summaryrefslogtreecommitdiffstats
path: root/invoice/graph/series.py
diff options
context:
space:
mode:
Diffstat (limited to 'invoice/graph/series.py')
-rwxr-xr-xinvoice/graph/series.py1140
1 files changed, 1140 insertions, 0 deletions
diff --git a/invoice/graph/series.py b/invoice/graph/series.py
new file mode 100755
index 0000000..157ab3d
--- /dev/null
+++ b/invoice/graph/series.py
@@ -0,0 +1,1140 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+
+# Serie.py
+#
+# Copyright (c) 2008 Magnun Leno da Silva
+#
+# Author: Magnun Leno da Silva <magnun.leno@gmail.com>
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public License
+# as published by the Free Software Foundation; either version 2 of
+# the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
+# USA
+
+# Contributor: Rodrigo Moreiro Araujo <alf.rodrigo@gmail.com>
+
+#import cairoplot
+import doctest
+
+NUMTYPES = (int, float, long)
+LISTTYPES = (list, tuple)
+STRTYPES = (str, unicode)
+FILLING_TYPES = ['linear', 'solid', 'gradient']
+DEFAULT_COLOR_FILLING = 'solid'
+#TODO: Define default color list
+DEFAULT_COLOR_LIST = None
+
+class Data(object):
+ '''
+ Class that models the main data structure.
+ It can hold:
+ - a number type (int, float or long)
+ - a tuple, witch represents a point and can have 2 or 3 items (x,y,z)
+ - if a list is passed it will be converted to a tuple.
+
+ obs: In case a tuple is passed it will convert to tuple
+ '''
+ def __init__(self, data=None, name=None, parent=None):
+ '''
+ Starts main atributes from the Data class
+ @name - Name for each point;
+ @content - The real data, can be an int, float, long or tuple, which
+ represents a point (x,y) or (x,y,z);
+ @parent - A pointer that give the data access to it's parent.
+
+ Usage:
+ >>> d = Data(name='empty'); print d
+ empty: ()
+ >>> d = Data((1,1),'point a'); print d
+ point a: (1, 1)
+ >>> d = Data((1,2,3),'point b'); print d
+ point b: (1, 2, 3)
+ >>> d = Data([2,3],'point c'); print d
+ point c: (2, 3)
+ >>> d = Data(12, 'simple value'); print d
+ simple value: 12
+ '''
+ # Initial values
+ self.__content = None
+ self.__name = None
+
+ # Setting passed values
+ self.parent = parent
+ self.name = name
+ self.content = data
+
+ # Name property
+ @apply
+ def name():
+ doc = '''
+ Name is a read/write property that controls the input of name.
+ - If passed an invalid value it cleans the name with None
+
+ Usage:
+ >>> d = Data(13); d.name = 'name_test'; print d
+ name_test: 13
+ >>> d.name = 11; print d
+ 13
+ >>> d.name = 'other_name'; print d
+ other_name: 13
+ >>> d.name = None; print d
+ 13
+ >>> d.name = 'last_name'; print d
+ last_name: 13
+ >>> d.name = ''; print d
+ 13
+ '''
+ def fget(self):
+ '''
+ returns the name as a string
+ '''
+ return self.__name
+
+ def fset(self, name):
+ '''
+ Sets the name of the Data
+ '''
+ if type(name) in STRTYPES and len(name) > 0:
+ self.__name = name
+ else:
+ self.__name = None
+
+
+
+ return property(**locals())
+
+ # Content property
+ @apply
+ def content():
+ doc = '''
+ Content is a read/write property that validate the data passed
+ and return it.
+
+ Usage:
+ >>> d = Data(); d.content = 13; d.content
+ 13
+ >>> d = Data(); d.content = (1,2); d.content
+ (1, 2)
+ >>> d = Data(); d.content = (1,2,3); d.content
+ (1, 2, 3)
+ >>> d = Data(); d.content = [1,2,3]; d.content
+ (1, 2, 3)
+ >>> d = Data(); d.content = [1.5,.2,3.3]; d.content
+ (1.5, 0.20000000000000001, 3.2999999999999998)
+ '''
+ def fget(self):
+ '''
+ Return the content of Data
+ '''
+ return self.__content
+
+ def fset(self, data):
+ '''
+ Ensures that data is a valid tuple/list or a number (int, float
+ or long)
+ '''
+ # Type: None
+ if data is None:
+ self.__content = None
+ return
+
+ # Type: Int or Float
+ elif type(data) in NUMTYPES:
+ self.__content = data
+
+ # Type: List or Tuple
+ elif type(data) in LISTTYPES:
+ # Ensures the correct size
+ if len(data) not in (2, 3):
+ raise TypeError, "Data (as list/tuple) must have 2 or 3 items"
+ return
+
+ # Ensures that all items in list/tuple is a number
+ isnum = lambda x : type(x) not in NUMTYPES
+
+ if max(map(isnum, data)):
+ # An item in data isn't an int or a float
+ raise TypeError, "All content of data must be a number (int or float)"
+
+ # Convert the tuple to list
+ if type(data) is list:
+ data = tuple(data)
+
+ # Append a copy and sets the type
+ self.__content = data[:]
+
+ # Unknown type!
+ else:
+ self.__content = None
+ raise TypeError, "Data must be an int, float or a tuple with two or three items"
+ return
+
+ return property(**locals())
+
+
+ def clear(self):
+ '''
+ Clear the all Data (content, name and parent)
+ '''
+ self.content = None
+ self.name = None
+ self.parent = None
+
+ def copy(self):
+ '''
+ Returns a copy of the Data structure
+ '''
+ # The copy
+ new_data = Data()
+ if self.content is not None:
+ # If content is a point
+ if type(self.content) is tuple:
+ new_data.__content = self.content[:]
+
+ # If content is a number
+ else:
+ new_data.__content = self.content
+
+ # If it has a name
+ if self.name is not None:
+ new_data.__name = self.name
+
+ return new_data
+
+ def __str__(self):
+ '''
+ Return a string representation of the Data structure
+ '''
+ if self.name is None:
+ if self.content is None:
+ return ''
+ return str(self.content)
+ else:
+ if self.content is None:
+ return self.name+": ()"
+ return self.name+": "+str(self.content)
+
+ def __len__(self):
+ '''
+ Return the length of the Data.
+ - If it's a number return 1;
+ - If it's a list return it's length;
+ - If its None return 0.
+ '''
+ if self.content is None:
+ return 0
+ elif type(self.content) in NUMTYPES:
+ return 1
+ return len(self.content)
+
+
+
+
+class Group(object):
+ '''
+ Class that models a group of data. Every value (int, float, long, tuple
+ or list) passed is converted to a list of Data.
+ It can receive:
+ - A single number (int, float, long);
+ - A list of numbers;
+ - A tuple of numbers;
+ - An instance of Data;
+ - A list of Data;
+
+ Obs: If a tuple with 2 or 3 items is passed it is converted to a point.
+ If a tuple with only 1 item is passed it's converted to a number;
+ If a tuple with more than 2 items is passed it's converted to a
+ list of numbers
+ '''
+ def __init__(self, group=None, name=None, parent=None):
+ '''
+ Starts main atributes in Group instance.
+ @data_list - a list of data which forms the group;
+ @range - a range that represent the x axis of possible functions;
+ @name - name of the data group;
+ @parent - the Serie parent of this group.
+
+ Usage:
+ >>> g = Group(13, 'simple number'); print g
+ simple number ['13']
+ >>> g = Group((1,2), 'simple point'); print g
+ simple point ['(1, 2)']
+ >>> g = Group([1,2,3,4], 'list of numbers'); print g
+ list of numbers ['1', '2', '3', '4']
+ >>> g = Group((1,2,3,4),'int in tuple'); print g
+ int in tuple ['1', '2', '3', '4']
+ >>> g = Group([(1,2),(2,3),(3,4)], 'list of points'); print g
+ list of points ['(1, 2)', '(2, 3)', '(3, 4)']
+ >>> g = Group([[1,2,3],[1,2,3]], '2D coordinate lists'); print g
+ 2D coordinated lists ['(1, 1)', '(2, 2)', '(3, 3)']
+ >>> g = Group([[1,2],[1,2],[1,2]], '3D coordinate lists'); print g
+ 3D coordinated lists ['(1, 1, 1)', '(2, 2, 2)']
+ '''
+ # Initial values
+ self.__data_list = []
+ self.__range = []
+ self.__name = None
+
+
+ self.parent = parent
+ self.name = name
+ self.data_list = group
+
+ # Name property
+ @apply
+ def name():
+ doc = '''
+ Name is a read/write property that controls the input of name.
+ - If passed an invalid value it cleans the name with None
+
+ Usage:
+ >>> g = Group(13); g.name = 'name_test'; print g
+ name_test ['13']
+ >>> g.name = 11; print g
+ ['13']
+ >>> g.name = 'other_name'; print g
+ other_name ['13']
+ >>> g.name = None; print g
+ ['13']
+ >>> g.name = 'last_name'; print g
+ last_name ['13']
+ >>> g.name = ''; print g
+ ['13']
+ '''
+ def fget(self):
+ '''
+ Returns the name as a string
+ '''
+ return self.__name
+
+ def fset(self, name):
+ '''
+ Sets the name of the Group
+ '''
+ if type(name) in STRTYPES and len(name) > 0:
+ self.__name = name
+ else:
+ self.__name = None
+
+ return property(**locals())
+
+ # data_list property
+ @apply
+ def data_list():
+ doc = '''
+ The data_list is a read/write property that can be a list of
+ numbers, a list of points or a list of 2 or 3 coordinate lists. This
+ property uses mainly the self.add_data method.
+
+ Usage:
+ >>> g = Group(); g.data_list = 13; print g
+ ['13']
+ >>> g.data_list = (1,2); print g
+ ['(1, 2)']
+ >>> g.data_list = Data((1,2),'point a'); print g
+ ['point a: (1, 2)']
+ >>> g.data_list = [1,2,3]; print g
+ ['1', '2', '3']
+ >>> g.data_list = (1,2,3,4); print g
+ ['1', '2', '3', '4']
+ >>> g.data_list = [(1,2),(2,3),(3,4)]; print g
+ ['(1, 2)', '(2, 3)', '(3, 4)']
+ >>> g.data_list = [[1,2],[1,2]]; print g
+ ['(1, 1)', '(2, 2)']
+ >>> g.data_list = [[1,2],[1,2],[1,2]]; print g
+ ['(1, 1, 1)', '(2, 2, 2)']
+ >>> g.range = (10); g.data_list = lambda x:x**2; print g
+ ['(0.0, 0.0)', '(1.0, 1.0)', '(2.0, 4.0)', '(3.0, 9.0)', '(4.0, 16.0)', '(5.0, 25.0)', '(6.0, 36.0)', '(7.0, 49.0)', '(8.0, 64.0)', '(9.0, 81.0)']
+ '''
+ def fget(self):
+ '''
+ Returns the value of data_list
+ '''
+ return self.__data_list
+
+ def fset(self, group):
+ '''
+ Ensures that group is valid.
+ '''
+ # None
+ if group is None:
+ self.__data_list = []
+
+ # Int/float/long or Instance of Data
+ elif type(group) in NUMTYPES or isinstance(group, Data):
+ # Clean data_list
+ self.__data_list = []
+ self.add_data(group)
+
+ # One point
+ elif type(group) is tuple and len(group) in (2,3):
+ self.__data_list = []
+ self.add_data(group)
+
+ # list of items
+ elif type(group) in LISTTYPES and type(group[0]) is not list:
+ # Clean data_list
+ self.__data_list = []
+ for item in group:
+ # try to append and catch an exception
+ self.add_data(item)
+
+ # function lambda
+ elif callable(group):
+ # Explicit is better than implicit
+ function = group
+ # Has range
+ if len(self.range) is not 0:
+ # Clean data_list
+ self.__data_list = []
+ # Generate values for the lambda function
+ for x in self.range:
+ #self.add_data((x,round(group(x),2)))
+ self.add_data((x,function(x)))
+
+ # Only have range in parent
+ elif self.parent is not None and len(self.parent.range) is not 0:
+ # Copy parent range
+ self.__range = self.parent.range[:]
+ # Clean data_list
+ self.__data_list = []
+ # Generate values for the lambda function
+ for x in self.range:
+ #self.add_data((x,round(group(x),2)))
+ self.add_data((x,function(x)))
+
+ # Don't have range anywhere
+ else:
+ # x_data don't exist
+ raise Exception, "Data argument is valid but to use function type please set x_range first"
+
+ # Coordinate Lists
+ elif type(group) in LISTTYPES and type(group[0]) is list:
+ # Clean data_list
+ self.__data_list = []
+ data = []
+ if len(group) == 3:
+ data = zip(group[0], group[1], group[2])
+ elif len(group) == 2:
+ data = zip(group[0], group[1])
+ else:
+ raise TypeError, "Only one list of coordinates was received."
+
+ for item in data:
+ self.add_data(item)
+
+ else:
+ raise TypeError, "Group type not supported"
+
+ return property(**locals())
+
+ @apply
+ def range():
+ doc = '''
+ The range is a read/write property that generates a range of values
+ for the x axis of the functions. When passed a tuple it almost works
+ like the built-in range funtion:
+ - 1 item, represent the end of the range started from 0;
+ - 2 items, represents the start and the end, respectively;
+ - 3 items, the last one represents the step;
+
+ When passed a list the range function understands as a valid range.
+
+ Usage:
+ >>> g = Group(); g.range = 10; print g.range
+ [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
+ >>> g = Group(); g.range = (5); print g.range
+ [0.0, 1.0, 2.0, 3.0, 4.0]
+ >>> g = Group(); g.range = (1,7); print g.range
+ [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
+ >>> g = Group(); g.range = (0,10,2); print g.range
+ [0.0, 2.0, 4.0, 6.0, 8.0]
+ >>>
+ >>> g = Group(); g.range = [0]; print g.range
+ [0.0]
+ >>> g = Group(); g.range = [0,10,20]; print g.range
+ [0.0, 10.0, 20.0]
+ '''
+ def fget(self):
+ '''
+ Returns the range
+ '''
+ return self.__range
+
+ def fset(self, x_range):
+ '''
+ Controls the input of a valid type and generate the range
+ '''
+ # if passed a simple number convert to tuple
+ if type(x_range) in NUMTYPES:
+ x_range = (x_range,)
+
+ # A list, just convert to float
+ if type(x_range) is list and len(x_range) > 0:
+ # Convert all to float
+ x_range = map(float, x_range)
+ # Prevents repeated values and convert back to list
+ self.__range = list(set(x_range[:]))
+ # Sort the list to ascending order
+ self.__range.sort()
+
+ # A tuple, must check the lengths and generate the values
+ elif type(x_range) is tuple and len(x_range) in (1,2,3):
+ # Convert all to float
+ x_range = map(float, x_range)
+
+ # Inital values
+ start = 0.0
+ step = 1.0
+ end = 0.0
+
+ # Only the end and it can't be less or iqual to 0
+ if len(x_range) is 1 and x_range > 0:
+ end = x_range[0]
+
+ # The start and the end but the start must be less then the end
+ elif len(x_range) is 2 and x_range[0] < x_range[1]:
+ start = x_range[0]
+ end = x_range[1]
+
+ # All 3, but the start must be less then the end
+ elif x_range[0] <= x_range[1]:
+ start = x_range[0]
+ end = x_range[1]
+ step = x_range[2]
+
+ # Starts the range
+ self.__range = []
+ # Generate the range
+ # Can't use the range function because it doesn't support float values
+ while start < end:
+ self.__range.append(start)
+ start += step
+
+ # Incorrect type
+ else:
+ raise Exception, "x_range must be a list with one or more items or a tuple with 2 or 3 items"
+
+ return property(**locals())
+
+ def add_data(self, data, name=None):
+ '''
+ Append a new data to the data_list.
+ - If data is an instance of Data, append it
+ - If it's an int, float, tuple or list create an instance of Data and append it
+
+ Usage:
+ >>> g = Group()
+ >>> g.add_data(12); print g
+ ['12']
+ >>> g.add_data(7,'other'); print g
+ ['12', 'other: 7']
+ >>>
+ >>> g = Group()
+ >>> g.add_data((1,1),'a'); print g
+ ['a: (1, 1)']
+ >>> g.add_data((2,2),'b'); print g
+ ['a: (1, 1)', 'b: (2, 2)']
+ >>>
+ >>> g.add_data(Data((1,2),'c')); print g
+ ['a: (1, 1)', 'b: (2, 2)', 'c: (1, 2)']
+ '''
+ if not isinstance(data, Data):
+ # Try to convert
+ data = Data(data,name,self)
+
+ if data.content is not None:
+ self.__data_list.append(data.copy())
+ self.__data_list[-1].parent = self
+
+
+ def to_list(self):
+ '''
+ Returns the group as a list of numbers (int, float or long) or a
+ list of tuples (points 2D or 3D).
+
+ Usage:
+ >>> g = Group([1,2,3,4],'g1'); g.to_list()
+ [1, 2, 3, 4]
+ >>> g = Group([(1,2),(2,3),(3,4)],'g2'); g.to_list()
+ [(1, 2), (2, 3), (3, 4)]
+ >>> g = Group([(1,2,3),(3,4,5)],'g2'); g.to_list()
+ [(1, 2, 3), (3, 4, 5)]
+ '''
+ return [data.content for data in self]
+
+ def copy(self):
+ '''
+ Returns a copy of this group
+ '''
+ new_group = Group()
+ new_group.__name = self.__name
+ if self.__range is not None:
+ new_group.__range = self.__range[:]
+ for data in self:
+ new_group.add_data(data.copy())
+ return new_group
+
+ def get_names(self):
+ '''
+ Return a list with the names of all data in this group
+ '''
+ names = []
+ for data in self:
+ if data.name is None:
+ names.append('Data '+str(data.index()+1))
+ else:
+ names.append(data.name)
+ return names
+
+
+ def __str__ (self):
+ '''
+ Returns a string representing the Group
+ '''
+ ret = ""
+ if self.name is not None:
+ ret += self.name + " "
+ if len(self) > 0:
+ list_str = [str(item) for item in self]
+ ret += str(list_str)
+ else:
+ ret += "[]"
+ return ret
+
+ def __getitem__(self, key):
+ '''
+ Makes a Group iterable, based in the data_list property
+ '''
+ return self.data_list[key]
+
+ def __len__(self):
+ '''
+ Returns the length of the Group, based in the data_list property
+ '''
+ return len(self.data_list)
+
+
+class Colors(object):
+ '''
+ Class that models the colors its labels (names) and its properties, RGB
+ and filling type.
+
+ It can receive:
+ - A list where each item is a list with 3 or 4 items. The
+ first 3 items represent the RGB values and the last argument
+ defines the filling type. The list will be converted to a dict
+ and each color will receve a name based in its position in the
+ list.
+ - A dictionary where each key will be the color name and its item
+ can be a list with 3 or 4 items. The first 3 items represent
+ the RGB colors and the last argument defines the filling type.
+ '''
+ def __init__(self, color_list=None):
+ '''
+ Start the color_list property
+ @ color_list - the list or dict contaning the colors properties.
+ '''
+ self.__color_list = None
+
+ self.color_list = color_list
+
+ @apply
+ def color_list():
+ doc = '''
+ >>> c = Colors([[1,1,1],[2,2,2,'linear'],[3,3,3,'gradient']])
+ >>> print c.color_list
+ {'Color 2': [2, 2, 2, 'linear'], 'Color 3': [3, 3, 3, 'gradient'], 'Color 1': [1, 1, 1, 'solid']}
+ >>> c.color_list = [[1,1,1],(2,2,2,'solid'),(3,3,3,'linear')]
+ >>> print c.color_list
+ {'Color 2': [2, 2, 2, 'solid'], 'Color 3': [3, 3, 3, 'linear'], 'Color 1': [1, 1, 1, 'solid']}
+ >>> c.color_list = {'a':[1,1,1],'b':(2,2,2,'solid'),'c':(3,3,3,'linear'), 'd':(4,4,4)}
+ >>> print c.color_list
+ {'a': [1, 1, 1, 'solid'], 'c': [3, 3, 3, 'linear'], 'b': [2, 2, 2, 'solid'], 'd': [4, 4, 4, 'solid']}
+ '''
+ def fget(self):
+ '''
+ Return the color list
+ '''
+ return self.__color_list
+
+ def fset(self, color_list):
+ '''
+ Format the color list to a dictionary
+ '''
+ if color_list is None:
+ self.__color_list = None
+ return
+
+ if type(color_list) in LISTTYPES and type(color_list[0]) in LISTTYPES:
+ old_color_list = color_list[:]
+ color_list = {}
+ for index, color in enumerate(old_color_list):
+ if len(color) is 3 and max(map(type, color)) in NUMTYPES:
+ color_list['Color '+str(index+1)] = list(color)+[DEFAULT_COLOR_FILLING]
+ elif len(color) is 4 and max(map(type, color[:-1])) in NUMTYPES and color[-1] in FILLING_TYPES:
+ color_list['Color '+str(index+1)] = list(color)
+ else:
+ raise TypeError, "Unsuported color format"
+ elif type(color_list) is not dict:
+ raise TypeError, "Unsuported color format"
+
+ for name, color in color_list.items():
+ if len(color) is 3:
+ if max(map(type, color)) in NUMTYPES:
+ color_list[name] = list(color)+[DEFAULT_COLOR_FILLING]
+ else:
+ raise TypeError, "Unsuported color format"
+ elif len(color) is 4:
+ if max(map(type, color[:-1])) in NUMTYPES and color[-1] in FILLING_TYPES:
+ color_list[name] = list(color)
+ else:
+ raise TypeError, "Unsuported color format"
+ self.__color_list = color_list.copy()
+
+ return property(**locals())
+
+
+class Series(object):
+ '''
+ Class that models a Series (group of groups). Every value (int, float,
+ long, tuple or list) passed is converted to a list of Group or Data.
+ It can receive:
+ - a single number or point, will be converted to a Group of one Data;
+ - a list of numbers, will be converted to a group of numbers;
+ - a list of tuples, will converted to a single Group of points;
+ - a list of lists of numbers, each 'sublist' will be converted to a
+ group of numbers;
+ - a list of lists of tuples, each 'sublist' will be converted to a
+ group of points;
+ - a list of lists of lists, the content of the 'sublist' will be
+ processed as coordinated lists and the result will be converted to
+ a group of points;
+ - a Dictionary where each item can be the same of the list: number,
+ point, list of numbers, list of points or list of lists (coordinated
+ lists);
+ - an instance of Data;
+ - an instance of group.
+ '''
+ def __init__(self, series=None, name=None, property=[], colors=None):
+ '''
+ Starts main atributes in Group instance.
+ @series - a list, dict of data of which the series is composed;
+ @name - name of the series;
+ @property - a list/dict of properties to be used in the plots of
+ this Series
+
+ Usage:
+ >>> print Series([1,2,3,4])
+ ["Group 1 ['1', '2', '3', '4']"]
+ >>> print Series([[1,2,3],[4,5,6]])
+ ["Group 1 ['1', '2', '3']", "Group 2 ['4', '5', '6']"]
+ >>> print Series((1,2))
+ ["Group 1 ['(1, 2)']"]
+ >>> print Series([(1,2),(2,3)])
+ ["Group 1 ['(1, 2)', '(2, 3)']"]
+ >>> print Series([[(1,2),(2,3)],[(4,5),(5,6)]])
+ ["Group 1 ['(1, 2)', '(2, 3)']", "Group 2 ['(4, 5)', '(5, 6)']"]
+ >>> print Series([[[1,2,3],[1,2,3],[1,2,3]]])
+ ["Group 1 ['(1, 1, 1)', '(2, 2, 2)', '(3, 3, 3)']"]
+ >>> print Series({'g1':[1,2,3], 'g2':[4,5,6]})
+ ["g1 ['1', '2', '3']", "g2 ['4', '5', '6']"]
+ >>> print Series({'g1':[(1,2),(2,3)], 'g2':[(4,5),(5,6)]})
+ ["g1 ['(1, 2)', '(2, 3)']", "g2 ['(4, 5)', '(5, 6)']"]
+ >>> print Series({'g1':[[1,2],[1,2]], 'g2':[[4,5],[4,5]]})
+ ["g1 ['(1, 1)', '(2, 2)']", "g2 ['(4, 4)', '(5, 5)']"]
+ >>> print Series(Data(1,'d1'))
+ ["Group 1 ['d1: 1']"]
+ >>> print Series(Group([(1,2),(2,3)],'g1'))
+ ["g1 ['(1, 2)', '(2, 3)']"]
+ '''
+ # Intial values
+ self.__group_list = []
+ self.__name = None
+ self.__range = None
+
+ # TODO: Implement colors with filling
+ self.__colors = None
+
+ self.name = name
+ self.group_list = series
+ self.colors = colors
+
+ # Name property
+ @apply
+ def name():
+ doc = '''
+ Name is a read/write property that controls the input of name.
+ - If passed an invalid value it cleans the name with None
+
+ Usage:
+ >>> s = Series(13); s.name = 'name_test'; print s
+ name_test ["Group 1 ['13']"]
+ >>> s.name = 11; print s
+ ["Group 1 ['13']"]
+ >>> s.name = 'other_name'; print s
+ other_name ["Group 1 ['13']"]
+ >>> s.name = None; print s
+ ["Group 1 ['13']"]
+ >>> s.name = 'last_name'; print s
+ last_name ["Group 1 ['13']"]
+ >>> s.name = ''; print s
+ ["Group 1 ['13']"]
+ '''
+ def fget(self):
+ '''
+ Returns the name as a string
+ '''
+ return self.__name
+
+ def fset(self, name):
+ '''
+ Sets the name of the Group
+ '''
+ if type(name) in STRTYPES and len(name) > 0:
+ self.__name = name
+ else:
+ self.__name = None
+
+ return property(**locals())
+
+
+
+ # Colors property
+ @apply
+ def colors():
+ doc = '''
+ >>> s = Series()
+ >>> s.colors = [[1,1,1],[2,2,2,'linear'],[3,3,3,'gradient']]
+ >>> print s.colors
+ {'Color 2': [2, 2, 2, 'linear'], 'Color 3': [3, 3, 3, 'gradient'], 'Color 1': [1, 1, 1, 'solid']}
+ >>> s.colors = [[1,1,1],(2,2,2,'solid'),(3,3,3,'linear')]
+ >>> print s.colors
+ {'Color 2': [2, 2, 2, 'solid'], 'Color 3': [3, 3, 3, 'linear'], 'Color 1': [1, 1, 1, 'solid']}
+ >>> s.colors = {'a':[1,1,1],'b':(2,2,2,'solid'),'c':(3,3,3,'linear'), 'd':(4,4,4)}
+ >>> print s.colors
+ {'a': [1, 1, 1, 'solid'], 'c': [3, 3, 3, 'linear'], 'b': [2, 2, 2, 'solid'], 'd': [4, 4, 4, 'solid']}
+ '''
+ def fget(self):
+ '''
+ Return the color list
+ '''
+ return self.__colors.color_list
+
+ def fset(self, colors):
+ '''
+ Format the color list to a dictionary
+ '''
+ self.__colors = Colors(colors)
+
+ return property(**locals())
+
+ @apply
+ def range():
+ doc = '''
+ The range is a read/write property that generates a range of values
+ for the x axis of the functions. When passed a tuple it almost works
+ like the built-in range funtion:
+ - 1 item, represent the end of the range started from 0;
+ - 2 items, represents the start and the end, respectively;
+ - 3 items, the last one represents the step;
+
+ When passed a list the range function understands as a valid range.
+
+ Usage:
+ >>> s = Series(); s.range = 10; print s.range
+ [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]
+ >>> s = Series(); s.range = (5); print s.range
+ [0.0, 1.0, 2.0, 3.0, 4.0, 5.0]
+ >>> s = Series(); s.range = (1,7); print s.range
+ [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]
+ >>> s = Series(); s.range = (0,10,2); print s.range
+ [0.0, 2.0, 4.0, 6.0, 8.0, 10.0]
+ >>>
+ >>> s = Series(); s.range = [0]; print s.range
+ [0.0]
+ >>> s = Series(); s.range = [0,10,20]; print s.range
+ [0.0, 10.0, 20.0]
+ '''
+ def fget(self):
+ '''
+ Returns the range
+ '''
+ return self.__range
+
+ def fset(self, x_range):
+ '''
+ Controls the input of a valid type and generate the range
+ '''
+ # if passed a simple number convert to tuple
+ if type(x_range) in NUMTYPES:
+ x_range = (x_range,)
+
+ # A list, just convert to float
+ if type(x_range) is list and len(x_range) > 0:
+ # Convert all to float
+ x_range = map(float, x_range)
+ # Prevents repeated values and convert back to list
+ self.__range = list(set(x_range[:]))
+ # Sort the list to ascending order
+ self.__range.sort()
+
+ # A tuple, must check the lengths and generate the values
+ elif type(x_range) is tuple and len(x_range) in (1,2,3):
+ # Convert all to float
+ x_range = map(float, x_range)
+
+ # Inital values
+ start = 0.0
+ step = 1.0
+ end = 0.0
+
+ # Only the end and it can't be less or iqual to 0
+ if len(x_range) is 1 and x_range > 0:
+ end = x_range[0]
+
+ # The start and the end but the start must be lesser then the end
+ elif len(x_range) is 2 and x_range[0] < x_range[1]:
+ start = x_range[0]
+ end = x_range[1]
+
+ # All 3, but the start must be lesser then the end
+ elif x_range[0] < x_range[1]:
+ start = x_range[0]
+ end = x_range[1]
+ step = x_range[2]
+
+ # Starts the range
+ self.__range = []
+ # Generate the range
+ # Cnat use the range function becouse it don't suport float values
+ while start <= end:
+ self.__range.append(start)
+ start += step
+
+ # Incorrect type
+ else:
+ raise Exception, "x_range must be a list with one or more item or a tuple with 2 or 3 items"
+
+ return property(**locals())
+
+ @apply
+ def group_list():
+ doc = '''
+ The group_list is a read/write property used to pre-process the list
+ of Groups.
+ It can be:
+ - a single number, point or lambda, will be converted to a single
+ Group of one Data;
+ - a list of numbers, will be converted to a group of numbers;
+ - a list of tuples, will converted to a single Group of points;
+ - a list of lists of numbers, each 'sublist' will be converted to
+ a group of numbers;
+ - a list of lists of tuples, each 'sublist' will be converted to a
+ group of points;
+ - a list of lists of lists, the content of the 'sublist' will be
+ processed as coordinated lists and the result will be converted
+ to a group of points;
+ - a list of lambdas, each lambda represents a Group;
+ - a Dictionary where each item can be the same of the list: number,
+ point, list of numbers, list of points, list of lists
+ (coordinated lists) or lambdas
+ - an instance of Data;
+ - an instance of group.
+
+ Usage:
+ >>> s = Series()
+ >>> s.group_list = [1,2,3,4]; print s
+ ["Group 1 ['1', '2', '3', '4']"]
+ >>> s.group_list = [[1,2,3],[4,5,6]]; print s
+ ["Group 1 ['1', '2', '3']", "Group 2 ['4', '5', '6']"]
+ >>> s.group_list = (1,2); print s
+ ["Group 1 ['(1, 2)']"]
+ >>> s.group_list = [(1,2),(2,3)]; print s
+ ["Group 1 ['(1, 2)', '(2, 3)']"]
+ >>> s.group_list = [[(1,2),(2,3)],[(4,5),(5,6)]]; print s
+ ["Group 1 ['(1, 2)', '(2, 3)']", "Group 2 ['(4, 5)', '(5, 6)']"]
+ >>> s.group_list = [[[1,2,3],[1,2,3],[1,2,3]]]; print s
+ ["Group 1 ['(1, 1, 1)', '(2, 2, 2)', '(3, 3, 3)']"]
+ >>> s.group_list = [(0.5,5.5) , [(0,4),(6,8)] , (5.5,7) , (7,9)]; print s
+ ["Group 1 ['(0.5, 5.5)']", "Group 2 ['(0, 4)', '(6, 8)']", "Group 3 ['(5.5, 7)']", "Group 4 ['(7, 9)']"]
+ >>> s.group_list = {'g1':[1,2,3], 'g2':[4,5,6]}; print s
+ ["g1 ['1', '2', '3']", "g2 ['4', '5', '6']"]
+ >>> s.group_list = {'g1':[(1,2),(2,3)], 'g2':[(4,5),(5,6)]}; print s
+ ["g1 ['(1, 2)', '(2, 3)']", "g2 ['(4, 5)', '(5, 6)']"]
+ >>> s.group_list = {'g1':[[1,2],[1,2]], 'g2':[[4,5],[4,5]]}; print s
+ ["g1 ['(1, 1)', '(2, 2)']", "g2 ['(4, 4)', '(5, 5)']"]
+ >>> s.range = 10
+ >>> s.group_list = lambda x:x*2
+ >>> s.group_list = [lambda x:x*2, lambda x:x**2, lambda x:x**3]; print s
+ ["Group 1 ['(0.0, 0.0)', '(1.0, 2.0)', '(2.0, 4.0)', '(3.0, 6.0)', '(4.0, 8.0)', '(5.0, 10.0)', '(6.0, 12.0)', '(7.0, 14.0)', '(8.0, 16.0)', '(9.0, 18.0)', '(10.0, 20.0)']", "Group 2 ['(0.0, 0.0)', '(1.0, 1.0)', '(2.0, 4.0)', '(3.0, 9.0)', '(4.0, 16.0)', '(5.0, 25.0)', '(6.0, 36.0)', '(7.0, 49.0)', '(8.0, 64.0)', '(9.0, 81.0)', '(10.0, 100.0)']", "Group 3 ['(0.0, 0.0)', '(1.0, 1.0)', '(2.0, 8.0)', '(3.0, 27.0)', '(4.0, 64.0)', '(5.0, 125.0)', '(6.0, 216.0)', '(7.0, 343.0)', '(8.0, 512.0)', '(9.0, 729.0)', '(10.0, 1000.0)']"]
+ >>> s.group_list = {'linear':lambda x:x*2, 'square':lambda x:x**2, 'cubic':lambda x:x**3}; print s
+ ["cubic ['(0.0, 0.0)', '(1.0, 1.0)', '(2.0, 8.0)', '(3.0, 27.0)', '(4.0, 64.0)', '(5.0, 125.0)', '(6.0, 216.0)', '(7.0, 343.0)', '(8.0, 512.0)', '(9.0, 729.0)', '(10.0, 1000.0)']", "linear ['(0.0, 0.0)', '(1.0, 2.0)', '(2.0, 4.0)', '(3.0, 6.0)', '(4.0, 8.0)', '(5.0, 10.0)', '(6.0, 12.0)', '(7.0, 14.0)', '(8.0, 16.0)', '(9.0, 18.0)', '(10.0, 20.0)']", "square ['(0.0, 0.0)', '(1.0, 1.0)', '(2.0, 4.0)', '(3.0, 9.0)', '(4.0, 16.0)', '(5.0, 25.0)', '(6.0, 36.0)', '(7.0, 49.0)', '(8.0, 64.0)', '(9.0, 81.0)', '(10.0, 100.0)']"]
+ >>> s.group_list = Data(1,'d1'); print s
+ ["Group 1 ['d1: 1']"]
+ >>> s.group_list = Group([(1,2),(2,3)],'g1'); print s
+ ["g1 ['(1, 2)', '(2, 3)']"]
+ '''
+ def fget(self):
+ '''
+ Return the group list.
+ '''
+ return self.__group_list
+
+ def fset(self, series):
+ '''
+ Controls the input of a valid group list.
+ '''
+ #TODO: Add support to the following strem of data: [ (0.5,5.5) , [(0,4),(6,8)] , (5.5,7) , (7,9)]
+
+ # Type: None
+ if series is None:
+ self.__group_list = []
+
+ # List or Tuple
+ elif type(series) in LISTTYPES:
+ self.__group_list = []
+
+ is_function = lambda x: callable(x)
+ # Groups
+ if list in map(type, series) or max(map(is_function, series)):
+ for group in series:
+ self.add_group(group)
+
+ # single group
+ else:
+ self.add_group(series)
+
+ #old code
+ ## List of numbers
+ #if type(series[0]) in NUMTYPES or type(series[0]) is tuple:
+ # print series
+ # self.add_group(series)
+ #
+ ## List of anything else
+ #else:
+ # for group in series:
+ # self.add_group(group)
+
+ # Dict representing series of groups
+ elif type(series) is dict:
+ self.__group_list = []
+ names = series.keys()
+ names.sort()
+ for name in names:
+ self.add_group(Group(series[name],name,self))
+
+ # A single lambda
+ elif callable(series):
+ self.__group_list = []
+ self.add_group(series)
+
+ # Int/float, instance of Group or Data
+ elif type(series) in NUMTYPES or isinstance(series, Group) or isinstance(series, Data):
+ self.__group_list = []
+ self.add_group(series)
+
+ # Default
+ else:
+ raise TypeError, "Serie type not supported"
+
+ return property(**locals())
+
+ def add_group(self, group, name=None):
+ '''
+ Append a new group in group_list
+ '''
+ if not isinstance(group, Group):
+ #Try to convert
+ group = Group(group, name, self)
+
+ if len(group.data_list) is not 0:
+ # Auto naming groups
+ if group.name is None:
+ group.name = "Group "+str(len(self.__group_list)+1)
+
+ self.__group_list.append(group)
+ self.__group_list[-1].parent = self
+
+ def copy(self):
+ '''
+ Returns a copy of the Series
+ '''
+ new_series = Series()
+ new_series.__name = self.__name
+ if self.__range is not None:
+ new_series.__range = self.__range[:]
+ #Add color property in the copy method
+ #self.__colors = None
+
+ for group in self:
+ new_series.add_group(group.copy())
+
+ return new_series
+
+ def get_names(self):
+ '''
+ Returns a list of the names of all groups in the Serie
+ '''
+ names = []
+ for group in self:
+ if group.name is None:
+ names.append('Group '+str(group.index()+1))
+ else:
+ names.append(group.name)
+
+ return names
+
+ def to_list(self):
+ '''
+ Returns a list with the content of all groups and data
+ '''
+ big_list = []
+ for group in self:
+ for data in group:
+ if type(data.content) in NUMTYPES:
+ big_list.append(data.content)
+ else:
+ big_list = big_list + list(data.content)
+ return big_list
+
+ def __getitem__(self, key):
+ '''
+ Makes the Series iterable, based in the group_list property
+ '''
+ return self.__group_list[key]
+
+ def __str__(self):
+ '''
+ Returns a string that represents the Series
+ '''
+ ret = ""
+ if self.name is not None:
+ ret += self.name + " "
+ if len(self) > 0:
+ list_str = [str(item) for item in self]
+ ret += str(list_str)
+ else:
+ ret += "[]"
+ return ret
+
+ def __len__(self):
+ '''
+ Returns the length of the Series, based in the group_lsit property
+ '''
+ return len(self.group_list)
+
+
+if __name__ == '__main__':
+ doctest.testmod()