle - self.ground(x_index)*self.steps[VERT] + x2 = self.borders[HORZ] + (0.5 + x_index - 1)*self.steps[HORZ] + y2 = middle - self.ground(x_index - 1)*self.steps[VERT] + + for i in range(0,data_index): + y1 -= self.data[x_index][i]*self.steps[VERT] + y2 -= self.data[x_index-1][i]*self.steps[VERT] + + if x_index == len(self.data)-1: + self.context.line_to(x1,y1+2) + + #revert angles by pi degrees to take the turn back + ang1 = self.angles[x_index][data_index] + math.pi + ang2 = self.angles[x_index-1][data_index] + self.context.curve_to(x1+p*math.cos(ang1),y1+p*math.sin(ang1), + x2+p*math.cos(ang2),y2+p*math.sin(ang2), + x2,y2+2) + + self.context.close_path() + self.context.fill() + + if False: + self.context.move_to(self.borders[HORZ] + 0.5*self.steps[HORZ], middle) + for x_index in range(len(self.data)-1) : + x1 = self.borders[HORZ] + (0.5 + x_index)*self.steps[HORZ] + y1 = middle - self.ground(x_index)*self.steps[VERT] - self.data[x_index][data_index]*self.steps[VERT] + x2 = self.borders[HORZ] + (0.5 + x_index + 1)*self.steps[HORZ] + y2 = middle - self.ground(x_index + 1)*self.steps[VERT] - self.data[x_index + 1][data_index]*self.steps[VERT] + + for i in range(0,data_index): + y1 -= self.data[x_index][i]*self.steps[VERT] + y2 -= self.data[x_index+1][i]*self.steps[VERT] + + ang1 = self.angles[x_index][data_index+1] + ang2 = self.angles[x_index+1][data_index+1] + math.pi + self.context.set_source_rgba(1.0,0.0,0.0) + self.context.arc(x1+p*math.cos(ang1),y1+p*math.sin(ang1),2,0,2*math.pi) + self.context.fill() + self.context.set_source_rgba(0.0,0.0,0.0) + self.context.arc(x2+p*math.cos(ang2),y2+p*math.sin(ang2),2,0,2*math.pi) + self.context.fill() + '''self.context.set_source_rgba(0.0,0.0,0.0,0.3) + self.context.arc(x2,y2,2,0,2*math.pi) + self.context.fill()''' + self.context.move_to(x1,y1) + self.context.line_to(x1+p*math.cos(ang1),y1+p*math.sin(ang1)) + self.context.stroke() + self.context.move_to(x2,y2) + self.context.line_to(x2+p*math.cos(ang2),y2+p*math.sin(ang2)) + self.context.stroke() + if False: + for x_index in range(len(self.data)-1,0,-1) : + x1 = self.borders[HORZ] + (0.5 + x_index)*self.steps[HORZ] + y1 = middle - self.ground(x_index)*self.steps[VERT] + x2 = self.borders[HORZ] + (0.5 + x_index - 1)*self.steps[HORZ] + y2 = middle - self.ground(x_index - 1)*self.steps[VERT] + + for i in range(0,data_index): + y1 -= self.data[x_index][i]*self.steps[VERT] + y2 -= self.data[x_index-1][i]*self.steps[VERT] + + #revert angles by pi degrees to take the turn back + ang1 = self.angles[x_index][data_index] + math.pi + ang2 = self.angles[x_index-1][data_index] + self.context.set_source_rgba(0.0,1.0,0.0) + self.context.arc(x1+p*math.cos(ang1),y1+p*math.sin(ang1),2,0,2*math.pi) + self.context.fill() + self.context.set_source_rgba(0.0,0.0,1.0) + self.context.arc(x2+p*math.cos(ang2),y2+p*math.sin(ang2),2,0,2*math.pi) + self.context.fill() + '''self.context.set_source_rgba(0.0,0.0,0.0,0.3) + self.context.arc(x2,y2,2,0,2*math.pi) + self.context.fill()''' + self.context.move_to(x1,y1) + self.context.line_to(x1+p*math.cos(ang1),y1+p*math.sin(ang1)) + self.context.stroke() + self.context.move_to(x2,y2) + self.context.line_to(x2+p*math.cos(ang2),y2+p*math.sin(ang2)) + self.context.stroke() + #break + + #self.context.arc(self.dimensions[HORZ]/2, self.dimensions[VERT]/2,50,0,3*math.pi/2) + #self.context.fill() + + +class PiePlot(Plot): + #TODO: Check the old cairoplot, graphs aren't matching + def __init__ (self, + surface = None, + data = None, + width = 640, + height = 480, + background = "white light_gray", + gradient = False, + shadow = False, + colors = None): + + Plot.__init__( self, surface, data, width, height, background, series_colors = colors ) + self.center = (self.dimensions[HORZ]/2, self.dimensions[VERT]/2) + self.total = sum( self.series.to_list() ) + self.radius = min(self.dimensions[HORZ]/3,self.dimensions[VERT]/3) + self.gradient = gradient + self.shadow = shadow + + def sort_function(x,y): + return x.content - y.content + + def load_series(self, data, x_labels=None, y_labels=None, series_colors=None): + Plot.load_series(self, data, x_labels, y_labels, series_colors) + # Already done inside series + #self.data = sorted(self.data) + + def draw_piece(self, angle, next_angle): + self.context.move_to(self.center[0],self.center[1]) + self.context.line_to(self.center[0] + self.radius*math.cos(angle), self.center[1] + self.radius*math.sin(angle)) + self.context.arc(self.center[0], self.center[1], self.radius, angle, next_angle) + self.context.line_to(self.center[0], self.center[1]) + self.context.close_path() + + def render(self): + self.render_background() + self.render_bounding_box() + if self.shadow: + self.render_shadow() + self.render_plot() + self.render_series_labels() + + def render_shadow(self): + horizontal_shift = 3 + vertical_shift = 3 + self.context.set_source_rgba(0, 0, 0, 0.5) + self.context.arc(self.center[0] + horizontal_shift, self.center[1] + vertical_shift, self.radius, 0, 2*math.pi) + self.context.fill() + + def render_series_labels(self): + angle = 0 + next_angle = 0 + x0,y0 = self.center + cr = self.context + for number,key in enumerate(self.series_labels): + # self.data[number] should be just a number + data = sum(self.series[number].to_list()) + + next_angle = angle + 2.0*math.pi*data/self.total + cr.set_source_rgba(*self.series_colors[number][:4]) + w = cr.text_extents(key)[2] + if (angle + next_angle)/2 < math.pi/2 or (angle + next_angle)/2 > 3*math.pi/2: + cr.move_to(x0 + (self.radius+10)*math.cos((angle+next_angle)/2), y0 + (self.radius+10)*math.sin((angle+next_angle)/2) ) + else: + cr.move_to(x0 + (self.radius+10)*math.cos((angle+next_angle)/2) - w, y0 + (self.radius+10)*math.sin((angle+next_angle)/2) ) + cr.show_text(key) + angle = next_angle + + def render_plot(self): + angle = 0 + next_angle = 0 + x0,y0 = self.center + cr = self.context + for number,group in enumerate(self.series): + # Group should be just a number + data = sum(group.to_list()) + next_angle = angle + 2.0*math.pi*data/self.total + if self.gradient or self.series_colors[number][4] in ('linear','radial'): + gradient_color = cairo.RadialGradient(self.center[0], self.center[1], 0, self.center[0], self.center[1], self.radius) + gradient_color.add_color_stop_rgba(0.3, *self.series_colors[number][:4]) + gradient_color.add_color_stop_rgba(1, self.series_colors[number][0]*0.7, + self.series_colors[number][1]*0.7, + self.series_colors[number][2]*0.7, + self.series_colors[number][3]) + cr.set_source(gradient_color) + else: + cr.set_source_rgba(*self.series_colors[number][:4]) + + self.draw_piece(angle, next_angle) + cr.fill() + + cr.set_source_rgba(1.0, 1.0, 1.0) + self.draw_piece(angle, next_angle) + cr.stroke() + + angle = next_angle + +class DonutPlot(PiePlot): + def __init__ (self, + surface = None, + data = None, + width = 640, + height = 480, + background = "white light_gray", + gradient = False, + shadow = False, + colors = None, + inner_radius=-1): + + Plot.__init__( self, surface, data, width, height, background, series_colors = colors ) + + self.center = ( self.dimensions[HORZ]/2, self.dimensions[VERT]/2 ) + self.total = sum( self.series.to_list() ) + self.radius = min( self.dimensions[HORZ]/3,self.dimensions[VERT]/3 ) + self.inner_radius = inner_radius*self.radius + + if inner_radius == -1: + self.inner_radius = self.radius/3 + + self.gradient = gradient + self.shadow = shadow + + def draw_piece(self, angle, next_angle): + self.context.move_to(self.center[0] + (self.inner_radius)*math.cos(angle), self.center[1] + (self.inner_radius)*math.sin(angle)) + self.context.line_to(self.center[0] + self.radius*math.cos(angle), self.center[1] + self.radius*math.sin(angle)) + self.context.arc(self.center[0], self.center[1], self.radius, angle, next_angle) + self.context.line_to(self.center[0] + (self.inner_radius)*math.cos(next_angle), self.center[1] + (self.inner_radius)*math.sin(next_angle)) + self.context.arc_negative(self.center[0], self.center[1], self.inner_radius, next_angle, angle) + self.context.close_path() + + def render_shadow(self): + horizontal_shift = 3 + vertical_shift = 3 + self.context.set_source_rgba(0, 0, 0, 0.5) + self.context.arc(self.center[0] + horizontal_shift, self.center[1] + vertical_shift, self.inner_radius, 0, 2*math.pi) + self.context.arc_negative(self.center[0] + horizontal_shift, self.center[1] + vertical_shift, self.radius, 0, -2*math.pi) + self.context.fill() + +class GanttChart (Plot) : + def __init__(self, + surface = None, + data = None, + width = 640, + height = 480, + x_labels = None, + y_labels = None, + colors = None): + self.bounds = {} + self.max_value = {} + Plot.__init__(self, surface, data, width, height, x_labels = x_labels, y_labels = y_labels, series_colors = colors) + + def load_series(self, data, x_labels=None, y_labels=None, series_colors=None): + Plot.load_series(self, data, x_labels, y_labels, series_colors) + self.calc_boundaries() + + def calc_boundaries(self): + self.bounds[HORZ] = (0,len(self.series)) + end_pos = max(self.series.to_list()) + + #for group in self.series: + # if hasattr(item, "__delitem__"): + # for sub_item in item: + # end_pos = max(sub_item) + # else: + # end_pos = max(item) + self.bounds[VERT] = (0,end_pos) + + def calc_extents(self, direction): + self.max_value[direction] = 0 + if self.labels[direction]: + self.max_value[direction] = max(self.context.text_extents(item)[2] for item in self.labels[direction]) + else: + self.max_value[direction] = self.context.text_extents( str(self.bounds[direction][1] + 1) )[2] + + def calc_horz_extents(self): + self.calc_extents(HORZ) + self.borders[HORZ] = 100 + self.max_value[HORZ] + + def calc_vert_extents(self): + self.calc_extents(VERT) + self.borders[VERT] = self.dimensions[VERT]/(self.bounds[HORZ][1] + 1) + + def calc_steps(self): + self.horizontal_step = (self.dimensions[HORZ] - self.borders[HORZ])/(len(self.labels[VERT])) + self.vertical_step = self.borders[VERT] + + def render(self): + self.calc_horz_extents() + self.calc_vert_extents() + self.calc_steps() + self.render_background() + + self.render_labels() + self.render_grid() + self.render_plot() + + def render_background(self): + cr = self.context + cr.set_source_rgba(255,255,255) + cr.rectangle(0,0,self.dimensions[HORZ], self.dimensions[VERT]) + cr.fill() + for number,group in enumerate(self.series): + linear = cairo.LinearGradient(self.dimensions[HORZ]/2, self.borders[VERT] + number*self.vertical_step, + self.dimensions[HORZ]/2, self.borders[VERT] + (number+1)*self.vertical_step) + linear.add_color_stop_rgba(0,1.0,1.0,1.0,1.0) + linear.add_color_stop_rgba(1.0,0.9,0.9,0.9,1.0) + cr.set_source(linear) + cr.rectangle(0,self.borders[VERT] + number*self.vertical_step,self.dimensions[HORZ],self.vertical_step) + cr.fill() + + def render_grid(self): + cr = self.context + cr.set_source_rgba(0.7, 0.7, 0.7) + cr.set_dash((1,0,0,0,0,0,1)) + cr.set_line_width(0.5) + for number,label in enumerate(self.labels[VERT]): + h = cr.text_extents(label)[3] + cr.move_to(self.borders[HORZ] + number*self.horizontal_step, self.vertical_step/2 + h) + cr.line_to(self.borders[HORZ] + number*self.horizontal_step, self.dimensions[VERT]) + cr.stroke() + + def render_labels(self): + self.context.set_font_size(0.02 * self.dimensions[HORZ]) + + self.render_horz_labels() + self.render_vert_labels() + + def render_horz_labels(self): + cr = self.context + labels = self.labels[HORZ] + if not labels: + labels = [str(i) for i in range(1, self.bounds[HORZ][1] + 1) ] + for number,label in enumerate(labels): + if label != None: + cr.set_source_rgba(0.5, 0.5, 0.5) + w,h = cr.text_extents(label)[2], cr.text_extents(label)[3] + cr.move_to(40,self.borders[VERT] + number*self.vertical_step + self.vertical_step/2 + h/2) + cr.show_text(label) + + def render_vert_labels(self): + cr = self.context + labels = self.labels[VERT] + if not labels: + labels = [str(i) for i in range(1, self.bounds[VERT][1] + 1) ] + for number,label in enumerate(labels): + w,h = cr.text_extents(label)[2], cr.text_extents(label)[3] + cr.move_to(self.borders[HORZ] + number*self.horizontal_step - w/2, self.vertical_step/2) + cr.show_text(label) + + def render_rectangle(self, x0, y0, x1, y1, color): + self.draw_shadow(x0, y0, x1, y1) + self.draw_rectangle(x0, y0, x1, y1, color) + + def draw_rectangular_shadow(self, gradient, x0, y0, w, h): + self.context.set_source(gradient) + self.context.rectangle(x0,y0,w,h) + self.context.fill() + + def draw_circular_shadow(self, x, y, radius, ang_start, ang_end, mult, shadow): + gradient = cairo.RadialGradient(x, y, 0, x, y, 2*radius) + gradient.add_color_stop_rgba(0, 0, 0, 0, shadow) + gradient.add_color_stop_rgba(1, 0, 0, 0, 0) + self.context.set_source(gradient) + self.context.move_to(x,y) + self.context.line_to(x + mult[0]*radius,y + mult[1]*radius) + self.context.arc(x, y, 8, ang_start, ang_end) + self.context.line_to(x,y) + self.context.close_path() + self.context.fill() + + def draw_rectangle(self, x0, y0, x1, y1, color): + cr = self.context + middle = (x0+x1)/2 + linear = cairo.LinearGradient(middle,y0,middle,y1) + linear.add_color_stop_rgba(0,3.5*color[0]/5.0, 3.5*color[1]/5.0, 3.5*color[2]/5.0,1.0) + linear.add_color_stop_rgba(1,*color[:4]) + cr.set_source(linear) + + cr.arc(x0+5, y0+5, 5, 0, 2*math.pi) + cr.arc(x1-5, y0+5, 5, 0, 2*math.pi) + cr.arc(x0+5, y1-5, 5, 0, 2*math.pi) + cr.arc(x1-5, y1-5, 5, 0, 2*math.pi) + cr.rectangle(x0+5,y0,x1-x0-10,y1-y0) + cr.rectangle(x0,y0+5,x1-x0,y1-y0-10) + cr.fill() + + def draw_shadow(self, x0, y0, x1, y1): + shadow = 0.4 + h_mid = (x0+x1)/2 + v_mid = (y0+y1)/2 + h_linear_1 = cairo.LinearGradient(h_mid,y0-4,h_mid,y0+4) + h_linear_2 = cairo.LinearGradient(h_mid,y1-4,h_mid,y1+4) + v_linear_1 = cairo.LinearGradient(x0-4,v_mid,x0+4,v_mid) + v_linear_2 = cairo.LinearGradient(x1-4,v_mid,x1+4,v_mid) + + h_linear_1.add_color_stop_rgba( 0, 0, 0, 0, 0) + h_linear_1.add_color_stop_rgba( 1, 0, 0, 0, shadow) + h_linear_2.add_color_stop_rgba( 0, 0, 0, 0, shadow) + h_linear_2.add_color_stop_rgba( 1, 0, 0, 0, 0) + v_linear_1.add_color_stop_rgba( 0, 0, 0, 0, 0) + v_linear_1.add_color_stop_rgba( 1, 0, 0, 0, shadow) + v_linear_2.add_color_stop_rgba( 0, 0, 0, 0, shadow) + v_linear_2.add_color_stop_rgba( 1, 0, 0, 0, 0) + + self.draw_rectangular_shadow(h_linear_1,x0+4,y0-4,x1-x0-8,8) + self.draw_rectangular_shadow(h_linear_2,x0+4,y1-4,x1-x0-8,8) + self.draw_rectangular_shadow(v_linear_1,x0-4,y0+4,8,y1-y0-8) + self.draw_rectangular_shadow(v_linear_2,x1-4,y0+4,8,y1-y0-8) + + self.draw_circular_shadow(x0+4, y0+4, 4, math.pi, 3*math.pi/2, (-1,0), shadow) + self.draw_circular_shadow(x1-4, y0+4, 4, 3*math.pi/2, 2*math.pi, (0,-1), shadow) + self.draw_circular_shadow(x0+4, y1-4, 4, math.pi/2, math.pi, (0,1), shadow) + self.draw_circular_shadow(x1-4, y1-4, 4, 0, math.pi/2, (1,0), shadow) + + def render_plot(self): + for index,group in enumerate(self.series): + for data in group: + self.render_rectangle(self.borders[HORZ] + data.content[0]*self.horizontal_step, + self.borders[VERT] + index*self.vertical_step + self.vertical_step/4.0, + self.borders[HORZ] + data.content[1]*self.horizontal_step, + self.borders[VERT] + index*self.vertical_step + 3.0*self.vertical_step/4.0, + self.series_colors[index]) + +# Function definition + +def scatter_plot(name, + data = None, + errorx = None, + errory = None, + width = 640, + height = 480, + background = "white light_gray", + border = 0, + axis = False, + dash = False, + discrete = False, + dots = False, + grid = False, + series_legend = False, + x_labels = None, + y_labels = None, + x_bounds = None, + y_bounds = None, + z_bounds = None, + x_title = None, + y_title = None, + series_colors = None, + circle_colors = None): + + ''' + - Function to plot scatter data. + + - Parameters + + data - The values to be ploted might be passed in a two basic: + list of points: [(0,0), (0,1), (0,2)] or [(0,0,1), (0,1,4), (0,2,1)] + lists of coordinates: [ [0,0,0] , [0,1,2] ] or [ [0,0,0] , [0,1,2] , [1,4,1] ] + Notice that these kinds of that can be grouped in order to form more complex data + using lists of lists or dictionaries; + series_colors - Define color values for each of the series + circle_colors - Define a lower and an upper bound for the circle colors for variable radius + (3 dimensions) series + ''' + + plot = ScatterPlot( name, data, errorx, errory, width, height, background, border, + axis, dash, discrete, dots, grid, series_legend, x_labels, y_labels, + x_bounds, y_bounds, z_bounds, x_title, y_title, series_colors, circle_colors ) + plot.render() + plot.commit() + +def dot_line_plot(name, + data, + width, + height, + background = "white light_gray", + border = 0, + axis = False, + dash = False, + dots = False, + grid = False, + series_legend = False, + x_labels = None, + y_labels = None, + x_bounds = None, + y_bounds = None, + x_title = None, + y_title = None, + series_colors = None): + ''' + - Function to plot graphics using dots and lines. + + dot_line_plot (name, data, width, height, background = "white light_gray", border = 0, axis = False, grid = False, x_labels = None, y_labels = None, x_bounds = None, y_bounds = None) + + - Parameters + + name - Name of the desired output file, no need to input the .svg as it will be added at runtim; + data - The list, list of lists or dictionary holding the data to be plotted; + width, height - Dimensions of the output image; + background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient. + If left None, a gray to white gradient will be generated; + border - Distance in pixels of a square border into which the graphics will be drawn; + axis - Whether or not the axis are to be drawn; + dash - Boolean or a list or a dictionary of booleans indicating whether or not the associated series should be drawn in dashed mode; + dots - Whether or not dots should be drawn on each point; + grid - Whether or not the gris is to be drawn; + series_legend - Whether or not the legend is to be drawn; + x_labels, y_labels - lists of strings containing the horizontal and vertical labels for the axis; + x_bounds, y_bounds - tuples containing the lower and upper value bounds for the data to be plotted; + x_title - Whether or not to plot a title over the x axis. + y_title - Whether or not to plot a title over the y axis. + + - Examples of use + + data = [0, 1, 3, 8, 9, 0, 10, 10, 2, 1] + CairoPlot.dot_line_plot('teste', data, 400, 300) + + data = { "john" : [10, 10, 10, 10, 30], "mary" : [0, 0, 3, 5, 15], "philip" : [13, 32, 11, 25, 2] } + x_labels = ["jan/2008", "feb/2008", "mar/2008", "apr/2008", "may/2008" ] + CairoPlot.dot_line_plot( 'test', data, 400, 300, axis = True, grid = True, + series_legend = True, x_labels = x_labels ) + ''' + plot = DotLinePlot( name, data, width, height, background, border, + axis, dash, dots, grid, series_legend, x_labels, y_labels, + x_bounds, y_bounds, x_title, y_title, series_colors ) + plot.render() + plot.commit() + +def function_plot(name, + data, + width, + height, + background = "white light_gray", + border = 0, + axis = True, + dots = False, + discrete = False, + grid = False, + series_legend = False, + x_labels = None, + y_labels = None, + x_bounds = None, + y_bounds = None, + x_title = None, + y_title = None, + series_colors = None, + step = 1): + + ''' + - Function to plot functions. + + function_plot(name, data, width, height, background = "white light_gray", border = 0, axis = True, grid = False, dots = False, x_labels = None, y_labels = None, x_bounds = None, y_bounds = None, step = 1, discrete = False) + + - Parameters + + name - Name of the desired output file, no need to input the .svg as it will be added at runtim; + data - The list, list of lists or dictionary holding the data to be plotted; + width, height - Dimensions of the output image; + background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient. + If left None, a gray to white gradient will be generated; + border - Distance in pixels of a square border into which the graphics will be drawn; + axis - Whether or not the axis are to be drawn; + grid - Whether or not the gris is to be drawn; + dots - Whether or not dots should be shown at each point; + x_labels, y_labels - lists of strings containing the horizontal and vertical labels for the axis; + x_bounds, y_bounds - tuples containing the lower and upper value bounds for the data to be plotted; + step - the horizontal distance from one point to the other. The smaller, the smoother the curve will be; + discrete - whether or not the function should be plotted in discrete format. + + - Example of use + + data = lambda x : x**2 + CairoPlot.function_plot('function4', data, 400, 300, grid = True, x_bounds=(-10,10), step = 0.1) + ''' + + plot = FunctionPlot( name, data, width, height, background, border, + axis, discrete, dots, grid, series_legend, x_labels, y_labels, + x_bounds, y_bounds, x_title, y_title, series_colors, step ) + plot.render() + plot.commit() + +def pie_plot( name, data, width, height, background = "white light_gray", gradient = False, shadow = False, colors = None ): + + ''' + - Function to plot pie graphics. + + pie_plot(name, data, width, height, background = "white light_gray", gradient = False, colors = None) + + - Parameters + + name - Name of the desired output file, no need to input the .svg as it will be added at runtim; + data - The list, list of lists or dictionary holding the data to be plotted; + width, height - Dimensions of the output image; + background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient. + If left None, a gray to white gradient will be generated; + gradient - Whether or not the pie color will be painted with a gradient; + shadow - Whether or not there will be a shadow behind the pie; + colors - List of slices colors. + + - Example of use + + teste_data = {"john" : 123, "mary" : 489, "philip" : 890 , "suzy" : 235} + CairoPlot.pie_plot("pie_teste", teste_data, 500, 500) + ''' + + plot = PiePlot( name, data, width, height, background, gradient, shadow, colors ) + plot.render() + plot.commit() + +def donut_plot(name, data, width, height, background = "white light_gray", gradient = False, shadow = False, colors = None, inner_radius = -1): + + ''' + - Function to plot donut graphics. + + donut_plot(name, data, width, height, background = "white light_gray", gradient = False, inner_radius = -1) + + - Parameters + + name - Name of the desired output file, no need to input the .svg as it will be added at runtim; + data - The list, list of lists or dictionary holding the data to be plotted; + width, height - Dimensions of the output image; + background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient. + If left None, a gray to white gradient will be generated; + shadow - Whether or not there will be a shadow behind the donut; + gradient - Whether or not the donut color will be painted with a gradient; + colors - List of slices colors; + inner_radius - The radius of the donut's inner circle. + + - Example of use + + teste_data = {"john" : 123, "mary" : 489, "philip" : 890 , "suzy" : 235} + CairoPlot.donut_plot("donut_teste", teste_data, 500, 500) + ''' + + plot = DonutPlot(name, data, width, height, background, gradient, shadow, colors, inner_radius) + plot.render() + plot.commit() + +def gantt_chart(name, pieces, width, height, x_labels, y_labels, colors): + + ''' + - Function to generate Gantt Charts. + + gantt_chart(name, pieces, width, height, x_labels, y_labels, colors): + + - Parameters + + name - Name of the desired output file, no need to input the .svg as it will be added at runtim; + pieces - A list defining the spaces to be drawn. The user must pass, for each line, the index of its start and the index of its end. If a line must have two or more spaces, they must be passed inside a list; + width, height - Dimensions of the output image; + x_labels - A list of names for each of the vertical lines; + y_labels - A list of names for each of the horizontal spaces; + colors - List containing the colors expected for each of the horizontal spaces + + - Example of use + + pieces = [ (0.5,5.5) , [(0,4),(6,8)] , (5.5,7) , (7,8)] + x_labels = [ 'teste01', 'teste02', 'teste03', 'teste04'] + y_labels = [ '0001', '0002', '0003', '0004', '0005', '0006', '0007', '0008', '0009', '0010' ] + colors = [ (1.0, 0.0, 0.0), (1.0, 0.7, 0.0), (1.0, 1.0, 0.0), (0.0, 1.0, 0.0) ] + CairoPlot.gantt_chart('gantt_teste', pieces, 600, 300, x_labels, y_labels, colors) + ''' + + plot = GanttChart(name, pieces, width, height, x_labels, y_labels, colors) + plot.render() + plot.commit() + +def vertical_bar_plot(name, + data, + width, + height, + background = "white light_gray", + border = 0, + display_values = False, + grid = False, + rounded_corners = False, + stack = False, + three_dimension = False, + series_labels = None, + x_labels = None, + y_labels = None, + x_bounds = None, + y_bounds = None, + colors = None): + #TODO: Fix docstring for vertical_bar_plot + ''' + - Function to generate vertical Bar Plot Charts. + + bar_plot(name, data, width, height, background, border, grid, rounded_corners, three_dimension, + x_labels, y_labels, x_bounds, y_bounds, colors): + + - Parameters + + name - Name of the desired output file, no need to input the .svg as it will be added at runtime; + data - The list, list of lists or dictionary holding the data to be plotted; + width, height - Dimensions of the output image; + background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient. + If left None, a gray to white gradient will be generated; + border - Distance in pixels of a square border into which the graphics will be drawn; + grid - Whether or not the gris is to be drawn; + rounded_corners - Whether or not the bars should have rounded corners; + three_dimension - Whether or not the bars should be drawn in pseudo 3D; + x_labels, y_labels - lists of strings containing the horizontal and vertical labels for the axis; + x_bounds, y_bounds - tuples containing the lower and upper value bounds for the data to be plotted; + colors - List containing the colors expected for each of the bars. + + - Example of use + + data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] + CairoPlot.vertical_bar_plot ('bar2', data, 400, 300, border = 20, grid = True, rounded_corners = False) + ''' + + plot = VerticalBarPlot(name, data, width, height, background, border, + display_values, grid, rounded_corners, stack, three_dimension, + series_labels, x_labels, y_labels, x_bounds, y_bounds, colors) + plot.render() + plot.commit() + +def horizontal_bar_plot(name, + data, + width, + height, + background = "white light_gray", + border = 0, + display_values = False, + grid = False, + rounded_corners = False, + stack = False, + three_dimension = False, + series_labels = None, + x_labels = None, + y_labels = None, + x_bounds = None, + y_bounds = None, + colors = None): + + #TODO: Fix docstring for horizontal_bar_plot + ''' + - Function to generate Horizontal Bar Plot Charts. + + bar_plot(name, data, width, height, background, border, grid, rounded_corners, three_dimension, + x_labels, y_labels, x_bounds, y_bounds, colors): + + - Parameters + + name - Name of the desired output file, no need to input the .svg as it will be added at runtime; + data - The list, list of lists or dictionary holding the data to be plotted; + width, height - Dimensions of the output image; + background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient. + If left None, a gray to white gradient will be generated; + border - Distance in pixels of a square border into which the graphics will be drawn; + grid - Whether or not the gris is to be drawn; + rounded_corners - Whether or not the bars should have rounded corners; + three_dimension - Whether or not the bars should be drawn in pseudo 3D; + x_labels, y_labels - lists of strings containing the horizontal and vertical labels for the axis; + x_bounds, y_bounds - tuples containing the lower and upper value bounds for the data to be plotted; + colors - List containing the colors expected for each of the bars. + + - Example of use + + data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] + CairoPlot.bar_plot ('bar2', data, 400, 300, border = 20, grid = True, rounded_corners = False) + ''' + + plot = HorizontalBarPlot(name, data, width, height, background, border, + display_values, grid, rounded_corners, stack, three_dimension, + series_labels, x_labels, y_labels, x_bounds, y_bounds, colors) + plot.render() + plot.commit() + +def stream_chart(name, + data, + width, + height, + background = "white light_gray", + border = 0, + grid = False, + series_legend = None, + x_labels = None, + x_bounds = None, + y_bounds = None, + colors = None): + + #TODO: Fix docstring for horizontal_bar_plot + plot = StreamChart(name, data, width, height, background, border, + grid, series_legend, x_labels, x_bounds, y_bounds, colors) + plot.render() + plot.commit() + + +if __name__ == "__main__": + import tests + import seriestests diff --git a/invoice/graph/graphs.py b/invoice/graph/graphs.py new file mode 100755 index 0000000..051a455 --- /dev/null +++ b/invoice/graph/graphs.py @@ -0,0 +1,141 @@ +#!/usr/bin/python +# -*- coding: utf-8 -*- +import cairoplot, datetime, sqlite3, time + +def TortendiagramUser(): + data = {} + + connection = sqlite3.connect('shop.db') + c = connection.cursor() + c.execute("SELECT users.id, SUM(prices.memberprice) FROM users, purchases, prices " + + "WHERE users.id = purchases.user AND purchases.product = prices.product GROUP BY users.id") + for row in c: + data["%d (%d.%d Euro)" %(row[0], row[1] / 100, row[1] % 100)] = row[1] + c.close() + + cairoplot.pie_plot("tortendiagram", data, 640, 480) + +def TortendiagramUserRanking(): + data = {} + names = [] + + connection = sqlite3.connect('shop.db') + c = connection.cursor() + c.execute("SELECT users.firstname, users.lastname, SUM(prices.memberprice) FROM users, purchases, prices " + + "WHERE users.id = purchases.user AND purchases.product = prices.product GROUP BY users.id") + for row in c: + data["%s %s (%d.%d Euro)" % (row[0], row[1], row[2] / 100, row[2] % 100)] = row[2] + c.close() + + count=0 + sorted_data = [] + for key, value in sorted(data.iteritems(), key=lambda (k,v): (v,k), reverse=True): + sorted_data.append(value) + names.append(key) + count+=1 + if count >= 10: + break + + cairoplot.horizontal_bar_plot("ranking", sorted_data, 640, 480, y_labels = names, rounded_corners = True, grid = True) + +def TortendiagramProduct(): + data = {} + + connection = sqlite3.connect('shop.db') + c = connection.cursor() + c.execute("SELECT products.name, SUM(1) FROM products, purchases " + + "WHERE products.id = purchases.product GROUP BY products.id") + for row in c: + data[row[0]] = row[1] + c.close() + + cairoplot.pie_plot("tortendiagram2", data, 640, 480) + +def Lagerbestand(category): + data = {} + translation = {} + + day = 24 * 60 * 60 + now = int(time.time()) + + dates = [] + dt = datetime.datetime.fromtimestamp(now) + dates.append("%04d-%02d-%02d" % (dt.year, dt.month, dt.day)) + + colors = [ + "black", + "red", + "green", + "blue", + "orange", + (117/255.0, 255/255.0, 20/255.0), + (216/255.0, 20/255.0, 255/255.0), + (204/255.0, 153/255.0, 0/255.0), + (0/255.0, 204/255.0, 255/255.0), + (153/255.0, 77/255.0, 0/255.0), + (128/255.0, 0/255.0, 128/255.0), + (204/255.0, 0/255.0, 0/255.0), + (0/255.0, 0/255.0, 102/255.0), + "yellow", + ] + + connection = sqlite3.connect('shop.db') + c = connection.cursor() + query = "" + + if category == "getraenke": + query = "name LIKE '%Mate%' OR name LIKE '%Coca Cola%' OR name LIKE '%Vilsa%' OR name = 'Fanta' OR name = 'Sprite'" + elif category == "haribo": + query = "name LIKE '%Haribo%'" + elif category == "riegel": + query = "name LIKE '%KitKat%' OR name = 'Lion' OR name LIKE '%Snickers%' OR name = 'Mars' OR name = 'Twix' OR name = 'Duplo'" + elif category == "other": + query = "name LIKE '%Gouda%' OR name LIKE '%Chipsfrisch%' OR name LIKE '%Sesamsticks%'" + elif category == "schoko": + query = "name = 'Ü-Ei' OR name LIKE '%Tender%' OR name = 'Knoppers' OR name LIKE '%m&m%'" + else: + return + + c.execute("SELECT name, amount, id FROM products WHERE (%s) AND amount > 0" % query); + + for row in c: + data[row[0]] = [int(row[1])] + translation[row[2]] = row[0] + + current = now + currentid = 1 + while current > (now - 21 * day): + for k, v in data.iteritems(): + data[k].append(v[-1]) + + dt = datetime.datetime.fromtimestamp(current - day) + dates.append("%04d-%02d-%02d" % (dt.year, dt.month, dt.day)) + + c.execute("SELECT name, SUM(restock.amount) FROM products, restock WHERE products.id = restock.product AND timestamp > ? AND timestamp < ? GROUP BY name", (current - day, current)); + for row in c: + if row[0] in data: + data[row[0]][currentid] -= row[1] + c.execute("SELECT name, SUM(1) FROM products, purchases WHERE products.id = purchases.product AND timestamp > ? AND timestamp < ? GROUP BY name", (current - day, current)); + for row in c: + if row[0] in data: + data[row[0]][currentid] += row[1] + + current -= day + currentid += 1 + + for k, v in data.iteritems(): + data[k].reverse() + dates.reverse() + + c.close() + cairoplot.dot_line_plot("lagerbestand_%s" % category, data, 640, 480, series_colors = colors, x_labels = dates, y_title = "Anzahl", axis=True, grid=True, series_legend = True) + + +data = [ "getraenke", "haribo", "riegel", "other", "schoko" ] + +TortendiagramUser() +TortendiagramProduct() +TortendiagramUserRanking() + +for x in data: + Lagerbestand(x) diff --git a/invoice/graph/series.py b/invoice/graph/series.py new file mode 100755 index 0000000..157ab3d --- /dev/null +++ b/invoice/graph/series.py @@ -0,0 +1,1140 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- + +# Serie.py +# +# Copyright (c) 2008 Magnun Leno da Silva +# +# Author: Magnun Leno da Silva +# +# This program is free software; you can redistribute it and/or +# modify it under the terms of the GNU Lesser General Public License +# as published by the Free Software Foundation; either version 2 of +# the License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public +# License along with this program; if not, write to the Free Software +# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 +# USA + +# Contributor: Rodrigo Moreiro Araujo + +#import cairoplot +import doctest + +NUMTYPES = (int, float, long) +LISTTYPES = (list, tuple) +STRTYPES = (str, unicode) +FILLING_TYPES = ['linear', 'solid', 'gradient'] +DEFAULT_COLOR_FILLING = 'solid' +#TODO: Define default color list +DEFAULT_COLOR_LIST = None + +class Data(object): + ''' + Class that models the main data structure. + It can hold: + - a number type (int, float or long) + - a tuple, witch represents a point and can have 2 or 3 items (x,y,z) + - if a list is passed it will be converted to a tuple. + + obs: In case a tuple is passed it will convert to tuple + ''' + def __init__(self, data=None, name=None, parent=None): + ''' + Starts main atributes from the Data class + @name - Name for each point; + @content - The real data, can be an int, float, long or tuple, which + represents a point (x,y) or (x,y,z); + @parent - A pointer that give the data access to it's parent. + + Usage: + >>> d = Data(name='empty'); print d + empty: () + >>> d = Data((1,1),'point a'); print d + point a: (1, 1) + >>> d = Data((1,2,3),'point b'); print d + point b: (1, 2, 3) + >>> d = Data([2,3],'point c'); print d + point c: (2, 3) + >>> d = Data(12, 'simple value'); print d + simple value: 12 + ''' + # Initial values + self.__content = None + self.__name = None + + # Setting passed values + self.parent = parent + self.name = name + self.content = data + + # Name property + @apply + def name(): + doc = ''' + Name is a read/write property that controls the input of name. + - If passed an invalid value it cleans the name with None + + Usage: + >>> d = Data(13); d.name = 'name_test'; print d + name_test: 13 + >>> d.name = 11; print d + 13 + >>> d.name = 'other_name'; print d + other_name: 13 + >>> d.name = None; print d + 13 + >>> d.name = 'last_name'; print d + last_name: 13 + >>> d.name = ''; print d + 13 + ''' + def fget(self): + ''' + returns the name as a string + ''' + return self.__name + + def fset(self, name): + ''' + Sets the name of the Data + ''' + if type(name) in STRTYPES and len(name) > 0: + self.__name = name + else: + self.__name = None + + + + return property(**locals()) + + # Content property + @apply + def content(): + doc = ''' + Content is a read/write property that validate the data passed + and return it. + + Usage: + >>> d = Data(); d.content = 13; d.content + 13 + >>> d = Data(); d.content = (1,2); d.content + (1, 2) + >>> d = Data(); d.content = (1,2,3); d.content + (1, 2, 3) + >>> d = Data(); d.content = [1,2,3]; d.content + (1, 2, 3) + >>> d = Data(); d.content = [1.5,.2,3.3]; d.content + (1.5, 0.20000000000000001, 3.2999999999999998) + ''' + def fget(self): + ''' + Return the content of Data + ''' + return self.__content + + def fset(self, data): + ''' + Ensures that data is a valid tuple/list or a number (int, float + or long) + ''' + # Type: None + if data is None: + self.__content = None + return + + # Type: Int or Float + elif type(data) in NUMTYPES: + self.__content = data + + # Type: List or Tuple + elif type(data) in LISTTYPES: + # Ensures the correct size + if len(data) not in (2, 3): + raise TypeError, "Data (as list/tuple) must have 2 or 3 items" + return + + # Ensures that all items in list/tuple is a number + isnum = lambda x : type(x) not in NUMTYPES + + if max(map(isnum, data)): + # An item in data isn't an int or a float + raise TypeError, "All content of data must be a number (int or float)" + + # Convert the tuple to list + if type(data) is list: + data = tuple(data) + + # Append a copy and sets the type + self.__content = data[:] + + # Unknown type! + else: + self.__content = None + raise TypeError, "Data must be an int, float or a tuple with two or three items" + return + + return property(**locals()) + + + def clear(self): + ''' + Clear the all Data (content, name and parent) + ''' + self.content = None + self.name = None + self.parent = None + + def copy(self): + ''' + Returns a copy of the Data structure + ''' + # The copy + new_data = Data() + if self.content is not None: + # If content is a point + if type(self.content) is tuple: + new_data.__content = self.content[:] + + # If content is a number + else: + new_data.__content = self.content + + # If it has a name + if self.name is not None: + new_data.__name = self.name + + return new_data + + def __str__(self): + ''' + Return a string representation of the Data structure + ''' + if self.name is None: + if self.content is None: + return '' + return str(self.content) + else: + if self.content is None: + return self.name+": ()" + return self.name+": "+str(self.content) + + def __len__(self): + ''' + Return the length of the Data. + - If it's a number return 1; + - If it's a list return it's length; + - If its None return 0. + ''' + if self.content is None: + return 0 + elif type(self.content) in NUMTYPES: + return 1 + return len(self.content) + + + + +class Group(object): + ''' + Class that models a group of data. Every value (int, float, long, tuple + or list) passed is converted to a list of Data. + It can receive: + - A single number (int, float, long); + - A list of numbers; + - A tuple of numbers; + - An instance of Data; + - A list of Data; + + Obs: If a tuple with 2 or 3 items is passed it is converted to a point. + If a tuple with only 1 item is passed it's converted to a number; + If a tuple with more than 2 items is passed it's converted to a + list of numbers + ''' + def __init__(self, group=None, name=None, parent=None): + ''' + Starts main atributes in Group instance. + @data_list - a list of data which forms the group; + @range - a range that represent the x axis of possible functions; + @name - name of the data group; + @parent - the Serie parent of this group. + + Usage: + >>> g = Group(13, 'simple number'); print g + simple number ['13'] + >>> g = Group((1,2), 'simple point'); print g + simple point ['(1, 2)'] + >>> g = Group([1,2,3,4], 'list of numbers'); print g + list of numbers ['1', '2', '3', '4'] + >>> g = Group((1,2,3,4),'int in tuple'); print g + int in tuple ['1', '2', '3', '4'] + >>> g = Group([(1,2),(2,3),(3,4)], 'list of points'); print g + list of points ['(1, 2)', '(2, 3)', '(3, 4)'] + >>> g = Group([[1,2,3],[1,2,3]], '2D coordinate lists'); print g + 2D coordinated lists ['(1, 1)', '(2, 2)', '(3, 3)'] + >>> g = Group([[1,2],[1,2],[1,2]], '3D coordinate lists'); print g + 3D coordinated lists ['(1, 1, 1)', '(2, 2, 2)'] + ''' + # Initial values + self.__data_list = [] + self.__range = [] + self.__name = None + + + self.parent = parent + self.name = name + self.data_list = group + + # Name property + @apply + def name(): + doc = ''' + Name is a read/write property that controls the input of name. + - If passed an invalid value it cleans the name with None + + Usage: + >>> g = Group(13); g.name = 'name_test'; print g + name_test ['13'] + >>> g.name = 11; print g + ['13'] + >>> g.name = 'other_name'; print g + other_name ['13'] + >>> g.name = None; print g + ['13'] + >>> g.name = 'last_name'; print g + last_name ['13'] + >>> g.name = ''; print g + ['13'] + ''' + def fget(self): + ''' + Returns the name as a string + ''' + return self.__name + + def fset(self, name): + ''' + Sets the name of the Group + ''' + if type(name) in STRTYPES and len(name) > 0: + self.__name = name + else: + self.__name = None + + return property(**locals()) + + # data_list property + @apply + def data_list(): + doc = ''' + The data_list is a read/write property that can be a list of + numbers, a list of points or a list of 2 or 3 coordinate lists. This + property uses mainly the self.add_data method. + + Usage: + >>> g = Group(); g.data_list = 13; print g + ['13'] + >>> g.data_list = (1,2); print g + ['(1, 2)'] + >>> g.data_list = Data((1,2),'point a'); print g + ['point a: (1, 2)'] + >>> g.data_list = [1,2,3]; print g + ['1', '2', '3'] + >>> g.data_list = (1,2,3,4); print g + ['1', '2', '3', '4'] + >>> g.data_list = [(1,2),(2,3),(3,4)]; print g + ['(1, 2)', '(2, 3)', '(3, 4)'] + >>> g.data_list = [[1,2],[1,2]]; print g + ['(1, 1)', '(2, 2)'] + >>> g.data_list = [[1,2],[1,2],[1,2]]; print g + ['(1, 1, 1)', '(2, 2, 2)'] + >>> g.range = (10); g.data_list = lambda x:x**2; print g + ['(0.0, 0.0)', '(1.0, 1.0)', '(2.0, 4.0)', '(3.0, 9.0)', '(4.0, 16.0)', '(5.0, 25.0)', '(6.0, 36.0)', '(7.0, 49.0)', '(8.0, 64.0)', '(9.0, 81.0)'] + ''' + def fget(self): + ''' + Returns the value of data_list + ''' + return self.__data_list + + def fset(self, group): + ''' + Ensures that group is valid. + ''' + # None + if group is None: + self.__data_list = [] + + # Int/float/long or Instance of Data + elif type(group) in NUMTYPES or isinstance(group, Data): + # Clean data_list + self.__data_list = [] + self.add_data(group) + + # One point + elif type(group) is tuple and len(group) in (2,3): + self.__data_list = [] + self.add_data(group) + + # list of items + elif type(group) in LISTTYPES and type(group[0]) is not list: + # Clean data_list + self.__data_list = [] + for item in group: + # try to append and catch an exception + self.add_data(item) + + # function lambda + elif callable(group): + # Explicit is better than implicit + function = group + # Has range + if len(self.range) is not 0: + # Clean data_list + self.__data_list = [] + # Generate values for the lambda function + for x in self.range: + #self.add_data((x,round(group(x),2))) + self.add_data((x,function(x))) + + # Only have range in parent + elif self.parent is not None and len(self.parent.range) is not 0: + # Copy parent range + self.__range = self.parent.range[:] + # Clean data_list + self.__data_list = [] + # Generate values for the lambda function + for x in self.range: + #self.add_data((x,round(group(x),2))) + self.add_data((x,function(x))) + + # Don't have range anywhere + else: + # x_data don't exist + raise Exception, "Data argument is valid but to use function type please set x_range first" + + # Coordinate Lists + elif type(group) in LISTTYPES and type(group[0]) is list: + # Clean data_list + self.__data_list = [] + data = [] + if len(group) == 3: + data = zip(group[0], group[1], group[2]) + elif len(group) == 2: + data = zip(group[0], group[1]) + else: + raise TypeError, "Only one list of coordinates was received." + + for item in data: + self.add_data(item) + + else: + raise TypeError, "Group type not supported" + + return property(**locals()) + + @apply + def range(): + doc = ''' + The range is a read/write property that generates a range of values + for the x axis of the functions. When passed a tuple it almost works + like the built-in range funtion: + - 1 item, represent the end of the range started from 0; + - 2 items, represents the start and the end, respectively; + - 3 items, the last one represents the step; + + When passed a list the range function understands as a valid range. + + Usage: + >>> g = Group(); g.range = 10; print g.range + [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] + >>> g = Group(); g.range = (5); print g.range + [0.0, 1.0, 2.0, 3.0, 4.0] + >>> g = Group(); g.range = (1,7); print g.range + [1.0, 2.0, 3.0, 4.0, 5.0, 6.0] + >>> g = Group(); g.range = (0,10,2); print g.range + [0.0, 2.0, 4.0, 6.0, 8.0] + >>> + >>> g = Group(); g.range = [0]; print g.range + [0.0] + >>> g = Group(); g.range = [0,10,20]; print g.range + [0.0, 10.0, 20.0] + ''' + def fget(self): + ''' + Returns the range + ''' + return self.__range + + def fset(self, x_range): + ''' + Controls the input of a valid type and generate the range + ''' + # if passed a simple number convert to tuple + if type(x_range) in NUMTYPES: + x_range = (x_range,) + + # A list, just convert to float + if type(x_range) is list and len(x_range) > 0: + # Convert all to float + x_range = map(float, x_range) + # Prevents repeated values and convert back to list + self.__range = list(set(x_range[:])) + # Sort the list to ascending order + self.__range.sort() + + # A tuple, must check the lengths and generate the values + elif type(x_range) is tuple and len(x_range) in (1,2,3): + # Convert all to float + x_range = map(float, x_range) + + # Inital values + start = 0.0 + step = 1.0 + end = 0.0 + + # Only the end and it can't be less or iqual to 0 + if len(x_range) is 1 and x_range > 0: + end = x_range[0] + + # The start and the end but the start must be less then the end + elif len(x_range) is 2 and x_range[0] < x_range[1]: + start = x_range[0] + end = x_range[1] + + # All 3, but the start must be less then the end + elif x_range[0] <= x_range[1]: + start = x_range[0] + end = x_range[1] + step = x_range[2] + + # Starts the range + self.__range = [] + # Generate the range + # Can't use the range function because it doesn't support float values + while start < end: + self.__range.append(start) + start += step + + # Incorrect type + else: + raise Exception, "x_range must be a list with one or more items or a tuple with 2 or 3 items" + + return property(**locals()) + + def add_data(self, data, name=None): + ''' + Append a new data to the data_list. + - If data is an instance of Data, append it + - If it's an int, float, tuple or list create an instance of Data and append it + + Usage: + >>> g = Group() + >>> g.add_data(12); print g + ['12'] + >>> g.add_data(7,'other'); print g + ['12', 'other: 7'] + >>> + >>> g = Group() + >>> g.add_data((1,1),'a'); print g + ['a: (1, 1)'] + >>> g.add_data((2,2),'b'); print g + ['a: (1, 1)', 'b: (2, 2)'] + >>> + >>> g.add_data(Data((1,2),'c')); print g + ['a: (1, 1)', 'b: (2, 2)', 'c: (1, 2)'] + ''' + if not isinstance(data, Data): + # Try to convert + data = Data(data,name,self) + + if data.content is not None: + self.__data_list.append(data.copy()) + self.__data_list[-1].parent = self + + + def to_list(self): + ''' + Returns the group as a list of numbers (int, float or long) or a + list of tuples (points 2D or 3D). + + Usage: + >>> g = Group([1,2,3,4],'g1'); g.to_list() + [1, 2, 3, 4] + >>> g = Group([(1,2),(2,3),(3,4)],'g2'); g.to_list() + [(1, 2), (2, 3), (3, 4)] + >>> g = Group([(1,2,3),(3,4,5)],'g2'); g.to_list() + [(1, 2, 3), (3, 4, 5)] + ''' + return [data.content for data in self] + + def copy(self): + ''' + Returns a copy of this group + ''' + new_group = Group() + new_group.__name = self.__name + if self.__range is not None: + new_group.__range = self.__range[:] + for data in self: + new_group.add_data(data.copy()) + return new_group + + def get_names(self): + ''' + Return a list with the names of all data in this group + ''' + names = [] + for data in self: + if data.name is None: + names.append('Data '+str(data.index()+1)) + else: + names.append(data.name) + return names + + + def __str__ (self): + ''' + Returns a string representing the Group + ''' + ret = "" + if self.name is not None: + ret += self.name + " " + if len(self) > 0: + list_str = [str(item) for item in self] + ret += str(list_str) + else: + ret += "[]" + return ret + + def __getitem__(self, key): + ''' + Makes a Group iterable, based in the data_list property + ''' + return self.data_list[key] + + def __len__(self): + ''' + Returns the length of the Group, based in the data_list property + ''' + return len(self.data_list) + + +class Colors(object): + ''' + Class that models the colors its labels (names) and its properties, RGB + and filling type. + + It can receive: + - A list where each item is a list with 3 or 4 items. The + first 3 items represent the RGB values and the last argument + defines the filling type. The list will be converted to a dict + and each color will receve a name based in its position in the + list. + - A dictionary where each key will be the color name and its item + can be a list with 3 or 4 items. The first 3 items represent + the RGB colors and the last argument defines the filling type. + ''' + def __init__(self, color_list=None): + ''' + Start the color_list property + @ color_list - the list or dict contaning the colors properties. + ''' + self.__color_list = None + + self.color_list = color_list + + @apply + def color_list(): + doc = ''' + >>> c = Colors([[1,1,1],[2,2,2,'linear'],[3,3,3,'gradient']]) + >>> print c.color_list + {'Color 2': [2, 2, 2, 'linear'], 'Color 3': [3, 3, 3, 'gradient'], 'Color 1': [1, 1, 1, 'solid']} + >>> c.color_list = [[1,1,1],(2,2,2,'solid'),(3,3,3,'linear')] + >>> print c.color_list + {'Color 2': [2, 2, 2, 'solid'], 'Color 3': [3, 3, 3, 'linear'], 'Color 1': [1, 1, 1, 'solid']} + >>> c.color_list = {'a':[1,1,1],'b':(2,2,2,'solid'),'c':(3,3,3,'linear'), 'd':(4,4,4)} + >>> print c.color_list + {'a': [1, 1, 1, 'solid'], 'c': [3, 3, 3, 'linear'], 'b': [2, 2, 2, 'solid'], 'd': [4, 4, 4, 'solid']} + ''' + def fget(self): + ''' + Return the color list + ''' + return self.__color_list + + def fset(self, color_list): + ''' + Format the color list to a dictionary + ''' + if color_list is None: + self.__color_list = None + return + + if type(color_list) in LISTTYPES and type(color_list[0]) in LISTTYPES: + old_color_list = color_list[:] + color_list = {} + for index, color in enumerate(old_color_list): + if len(color) is 3 and max(map(type, color)) in NUMTYPES: + color_list['Color '+str(index+1)] = list(color)+[DEFAULT_COLOR_FILLING] + elif len(color) is 4 and max(map(type, color[:-1])) in NUMTYPES and color[-1] in FILLING_TYPES: + color_list['Color '+str(index+1)] = list(color) + else: + raise TypeError, "Unsuported color format" + elif type(color_list) is not dict: + raise TypeError, "Unsuported color format" + + for name, color in color_list.items(): + if len(color) is 3: + if max(map(type, color)) in NUMTYPES: + color_list[name] = list(color)+[DEFAULT_COLOR_FILLING] + else: + raise TypeError, "Unsuported color format" + elif len(color) is 4: + if max(map(type, color[:-1])) in NUMTYPES and color[-1] in FILLING_TYPES: + color_list[name] = list(color) + else: + raise TypeError, "Unsuported color format" + self.__color_list = color_list.copy() + + return property(**locals()) + + +class Series(object): + ''' + Class that models a Series (group of groups). Every value (int, float, + long, tuple or list) passed is converted to a list of Group or Data. + It can receive: + - a single number or point, will be converted to a Group of one Data; + - a list of numbers, will be converted to a group of numbers; + - a list of tuples, will converted to a single Group of points; + - a list of lists of numbers, each 'sublist' will be converted to a + group of numbers; + - a list of lists of tuples, each 'sublist' will be converted to a + group of points; + - a list of lists of lists, the content of the 'sublist' will be + processed as coordinated lists and the result will be converted to + a group of points; + - a Dictionary where each item can be the same of the list: number, + point, list of numbers, list of points or list of lists (coordinated + lists); + - an instance of Data; + - an instance of group. + ''' + def __init__(self, series=None, name=None, property=[], colors=None): + ''' + Starts main atributes in Group instance. + @series - a list, dict of data of which the series is composed; + @name - name of the series; + @property - a list/dict of properties to be used in the plots of + this Series + + Usage: + >>> print Series([1,2,3,4]) + ["Group 1 ['1', '2', '3', '4']"] + >>> print Series([[1,2,3],[4,5,6]]) + ["Group 1 ['1', '2', '3']", "Group 2 ['4', '5', '6']"] + >>> print Series((1,2)) + ["Group 1 ['(1, 2)']"] + >>> print Series([(1,2),(2,3)]) + ["Group 1 ['(1, 2)', '(2, 3)']"] + >>> print Series([[(1,2),(2,3)],[(4,5),(5,6)]]) + ["Group 1 ['(1, 2)', '(2, 3)']", "Group 2 ['(4, 5)', '(5, 6)']"] + >>> print Series([[[1,2,3],[1,2,3],[1,2,3]]]) + ["Group 1 ['(1, 1, 1)', '(2, 2, 2)', '(3, 3, 3)']"] + >>> print Series({'g1':[1,2,3], 'g2':[4,5,6]}) + ["g1 ['1', '2', '3']", "g2 ['4', '5', '6']"] + >>> print Series({'g1':[(1,2),(2,3)], 'g2':[(4,5),(5,6)]}) + ["g1 ['(1, 2)', '(2, 3)']", "g2 ['(4, 5)', '(5, 6)']"] + >>> print Series({'g1':[[1,2],[1,2]], 'g2':[[4,5],[4,5]]}) + ["g1 ['(1, 1)', '(2, 2)']", "g2 ['(4, 4)', '(5, 5)']"] + >>> print Series(Data(1,'d1')) + ["Group 1 ['d1: 1']"] + >>> print Series(Group([(1,2),(2,3)],'g1')) + ["g1 ['(1, 2)', '(2, 3)']"] + ''' + # Intial values + self.__group_list = [] + self.__name = None + self.__range = None + + # TODO: Implement colors with filling + self.__colors = None + + self.name = name + self.group_list = series + self.colors = colors + + # Name property + @apply + def name(): + doc = ''' + Name is a read/write property that controls the input of name. + - If passed an invalid value it cleans the name with None + + Usage: + >>> s = Series(13); s.name = 'name_test'; print s + name_test ["Group 1 ['13']"] + >>> s.name = 11; print s + ["Group 1 ['13']"] + >>> s.name = 'other_name'; print s + other_name ["Group 1 ['13']"] + >>> s.name = None; print s + ["Group 1 ['13']"] + >>> s.name = 'last_name'; print s + last_name ["Group 1 ['13']"] + >>> s.name = ''; print s + ["Group 1 ['13']"] + ''' + def fget(self): + ''' + Returns the name as a string + ''' + return self.__name + + def fset(self, name): + ''' + Sets the name of the Group + ''' + if type(name) in STRTYPES and len(name) > 0: + self.__name = name + else: + self.__name = None + + return property(**locals()) + + + + # Colors property + @apply + def colors(): + doc = ''' + >>> s = Series() + >>> s.colors = [[1,1,1],[2,2,2,'linear'],[3,3,3,'gradient']] + >>> print s.colors + {'Color 2': [2, 2, 2, 'linear'], 'Color 3': [3, 3, 3, 'gradient'], 'Color 1': [1, 1, 1, 'solid']} + >>> s.colors = [[1,1,1],(2,2,2,'solid'),(3,3,3,'linear')] + >>> print s.colors + {'Color 2': [2, 2, 2, 'solid'], 'Color 3': [3, 3, 3, 'linear'], 'Color 1': [1, 1, 1, 'solid']} + >>> s.colors = {'a':[1,1,1],'b':(2,2,2,'solid'),'c':(3,3,3,'linear'), 'd':(4,4,4)} + >>> print s.colors + {'a': [1, 1, 1, 'solid'], 'c': [3, 3, 3, 'linear'], 'b': [2, 2, 2, 'solid'], 'd': [4, 4, 4, 'solid']} + ''' + def fget(self): + ''' + Return the color list + ''' + return self.__colors.color_list + + def fset(self, colors): + ''' + Format the color list to a dictionary + ''' + self.__colors = Colors(colors) + + return property(**locals()) + + @apply + def range(): + doc = ''' + The range is a read/write property that generates a range of values + for the x axis of the functions. When passed a tuple it almost works + like the built-in range funtion: + - 1 item, represent the end of the range started from 0; + - 2 items, represents the start and the end, respectively; + - 3 items, the last one represents the step; + + When passed a list the range function understands as a valid range. + + Usage: + >>> s = Series(); s.range = 10; print s.range + [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0] + >>> s = Series(); s.range = (5); print s.range + [0.0, 1.0, 2.0, 3.0, 4.0, 5.0] + >>> s = Series(); s.range = (1,7); print s.range + [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0] + >>> s = Series(); s.range = (0,10,2); print s.range + [0.0, 2.0, 4.0, 6.0, 8.0, 10.0] + >>> + >>> s = Series(); s.range = [0]; print s.range + [0.0] + >>> s = Series(); s.range = [0,10,20]; print s.range + [0.0, 10.0, 20.0] + ''' + def fget(self): + ''' + Returns the range + ''' + return self.__range + + def fset(self, x_range): + ''' + Controls the input of a valid type and generate the range + ''' + # if passed a simple number convert to tuple + if type(x_range) in NUMTYPES: + x_range = (x_range,) + + # A list, just convert to float + if type(x_range) is list and len(x_range) > 0: + # Convert all to float + x_range = map(float, x_range) + # Prevents repeated values and convert back to list + self.__range = list(set(x_range[:])) + # Sort the list to ascending order + self.__range.sort() + + # A tuple, must check the lengths and generate the values + elif type(x_range) is tuple and len(x_range) in (1,2,3): + # Convert all to float + x_range = map(float, x_range) + + # Inital values + start = 0.0 + step = 1.0 + end = 0.0 + + # Only the end and it can't be less or iqual to 0 + if len(x_range) is 1 and x_range > 0: + end = x_range[0] + + # The start and the end but the start must be lesser then the end + elif len(x_range) is 2 and x_range[0] < x_range[1]: + start = x_range[0] + end = x_range[1] + + # All 3, but the start must be lesser then the end + elif x_range[0] < x_range[1]: + start = x_range[0] + end = x_range[1] + step = x_range[2] + + # Starts the range + self.__range = [] + # Generate the range + # Cnat use the range function becouse it don't suport float values + while start <= end: + self.__range.append(start) + start += step + + # Incorrect type + else: + raise Exception, "x_range must be a list with one or more item or a tuple with 2 or 3 items" + + return property(**locals()) + + @apply + def group_list(): + doc = ''' + The group_list is a read/write property used to pre-process the list + of Groups. + It can be: + - a single number, point or lambda, will be converted to a single + Group of one Data; + - a list of numbers, will be converted to a group of numbers; + - a list of tuples, will converted to a single Group of points; + - a list of lists of numbers, each 'sublist' will be converted to + a group of numbers; + - a list of lists of tuples, each 'sublist' will be converted to a + group of points; + - a list of lists of lists, the content of the 'sublist' will be + processed as coordinated lists and the result will be converted + to a group of points; + - a list of lambdas, each lambda represents a Group; + - a Dictionary where each item can be the same of the list: number, + point, list of numbers, list of points, list of lists + (coordinated lists) or lambdas + - an instance of Data; + - an instance of group. + + Usage: + >>> s = Series() + >>> s.group_list = [1,2,3,4]; print s + ["Group 1 ['1', '2', '3', '4']"] + >>> s.group_list = [[1,2,3],[4,5,6]]; print s + ["Group 1 ['1', '2', '3']", "Group 2 ['4', '5', '6']"] + >>> s.group_list = (1,2); print s + ["Group 1 ['(1, 2)']"] + >>> s.group_list = [(1,2),(2,3)]; print s + ["Group 1 ['(1, 2)', '(2, 3)']"] + >>> s.group_list = [[(1,2),(2,3)],[(4,5),(5,6)]]; print s + ["Group 1 ['(1, 2)', '(2, 3)']", "Group 2 ['(4, 5)', '(5, 6)']"] + >>> s.group_list = [[[1,2,3],[1,2,3],[1,2,3]]]; print s + ["Group 1 ['(1, 1, 1)', '(2, 2, 2)', '(3, 3, 3)']"] + >>> s.group_list = [(0.5,5.5) , [(0,4),(6,8)] , (5.5,7) , (7,9)]; print s + ["Group 1 ['(0.5, 5.5)']", "Group 2 ['(0, 4)', '(6, 8)']", "Group 3 ['(5.5, 7)']", "Group 4 ['(7, 9)']"] + >>> s.group_list = {'g1':[1,2,3], 'g2':[4,5,6]}; print s + ["g1 ['1', '2', '3']", "g2 ['4', '5', '6']"] + >>> s.group_list = {'g1':[(1,2),(2,3)], 'g2':[(4,5),(5,6)]}; print s + ["g1 ['(1, 2)', '(2, 3)']", "g2 ['(4, 5)', '(5, 6)']"] + >>> s.group_list = {'g1':[[1,2],[1,2]], 'g2':[[4,5],[4,5]]}; print s + ["g1 ['(1, 1)', '(2, 2)']", "g2 ['(4, 4)', '(5, 5)']"] + >>> s.range = 10 + >>> s.group_list = lambda x:x*2 + >>> s.group_list = [lambda x:x*2, lambda x:x**2, lambda x:x**3]; print s + ["Group 1 ['(0.0, 0.0)', '(1.0, 2.0)', '(2.0, 4.0)', '(3.0, 6.0)', '(4.0, 8.0)', '(5.0, 10.0)', '(6.0, 12.0)', '(7.0, 14.0)', '(8.0, 16.0)', '(9.0, 18.0)', '(10.0, 20.0)']", "Group 2 ['(0.0, 0.0)', '(1.0, 1.0)', '(2.0, 4.0)', '(3.0, 9.0)', '(4.0, 16.0)', '(5.0, 25.0)', '(6.0, 36.0)', '(7.0, 49.0)', '(8.0, 64.0)', '(9.0, 81.0)', '(10.0, 100.0)']", "Group 3 ['(0.0, 0.0)', '(1.0, 1.0)', '(2.0, 8.0)', '(3.0, 27.0)', '(4.0, 64.0)', '(5.0, 125.0)', '(6.0, 216.0)', '(7.0, 343.0)', '(8.0, 512.0)', '(9.0, 729.0)', '(10.0, 1000.0)']"] + >>> s.group_list = {'linear':lambda x:x*2, 'square':lambda x:x**2, 'cubic':lambda x:x**3}; print s + ["cubic ['(0.0, 0.0)', '(1.0, 1.0)', '(2.0, 8.0)', '(3.0, 27.0)', '(4.0, 64.0)', '(5.0, 125.0)', '(6.0, 216.0)', '(7.0, 343.0)', '(8.0, 512.0)', '(9.0, 729.0)', '(10.0, 1000.0)']", "linear ['(0.0, 0.0)', '(1.0, 2.0)', '(2.0, 4.0)', '(3.0, 6.0)', '(4.0, 8.0)', '(5.0, 10.0)', '(6.0, 12.0)', '(7.0, 14.0)', '(8.0, 16.0)', '(9.0, 18.0)', '(10.0, 20.0)']", "square ['(0.0, 0.0)', '(1.0, 1.0)', '(2.0, 4.0)', '(3.0, 9.0)', '(4.0, 16.0)', '(5.0, 25.0)', '(6.0, 36.0)', '(7.0, 49.0)', '(8.0, 64.0)', '(9.0, 81.0)', '(10.0, 100.0)']"] + >>> s.group_list = Data(1,'d1'); print s + ["Group 1 ['d1: 1']"] + >>> s.group_list = Group([(1,2),(2,3)],'g1'); print s + ["g1 ['(1, 2)', '(2, 3)']"] + ''' + def fget(self): + ''' + Return the group list. + ''' + return self.__group_list + + def fset(self, series): + ''' + Controls the input of a valid group list. + ''' + #TODO: Add support to the following strem of data: [ (0.5,5.5) , [(0,4),(6,8)] , (5.5,7) , (7,9)] + + # Type: None + if series is None: + self.__group_list = [] + + # List or Tuple + elif type(series) in LISTTYPES: + self.__group_list = [] + + is_function = lambda x: callable(x) + # Groups + if list in map(type, series) or max(map(is_function, series)): + for group in series: + self.add_group(group) + + # single group + else: + self.add_group(series) + + #old code + ## List of numbers + #if type(series[0]) in NUMTYPES or type(series[0]) is tuple: + # print series + # self.add_group(series) + # + ## List of anything else + #else: + # for group in series: + # self.add_group(group) + + # Dict representing series of groups + elif type(series) is dict: + self.__group_list = [] + names = series.keys() + names.sort() + for name in names: + self.add_group(Group(series[name],name,self)) + + # A single lambda + elif callable(series): + self.__group_list = [] + self.add_group(series) + + # Int/float, instance of Group or Data + elif type(series) in NUMTYPES or isinstance(series, Group) or isinstance(series, Data): + self.__group_list = [] + self.add_group(series) + + # Default + else: + raise TypeError, "Serie type not supported" + + return property(**locals()) + + def add_group(self, group, name=None): + ''' + Append a new group in group_list + ''' + if not isinstance(group, Group): + #Try to convert + group = Group(group, name, self) + + if len(group.data_list) is not 0: + # Auto naming groups + if group.name is None: + group.name = "Group "+str(len(self.__group_list)+1) + + self.__group_list.append(group) + self.__group_list[-1].parent = self + + def copy(self): + ''' + Returns a copy of the Series + ''' + new_series = Series() + new_series.__name = self.__name + if self.__range is not None: + new_series.__range = self.__range[:] + #Add color property in the copy method + #self.__colors = None + + for group in self: + new_series.add_group(group.copy()) + + return new_series + + def get_names(self): + ''' + Returns a list of the names of all groups in the Serie + ''' + names = [] + for group in self: + if group.name is None: + names.append('Group '+str(group.index()+1)) + else: + names.append(group.name) + + return names + + def to_list(self): + ''' + Returns a list with the content of all groups and data + ''' + big_list = [] + for group in self: + for data in group: + if type(data.content) in NUMTYPES: + big_list.append(data.content) + else: + big_list = big_list + list(data.content) + return big_list + + def __getitem__(self, key): + ''' + Makes the Series iterable, based in the group_list property + ''' + return self.__group_list[key] + + def __str__(self): + ''' + Returns a string that represents the Series + ''' + ret = "" + if self.name is not None: + ret += self.name + " " + if len(self) > 0: + list_str = [str(item) for item in self] + ret += str(list_str) + else: + ret += "[]" + return ret + + def __len__(self): + ''' + Returns the length of the Series, based in the group_lsit property + ''' + return len(self.group_list) + + +if __name__ == '__main__': + doctest.testmod() -- cgit v1.2.3