summaryrefslogtreecommitdiffstats
path: root/invoice/graph/cairoplot.py
diff options
context:
space:
mode:
Diffstat (limited to 'invoice/graph/cairoplot.py')
-rwxr-xr-xinvoice/graph/cairoplot.py2336
1 files changed, 2336 insertions, 0 deletions
diff --git a/invoice/graph/cairoplot.py b/invoice/graph/cairoplot.py
new file mode 100755
index 0000000..a15f329
--- /dev/null
+++ b/invoice/graph/cairoplot.py
@@ -0,0 +1,2336 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+
+# CairoPlot.py
+#
+# Copyright (c) 2008 Rodrigo Moreira Araújo
+#
+# Author: Rodrigo Moreiro Araujo <alf.rodrigo@gmail.com>
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public License
+# as published by the Free Software Foundation; either version 2 of
+# the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
+# USA
+
+#Contributor: João S. O. Bueno
+
+#TODO: review BarPlot Code
+#TODO: x_label colision problem on Horizontal Bar Plot
+#TODO: y_label's eat too much space on HBP
+
+
+__version__ = 1.2
+
+import cairo
+import math
+import random
+from series import Series, Group, Data
+
+HORZ = 0
+VERT = 1
+NORM = 2
+
+COLORS = {"red" : (1.0,0.0,0.0,1.0), "lime" : (0.0,1.0,0.0,1.0), "blue" : (0.0,0.0,1.0,1.0),
+ "maroon" : (0.5,0.0,0.0,1.0), "green" : (0.0,0.5,0.0,1.0), "navy" : (0.0,0.0,0.5,1.0),
+ "yellow" : (1.0,1.0,0.0,1.0), "magenta" : (1.0,0.0,1.0,1.0), "cyan" : (0.0,1.0,1.0,1.0),
+ "orange" : (1.0,0.5,0.0,1.0), "white" : (1.0,1.0,1.0,1.0), "black" : (0.0,0.0,0.0,1.0),
+ "gray" : (0.5,0.5,0.5,1.0), "light_gray" : (0.9,0.9,0.9,1.0),
+ "transparent" : (0.0,0.0,0.0,0.0)}
+
+THEMES = {"black_red" : [(0.0,0.0,0.0,1.0), (1.0,0.0,0.0,1.0)],
+ "red_green_blue" : [(1.0,0.0,0.0,1.0), (0.0,1.0,0.0,1.0), (0.0,0.0,1.0,1.0)],
+ "red_orange_yellow" : [(1.0,0.2,0.0,1.0), (1.0,0.7,0.0,1.0), (1.0,1.0,0.0,1.0)],
+ "yellow_orange_red" : [(1.0,1.0,0.0,1.0), (1.0,0.7,0.0,1.0), (1.0,0.2,0.0,1.0)],
+ "rainbow" : [(1.0,0.0,0.0,1.0), (1.0,0.5,0.0,1.0), (1.0,1.0,0.0,1.0), (0.0,1.0,0.0,1.0), (0.0,0.0,1.0,1.0), (0.3, 0.0, 0.5,1.0), (0.5, 0.0, 1.0, 1.0)]}
+
+def colors_from_theme( theme, series_length, mode = 'solid' ):
+ colors = []
+ if theme not in THEMES.keys() :
+ raise Exception, "Theme not defined"
+ color_steps = THEMES[theme]
+ n_colors = len(color_steps)
+ if series_length <= n_colors:
+ colors = [color + tuple([mode]) for color in color_steps[0:n_colors]]
+ else:
+ iterations = [(series_length - n_colors)/(n_colors - 1) for i in color_steps[:-1]]
+ over_iterations = (series_length - n_colors) % (n_colors - 1)
+ for i in range(n_colors - 1):
+ if over_iterations <= 0:
+ break
+ iterations[i] += 1
+ over_iterations -= 1
+ for index,color in enumerate(color_steps[:-1]):
+ colors.append(color + tuple([mode]))
+ if iterations[index] == 0:
+ continue
+ next_color = color_steps[index+1]
+ color_step = ((next_color[0] - color[0])/(iterations[index] + 1),
+ (next_color[1] - color[1])/(iterations[index] + 1),
+ (next_color[2] - color[2])/(iterations[index] + 1),
+ (next_color[3] - color[3])/(iterations[index] + 1))
+ for i in range( iterations[index] ):
+ colors.append((color[0] + color_step[0]*(i+1),
+ color[1] + color_step[1]*(i+1),
+ color[2] + color_step[2]*(i+1),
+ color[3] + color_step[3]*(i+1),
+ mode))
+ colors.append(color_steps[-1] + tuple([mode]))
+ return colors
+
+
+def other_direction(direction):
+ "explicit is better than implicit"
+ if direction == HORZ:
+ return VERT
+ else:
+ return HORZ
+
+#Class definition
+
+class Plot(object):
+ def __init__(self,
+ surface=None,
+ data=None,
+ width=640,
+ height=480,
+ background=None,
+ border = 0,
+ x_labels = None,
+ y_labels = None,
+ series_colors = None):
+ random.seed(2)
+ self.create_surface(surface, width, height)
+ self.dimensions = {}
+ self.dimensions[HORZ] = width
+ self.dimensions[VERT] = height
+ self.context = cairo.Context(self.surface)
+ self.labels={}
+ self.labels[HORZ] = x_labels
+ self.labels[VERT] = y_labels
+ self.load_series(data, x_labels, y_labels, series_colors)
+ self.font_size = 10
+ self.set_background (background)
+ self.border = border
+ self.borders = {}
+ self.line_color = (0.5, 0.5, 0.5)
+ self.line_width = 0.5
+ self.label_color = (0.0, 0.0, 0.0)
+ self.grid_color = (0.8, 0.8, 0.8)
+
+ def create_surface(self, surface, width=None, height=None):
+ self.filename = None
+ if isinstance(surface, cairo.Surface):
+ self.surface = surface
+ return
+ if not type(surface) in (str, unicode):
+ raise TypeError("Surface should be either a Cairo surface or a filename, not %s" % surface)
+ sufix = surface.rsplit(".")[-1].lower()
+ self.filename = surface
+ if sufix == "png":
+ self.surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, width, height)
+ elif sufix == "ps":
+ self.surface = cairo.PSSurface(surface, width, height)
+ elif sufix == "pdf":
+ self.surface = cairo.PSSurface(surface, width, height)
+ else:
+ if sufix != "svg":
+ self.filename += ".svg"
+ self.surface = cairo.SVGSurface(self.filename, width, height)
+
+ def commit(self):
+ try:
+ self.context.show_page()
+ if self.filename and self.filename.endswith(".png"):
+ self.surface.write_to_png(self.filename)
+ else:
+ self.surface.finish()
+ except cairo.Error:
+ pass
+
+ def load_series (self, data, x_labels=None, y_labels=None, series_colors=None):
+ self.series_labels = []
+ self.series = None
+
+ #The pretty way
+ #if not isinstance(data, Series):
+ # # Not an instance of Series
+ # self.series = Series(data)
+ #else:
+ # self.series = data
+ #
+ #self.series_labels = self.series.get_names()
+
+ #TODO: Remove on next version
+ # The ugly way, keeping retrocompatibility...
+ if callable(data) or type(data) is list and callable(data[0]): # Lambda or List of lambdas
+ self.series = data
+ self.series_labels = None
+ elif isinstance(data, Series): # Instance of Series
+ self.series = data
+ self.series_labels = data.get_names()
+ else: # Anything else
+ self.series = Series(data)
+ self.series_labels = self.series.get_names()
+
+ #TODO: allow user passed series_widths
+ self.series_widths = [1.0 for group in self.series]
+
+ #TODO: Remove on next version
+ self.process_colors( series_colors )
+
+ def process_colors( self, series_colors, length = None, mode = 'solid' ):
+ #series_colors might be None, a theme, a string of colors names or a list of color tuples
+ if length is None :
+ length = len( self.series.to_list() )
+
+ #no colors passed
+ if not series_colors:
+ #Randomize colors
+ self.series_colors = [ [random.random() for i in range(3)] + [1.0, mode] for series in range( length ) ]
+ else:
+ #Just theme pattern
+ if not hasattr( series_colors, "__iter__" ):
+ theme = series_colors
+ self.series_colors = colors_from_theme( theme.lower(), length )
+
+ #Theme pattern and mode
+ elif not hasattr(series_colors, '__delitem__') and not hasattr( series_colors[0], "__iter__" ):
+ theme = series_colors[0]
+ mode = series_colors[1]
+ self.series_colors = colors_from_theme( theme.lower(), length, mode )
+
+ #List
+ else:
+ self.series_colors = series_colors
+ for index, color in enumerate( self.series_colors ):
+ #element is a color name
+ if not hasattr(color, "__iter__"):
+ self.series_colors[index] = COLORS[color.lower()] + tuple([mode])
+ #element is rgb tuple instead of rgba
+ elif len( color ) == 3 :
+ self.series_colors[index] += (1.0,mode)
+ #element has 4 elements, might be rgba tuple or rgb tuple with mode
+ elif len( color ) == 4 :
+ #last element is mode
+ if not hasattr(color[3], "__iter__"):
+ self.series_colors[index] += tuple([color[3]])
+ self.series_colors[index][3] = 1.0
+ #last element is alpha
+ else:
+ self.series_colors[index] += tuple([mode])
+
+ def get_width(self):
+ return self.surface.get_width()
+
+ def get_height(self):
+ return self.surface.get_height()
+
+ def set_background(self, background):
+ if background is None:
+ self.background = (0.0,0.0,0.0,0.0)
+ elif type(background) in (cairo.LinearGradient, tuple):
+ self.background = background
+ elif not hasattr(background,"__iter__"):
+ colors = background.split(" ")
+ if len(colors) == 1 and colors[0] in COLORS:
+ self.background = COLORS[background]
+ elif len(colors) > 1:
+ self.background = cairo.LinearGradient(self.dimensions[HORZ] / 2, 0, self.dimensions[HORZ] / 2, self.dimensions[VERT])
+ for index,color in enumerate(colors):
+ self.background.add_color_stop_rgba(float(index)/(len(colors)-1),*COLORS[color])
+ else:
+ raise TypeError ("Background should be either cairo.LinearGradient or a 3/4-tuple, not %s" % type(background))
+
+ def render_background(self):
+ if isinstance(self.background, cairo.LinearGradient):
+ self.context.set_source(self.background)
+ else:
+ self.context.set_source_rgba(*self.background)
+ self.context.rectangle(0,0, self.dimensions[HORZ], self.dimensions[VERT])
+ self.context.fill()
+
+ def render_bounding_box(self):
+ self.context.set_source_rgba(*self.line_color)
+ self.context.set_line_width(self.line_width)
+ self.context.rectangle(self.border, self.border,
+ self.dimensions[HORZ] - 2 * self.border,
+ self.dimensions[VERT] - 2 * self.border)
+ self.context.stroke()
+
+ def render(self):
+ pass
+
+class ScatterPlot( Plot ):
+ def __init__(self,
+ surface=None,
+ data=None,
+ errorx=None,
+ errory=None,
+ width=640,
+ height=480,
+ background=None,
+ border=0,
+ axis = False,
+ dash = False,
+ discrete = False,
+ dots = 0,
+ grid = False,
+ series_legend = False,
+ x_labels = None,
+ y_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ z_bounds = None,
+ x_title = None,
+ y_title = None,
+ series_colors = None,
+ circle_colors = None ):
+
+ self.bounds = {}
+ self.bounds[HORZ] = x_bounds
+ self.bounds[VERT] = y_bounds
+ self.bounds[NORM] = z_bounds
+ self.titles = {}
+ self.titles[HORZ] = x_title
+ self.titles[VERT] = y_title
+ self.max_value = {}
+ self.axis = axis
+ self.discrete = discrete
+ self.dots = dots
+ self.grid = grid
+ self.series_legend = series_legend
+ self.variable_radius = False
+ self.x_label_angle = math.pi / 2.5
+ self.circle_colors = circle_colors
+
+ Plot.__init__(self, surface, data, width, height, background, border, x_labels, y_labels, series_colors)
+
+ self.dash = None
+ if dash:
+ if hasattr(dash, "keys"):
+ self.dash = [dash[key] for key in self.series_labels]
+ elif max([hasattr(item,'__delitem__') for item in data]) :
+ self.dash = dash
+ else:
+ self.dash = [dash]
+
+ self.load_errors(errorx, errory)
+
+ def convert_list_to_tuple(self, data):
+ #Data must be converted from lists of coordinates to a single
+ # list of tuples
+ out_data = zip(*data)
+ if len(data) == 3:
+ self.variable_radius = True
+ return out_data
+
+ def load_series(self, data, x_labels = None, y_labels = None, series_colors=None):
+ #TODO: In cairoplot 2.0 keep only the Series instances
+
+ # Convert Data and Group to Series
+ if isinstance(data, Data) or isinstance(data, Group):
+ data = Series(data)
+
+ # Series
+ if isinstance(data, Series):
+ for group in data:
+ for item in group:
+ if len(item) is 3:
+ self.variable_radius = True
+
+ #Dictionary with lists
+ if hasattr(data, "keys") :
+ if hasattr( data.values()[0][0], "__delitem__" ) :
+ for key in data.keys() :
+ data[key] = self.convert_list_to_tuple(data[key])
+ elif len(data.values()[0][0]) == 3:
+ self.variable_radius = True
+ #List
+ elif hasattr(data[0], "__delitem__") :
+ #List of lists
+ if hasattr(data[0][0], "__delitem__") :
+ for index,value in enumerate(data) :
+ data[index] = self.convert_list_to_tuple(value)
+ #List
+ elif type(data[0][0]) != type((0,0)):
+ data = self.convert_list_to_tuple(data)
+ #Three dimensional data
+ elif len(data[0][0]) == 3:
+ self.variable_radius = True
+
+ #List with three dimensional tuples
+ elif len(data[0]) == 3:
+ self.variable_radius = True
+ Plot.load_series(self, data, x_labels, y_labels, series_colors)
+ self.calc_boundaries()
+ self.calc_labels()
+
+ def load_errors(self, errorx, errory):
+ self.errors = None
+ if errorx == None and errory == None:
+ return
+ self.errors = {}
+ self.errors[HORZ] = None
+ self.errors[VERT] = None
+ #asimetric errors
+ if errorx and hasattr(errorx[0], "__delitem__"):
+ self.errors[HORZ] = errorx
+ #simetric errors
+ elif errorx:
+ self.errors[HORZ] = [errorx]
+ #asimetric errors
+ if errory and hasattr(errory[0], "__delitem__"):
+ self.errors[VERT] = errory
+ #simetric errors
+ elif errory:
+ self.errors[VERT] = [errory]
+
+ def calc_labels(self):
+ if not self.labels[HORZ]:
+ amplitude = self.bounds[HORZ][1] - self.bounds[HORZ][0]
+ if amplitude % 10: #if horizontal labels need floating points
+ self.labels[HORZ] = ["%.2lf" % (float(self.bounds[HORZ][0] + (amplitude * i / 10.0))) for i in range(11) ]
+ else:
+ self.labels[HORZ] = ["%d" % (int(self.bounds[HORZ][0] + (amplitude * i / 10.0))) for i in range(11) ]
+ if not self.labels[VERT]:
+ amplitude = self.bounds[VERT][1] - self.bounds[VERT][0]
+ if amplitude % 10: #if vertical labels need floating points
+ self.labels[VERT] = ["%.2lf" % (float(self.bounds[VERT][0] + (amplitude * i / 10.0))) for i in range(11) ]
+ else:
+ self.labels[VERT] = ["%d" % (int(self.bounds[VERT][0] + (amplitude * i / 10.0))) for i in range(11) ]
+
+ def calc_extents(self, direction):
+ self.context.set_font_size(self.font_size * 0.8)
+ self.max_value[direction] = max(self.context.text_extents(item)[2] for item in self.labels[direction])
+ self.borders[other_direction(direction)] = self.max_value[direction] + self.border + 20
+
+ def calc_boundaries(self):
+ #HORZ = 0, VERT = 1, NORM = 2
+ min_data_value = [0,0,0]
+ max_data_value = [0,0,0]
+
+ for group in self.series:
+ if type(group[0].content) in (int, float, long):
+ group = [Data((index, item.content)) for index,item in enumerate(group)]
+
+ for point in group:
+ for index, item in enumerate(point.content):
+ if item > max_data_value[index]:
+ max_data_value[index] = item
+ elif item < min_data_value[index]:
+ min_data_value[index] = item
+
+ if not self.bounds[HORZ]:
+ self.bounds[HORZ] = (min_data_value[HORZ], max_data_value[HORZ])
+ if not self.bounds[VERT]:
+ self.bounds[VERT] = (min_data_value[VERT], max_data_value[VERT])
+ if not self.bounds[NORM]:
+ self.bounds[NORM] = (min_data_value[NORM], max_data_value[NORM])
+
+ def calc_all_extents(self):
+ self.calc_extents(HORZ)
+ self.calc_extents(VERT)
+
+ self.plot_height = self.dimensions[VERT] - 2 * self.borders[VERT]
+ self.plot_width = self.dimensions[HORZ] - 2* self.borders[HORZ]
+
+ self.plot_top = self.dimensions[VERT] - self.borders[VERT]
+
+ def calc_steps(self):
+ #Calculates all the x, y, z and color steps
+ series_amplitude = [self.bounds[index][1] - self.bounds[index][0] for index in range(3)]
+
+ if series_amplitude[HORZ]:
+ self.horizontal_step = float (self.plot_width) / series_amplitude[HORZ]
+ else:
+ self.horizontal_step = 0.00
+
+ if series_amplitude[VERT]:
+ self.vertical_step = float (self.plot_height) / series_amplitude[VERT]
+ else:
+ self.vertical_step = 0.00
+
+ if series_amplitude[NORM]:
+ if self.variable_radius:
+ self.z_step = float (self.bounds[NORM][1]) / series_amplitude[NORM]
+ if self.circle_colors:
+ self.circle_color_step = tuple([float(self.circle_colors[1][i]-self.circle_colors[0][i])/series_amplitude[NORM] for i in range(4)])
+ else:
+ self.z_step = 0.00
+ self.circle_color_step = ( 0.0, 0.0, 0.0, 0.0 )
+
+ def get_circle_color(self, value):
+ return tuple( [self.circle_colors[0][i] + value*self.circle_color_step[i] for i in range(4)] )
+
+ def render(self):
+ self.calc_all_extents()
+ self.calc_steps()
+ self.render_background()
+ self.render_bounding_box()
+ if self.axis:
+ self.render_axis()
+ if self.grid:
+ self.render_grid()
+ self.render_labels()
+ self.render_plot()
+ if self.errors:
+ self.render_errors()
+ if self.series_legend and self.series_labels:
+ self.render_legend()
+
+ def render_axis(self):
+ #Draws both the axis lines and their titles
+ cr = self.context
+ cr.set_source_rgba(*self.line_color)
+ cr.move_to(self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT])
+ cr.line_to(self.borders[HORZ], self.borders[VERT])
+ cr.stroke()
+
+ cr.move_to(self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT])
+ cr.line_to(self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT])
+ cr.stroke()
+
+ cr.set_source_rgba(*self.label_color)
+ self.context.set_font_size( 1.2 * self.font_size )
+ if self.titles[HORZ]:
+ title_width,title_height = cr.text_extents(self.titles[HORZ])[2:4]
+ cr.move_to( self.dimensions[HORZ]/2 - title_width/2, self.borders[VERT] - title_height/2 )
+ cr.show_text( self.titles[HORZ] )
+
+ if self.titles[VERT]:
+ title_width,title_height = cr.text_extents(self.titles[VERT])[2:4]
+ cr.move_to( self.dimensions[HORZ] - self.borders[HORZ] + title_height/2, self.dimensions[VERT]/2 - title_width/2)
+ cr.save()
+ cr.rotate( math.pi/2 )
+ cr.show_text( self.titles[VERT] )
+ cr.restore()
+
+ def render_grid(self):
+ cr = self.context
+ horizontal_step = float( self.plot_height ) / ( len( self.labels[VERT] ) - 1 )
+ vertical_step = float( self.plot_width ) / ( len( self.labels[HORZ] ) - 1 )
+
+ x = self.borders[HORZ] + vertical_step
+ y = self.plot_top - horizontal_step
+
+ for label in self.labels[HORZ][:-1]:
+ cr.set_source_rgba(*self.grid_color)
+ cr.move_to(x, self.dimensions[VERT] - self.borders[VERT])
+ cr.line_to(x, self.borders[VERT])
+ cr.stroke()
+ x += vertical_step
+ for label in self.labels[VERT][:-1]:
+ cr.set_source_rgba(*self.grid_color)
+ cr.move_to(self.borders[HORZ], y)
+ cr.line_to(self.dimensions[HORZ] - self.borders[HORZ], y)
+ cr.stroke()
+ y -= horizontal_step
+
+ def render_labels(self):
+ self.context.set_font_size(self.font_size * 0.8)
+ self.render_horz_labels()
+ self.render_vert_labels()
+
+ def render_horz_labels(self):
+ cr = self.context
+ step = float( self.plot_width ) / ( len( self.labels[HORZ] ) - 1 )
+ x = self.borders[HORZ]
+ y = self.dimensions[VERT] - self.borders[VERT] + 5
+
+ # store rotation matrix from the initial state
+ rotation_matrix = cr.get_matrix()
+ rotation_matrix.rotate(self.x_label_angle)
+
+ cr.set_source_rgba(*self.label_color)
+
+ for item in self.labels[HORZ]:
+ width = cr.text_extents(item)[2]
+ cr.move_to(x, y)
+ cr.save()
+ cr.set_matrix(rotation_matrix)
+ cr.show_text(item)
+ cr.restore()
+ x += step
+
+ def render_vert_labels(self):
+ cr = self.context
+ step = ( self.plot_height ) / ( len( self.labels[VERT] ) - 1 )
+ y = self.plot_top
+ cr.set_source_rgba(*self.label_color)
+ for item in self.labels[VERT]:
+ width = cr.text_extents(item)[2]
+ cr.move_to(self.borders[HORZ] - width - 5,y)
+ cr.show_text(item)
+ y -= step
+
+ def render_legend(self):
+ cr = self.context
+ cr.set_font_size(self.font_size)
+ cr.set_line_width(self.line_width)
+
+ widest_word = max(self.series_labels, key = lambda item: self.context.text_extents(item)[2])
+ tallest_word = max(self.series_labels, key = lambda item: self.context.text_extents(item)[3])
+ max_width = self.context.text_extents(widest_word)[2]
+ max_height = self.context.text_extents(tallest_word)[3] * 1.1
+
+ color_box_height = max_height / 2
+ color_box_width = color_box_height * 2
+
+ #Draw a bounding box
+ bounding_box_width = max_width + color_box_width + 15
+ bounding_box_height = (len(self.series_labels)+0.5) * max_height
+ cr.set_source_rgba(1,1,1)
+ cr.rectangle(self.dimensions[HORZ] - self.borders[HORZ] - bounding_box_width, self.borders[VERT],
+ bounding_box_width, bounding_box_height)
+ cr.fill()
+
+ cr.set_source_rgba(*self.line_color)
+ cr.set_line_width(self.line_width)
+ cr.rectangle(self.dimensions[HORZ] - self.borders[HORZ] - bounding_box_width, self.borders[VERT],
+ bounding_box_width, bounding_box_height)
+ cr.stroke()
+
+ for idx,key in enumerate(self.series_labels):
+ #Draw color box
+ cr.set_source_rgba(*self.series_colors[idx][:4])
+ cr.rectangle(self.dimensions[HORZ] - self.borders[HORZ] - max_width - color_box_width - 10,
+ self.borders[VERT] + color_box_height + (idx*max_height) ,
+ color_box_width, color_box_height)
+ cr.fill()
+
+ cr.set_source_rgba(0, 0, 0)
+ cr.rectangle(self.dimensions[HORZ] - self.borders[HORZ] - max_width - color_box_width - 10,
+ self.borders[VERT] + color_box_height + (idx*max_height),
+ color_box_width, color_box_height)
+ cr.stroke()
+
+ #Draw series labels
+ cr.set_source_rgba(0, 0, 0)
+ cr.move_to(self.dimensions[HORZ] - self.borders[HORZ] - max_width - 5, self.borders[VERT] + ((idx+1)*max_height))
+ cr.show_text(key)
+
+ def render_errors(self):
+ cr = self.context
+ cr.rectangle(self.borders[HORZ], self.borders[VERT], self.plot_width, self.plot_height)
+ cr.clip()
+ radius = self.dots
+ x0 = self.borders[HORZ] - self.bounds[HORZ][0]*self.horizontal_step
+ y0 = self.borders[VERT] - self.bounds[VERT][0]*self.vertical_step
+ for index, group in enumerate(self.series):
+ cr.set_source_rgba(*self.series_colors[index][:4])
+ for number, data in enumerate(group):
+ x = x0 + self.horizontal_step * data.content[0]
+ y = self.dimensions[VERT] - y0 - self.vertical_step * data.content[1]
+ if self.errors[HORZ]:
+ cr.move_to(x, y)
+ x1 = x - self.horizontal_step * self.errors[HORZ][0][number]
+ cr.line_to(x1, y)
+ cr.line_to(x1, y - radius)
+ cr.line_to(x1, y + radius)
+ cr.stroke()
+ if self.errors[HORZ] and len(self.errors[HORZ]) == 2:
+ cr.move_to(x, y)
+ x1 = x + self.horizontal_step * self.errors[HORZ][1][number]
+ cr.line_to(x1, y)
+ cr.line_to(x1, y - radius)
+ cr.line_to(x1, y + radius)
+ cr.stroke()
+ if self.errors[VERT]:
+ cr.move_to(x, y)
+ y1 = y + self.vertical_step * self.errors[VERT][0][number]
+ cr.line_to(x, y1)
+ cr.line_to(x - radius, y1)
+ cr.line_to(x + radius, y1)
+ cr.stroke()
+ if self.errors[VERT] and len(self.errors[VERT]) == 2:
+ cr.move_to(x, y)
+ y1 = y - self.vertical_step * self.errors[VERT][1][number]
+ cr.line_to(x, y1)
+ cr.line_to(x - radius, y1)
+ cr.line_to(x + radius, y1)
+ cr.stroke()
+
+
+ def render_plot(self):
+ cr = self.context
+ if self.discrete:
+ cr.rectangle(self.borders[HORZ], self.borders[VERT], self.plot_width, self.plot_height)
+ cr.clip()
+ x0 = self.borders[HORZ] - self.bounds[HORZ][0]*self.horizontal_step
+ y0 = self.borders[VERT] - self.bounds[VERT][0]*self.vertical_step
+ radius = self.dots
+ for number, group in enumerate (self.series):
+ cr.set_source_rgba(*self.series_colors[number][:4])
+ for data in group :
+ if self.variable_radius:
+ radius = data.content[2]*self.z_step
+ if self.circle_colors:
+ cr.set_source_rgba( *self.get_circle_color( data.content[2]) )
+ x = x0 + self.horizontal_step*data.content[0]
+ y = y0 + self.vertical_step*data.content[1]
+ cr.arc(x, self.dimensions[VERT] - y, radius, 0, 2*math.pi)
+ cr.fill()
+ else:
+ cr.rectangle(self.borders[HORZ], self.borders[VERT], self.plot_width, self.plot_height)
+ cr.clip()
+ x0 = self.borders[HORZ] - self.bounds[HORZ][0]*self.horizontal_step
+ y0 = self.borders[VERT] - self.bounds[VERT][0]*self.vertical_step
+ radius = self.dots
+ for number, group in enumerate (self.series):
+ last_data = None
+ cr.set_source_rgba(*self.series_colors[number][:4])
+ for data in group :
+ x = x0 + self.horizontal_step*data.content[0]
+ y = y0 + self.vertical_step*data.content[1]
+ if self.dots:
+ if self.variable_radius:
+ radius = data.content[2]*self.z_step
+ cr.arc(x, self.dimensions[VERT] - y, radius, 0, 2*math.pi)
+ cr.fill()
+ if last_data :
+ old_x = x0 + self.horizontal_step*last_data.content[0]
+ old_y = y0 + self.vertical_step*last_data.content[1]
+ cr.move_to( old_x, self.dimensions[VERT] - old_y )
+ cr.line_to( x, self.dimensions[VERT] - y)
+ cr.set_line_width(self.series_widths[number])
+
+ # Display line as dash line
+ if self.dash and self.dash[number]:
+ s = self.series_widths[number]
+ cr.set_dash([s*3, s*3], 0)
+
+ cr.stroke()
+ cr.set_dash([])
+ last_data = data
+
+class DotLinePlot(ScatterPlot):
+ def __init__(self,
+ surface=None,
+ data=None,
+ width=640,
+ height=480,
+ background=None,
+ border=0,
+ axis = False,
+ dash = False,
+ dots = 0,
+ grid = False,
+ series_legend = False,
+ x_labels = None,
+ y_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ x_title = None,
+ y_title = None,
+ series_colors = None):
+
+ ScatterPlot.__init__(self, surface, data, None, None, width, height, background, border,
+ axis, dash, False, dots, grid, series_legend, x_labels, y_labels,
+ x_bounds, y_bounds, None, x_title, y_title, series_colors, None )
+
+
+ def load_series(self, data, x_labels = None, y_labels = None, series_colors=None):
+ Plot.load_series(self, data, x_labels, y_labels, series_colors)
+ for group in self.series :
+ for index,data in enumerate(group):
+ group[index].content = (index, data.content)
+
+ self.calc_boundaries()
+ self.calc_labels()
+
+class FunctionPlot(ScatterPlot):
+ def __init__(self,
+ surface=None,
+ data=None,
+ width=640,
+ height=480,
+ background=None,
+ border=0,
+ axis = False,
+ discrete = False,
+ dots = 0,
+ grid = False,
+ series_legend = False,
+ x_labels = None,
+ y_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ x_title = None,
+ y_title = None,
+ series_colors = None,
+ step = 1):
+
+ self.function = data
+ self.step = step
+ self.discrete = discrete
+
+ data, x_bounds = self.load_series_from_function( self.function, x_bounds )
+
+ ScatterPlot.__init__(self, surface, data, None, None, width, height, background, border,
+ axis, False, discrete, dots, grid, series_legend, x_labels, y_labels,
+ x_bounds, y_bounds, None, x_title, y_title, series_colors, None )
+
+ def load_series(self, data, x_labels = None, y_labels = None, series_colors=None):
+ Plot.load_series(self, data, x_labels, y_labels, series_colors)
+
+ if len(self.series[0][0]) is 1:
+ for group_id, group in enumerate(self.series) :
+ for index,data in enumerate(group):
+ group[index].content = (self.bounds[HORZ][0] + self.step*index, data.content)
+
+ self.calc_boundaries()
+ self.calc_labels()
+
+ def load_series_from_function( self, function, x_bounds ):
+ #TODO: Add the possibility for the user to define multiple functions with different discretization parameters
+
+ #This function converts a function, a list of functions or a dictionary
+ #of functions into its corresponding array of data
+ series = Series()
+
+ if isinstance(function, Group) or isinstance(function, Data):
+ function = Series(function)
+
+ # If is instance of Series
+ if isinstance(function, Series):
+ # Overwrite any bounds passed by the function
+ x_bounds = (function.range[0],function.range[-1])
+
+ #if no bounds are provided
+ if x_bounds == None:
+ x_bounds = (0,10)
+
+
+ #TODO: Finish the dict translation
+ if hasattr(function, "keys"): #dictionary:
+ for key in function.keys():
+ group = Group(name=key)
+ #data[ key ] = []
+ i = x_bounds[0]
+ while i <= x_bounds[1] :
+ group.add_data(function[ key ](i))
+ #data[ key ].append( function[ key ](i) )
+ i += self.step
+ series.add_group(group)
+
+ elif hasattr(function, "__delitem__"): #list of functions
+ for index,f in enumerate( function ) :
+ group = Group()
+ #data.append( [] )
+ i = x_bounds[0]
+ while i <= x_bounds[1] :
+ group.add_data(f(i))
+ #data[ index ].append( f(i) )
+ i += self.step
+ series.add_group(group)
+
+ elif isinstance(function, Series): # instance of Series
+ series = function
+
+ else: #function
+ group = Group()
+ i = x_bounds[0]
+ while i <= x_bounds[1] :
+ group.add_data(function(i))
+ i += self.step
+ series.add_group(group)
+
+
+ return series, x_bounds
+
+ def calc_labels(self):
+ if not self.labels[HORZ]:
+ self.labels[HORZ] = []
+ i = self.bounds[HORZ][0]
+ while i<=self.bounds[HORZ][1]:
+ self.labels[HORZ].append(str(i))
+ i += float(self.bounds[HORZ][1] - self.bounds[HORZ][0])/10
+ ScatterPlot.calc_labels(self)
+
+ def render_plot(self):
+ if not self.discrete:
+ ScatterPlot.render_plot(self)
+ else:
+ last = None
+ cr = self.context
+ for number, group in enumerate (self.series):
+ cr.set_source_rgba(*self.series_colors[number][:4])
+ x0 = self.borders[HORZ] - self.bounds[HORZ][0]*self.horizontal_step
+ y0 = self.borders[VERT] - self.bounds[VERT][0]*self.vertical_step
+ for data in group:
+ x = x0 + self.horizontal_step * data.content[0]
+ y = y0 + self.vertical_step * data.content[1]
+ cr.move_to(x, self.dimensions[VERT] - y)
+ cr.line_to(x, self.plot_top)
+ cr.set_line_width(self.series_widths[number])
+ cr.stroke()
+ if self.dots:
+ cr.new_path()
+ cr.arc(x, self.dimensions[VERT] - y, 3, 0, 2.1 * math.pi)
+ cr.close_path()
+ cr.fill()
+
+class BarPlot(Plot):
+ def __init__(self,
+ surface = None,
+ data = None,
+ width = 640,
+ height = 480,
+ background = "white light_gray",
+ border = 0,
+ display_values = False,
+ grid = False,
+ rounded_corners = False,
+ stack = False,
+ three_dimension = False,
+ x_labels = None,
+ y_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ series_colors = None,
+ main_dir = None):
+
+ self.bounds = {}
+ self.bounds[HORZ] = x_bounds
+ self.bounds[VERT] = y_bounds
+ self.display_values = display_values
+ self.grid = grid
+ self.rounded_corners = rounded_corners
+ self.stack = stack
+ self.three_dimension = three_dimension
+ self.x_label_angle = math.pi / 2.5
+ self.main_dir = main_dir
+ self.max_value = {}
+ self.plot_dimensions = {}
+ self.steps = {}
+ self.value_label_color = (0.5,0.5,0.5,1.0)
+
+ Plot.__init__(self, surface, data, width, height, background, border, x_labels, y_labels, series_colors)
+
+ def load_series(self, data, x_labels = None, y_labels = None, series_colors = None):
+ Plot.load_series(self, data, x_labels, y_labels, series_colors)
+ self.calc_boundaries()
+
+ def process_colors(self, series_colors):
+ #Data for a BarPlot might be a List or a List of Lists.
+ #On the first case, colors must be generated for all bars,
+ #On the second, colors must be generated for each of the inner lists.
+
+ #TODO: Didn't get it...
+ #if hasattr(self.data[0], '__getitem__'):
+ # length = max(len(series) for series in self.data)
+ #else:
+ # length = len( self.data )
+
+ length = max(len(group) for group in self.series)
+
+ Plot.process_colors( self, series_colors, length, 'linear')
+
+ def calc_boundaries(self):
+ if not self.bounds[self.main_dir]:
+ if self.stack:
+ max_data_value = max(sum(group.to_list()) for group in self.series)
+ else:
+ max_data_value = max(max(group.to_list()) for group in self.series)
+ self.bounds[self.main_dir] = (0, max_data_value)
+ if not self.bounds[other_direction(self.main_dir)]:
+ self.bounds[other_direction(self.main_dir)] = (0, len(self.series))
+
+ def calc_extents(self, direction):
+ self.max_value[direction] = 0
+ if self.labels[direction]:
+ widest_word = max(self.labels[direction], key = lambda item: self.context.text_extents(item)[2])
+ self.max_value[direction] = self.context.text_extents(widest_word)[3 - direction]
+ self.borders[other_direction(direction)] = (2-direction)*self.max_value[direction] + self.border + direction*(5)
+ else:
+ self.borders[other_direction(direction)] = self.border
+
+ def calc_horz_extents(self):
+ self.calc_extents(HORZ)
+
+ def calc_vert_extents(self):
+ self.calc_extents(VERT)
+
+ def calc_all_extents(self):
+ self.calc_horz_extents()
+ self.calc_vert_extents()
+ other_dir = other_direction(self.main_dir)
+ self.value_label = 0
+ if self.display_values:
+ if self.stack:
+ self.value_label = self.context.text_extents(str(max(sum(group.to_list()) for group in self.series)))[2 + self.main_dir]
+ else:
+ self.value_label = self.context.text_extents(str(max(max(group.to_list()) for group in self.series)))[2 + self.main_dir]
+ if self.labels[self.main_dir]:
+ self.plot_dimensions[self.main_dir] = self.dimensions[self.main_dir] - 2*self.borders[self.main_dir] - self.value_label
+ else:
+ self.plot_dimensions[self.main_dir] = self.dimensions[self.main_dir] - self.borders[self.main_dir] - 1.2*self.border - self.value_label
+ self.plot_dimensions[other_dir] = self.dimensions[other_dir] - self.borders[other_dir] - self.border
+ self.plot_top = self.dimensions[VERT] - self.borders[VERT]
+
+ def calc_steps(self):
+ other_dir = other_direction(self.main_dir)
+ self.series_amplitude = self.bounds[self.main_dir][1] - self.bounds[self.main_dir][0]
+ if self.series_amplitude:
+ self.steps[self.main_dir] = float(self.plot_dimensions[self.main_dir])/self.series_amplitude
+ else:
+ self.steps[self.main_dir] = 0.00
+ series_length = len(self.series)
+ self.steps[other_dir] = float(self.plot_dimensions[other_dir])/(series_length + 0.1*(series_length + 1))
+ self.space = 0.1*self.steps[other_dir]
+
+ def render(self):
+ self.calc_all_extents()
+ self.calc_steps()
+ self.render_background()
+ self.render_bounding_box()
+ if self.grid:
+ self.render_grid()
+ if self.three_dimension:
+ self.render_ground()
+ if self.display_values:
+ self.render_values()
+ self.render_labels()
+ self.render_plot()
+ if self.series_labels:
+ self.render_legend()
+
+ def draw_3d_rectangle_front(self, x0, y0, x1, y1, shift):
+ self.context.rectangle(x0-shift, y0+shift, x1-x0, y1-y0)
+
+ def draw_3d_rectangle_side(self, x0, y0, x1, y1, shift):
+ self.context.move_to(x1-shift,y0+shift)
+ self.context.line_to(x1, y0)
+ self.context.line_to(x1, y1)
+ self.context.line_to(x1-shift, y1+shift)
+ self.context.line_to(x1-shift, y0+shift)
+ self.context.close_path()
+
+ def draw_3d_rectangle_top(self, x0, y0, x1, y1, shift):
+ self.context.move_to(x0-shift,y0+shift)
+ self.context.line_to(x0, y0)
+ self.context.line_to(x1, y0)
+ self.context.line_to(x1-shift, y0+shift)
+ self.context.line_to(x0-shift, y0+shift)
+ self.context.close_path()
+
+ def draw_round_rectangle(self, x0, y0, x1, y1):
+ self.context.arc(x0+5, y0+5, 5, -math.pi, -math.pi/2)
+ self.context.line_to(x1-5, y0)
+ self.context.arc(x1-5, y0+5, 5, -math.pi/2, 0)
+ self.context.line_to(x1, y1-5)
+ self.context.arc(x1-5, y1-5, 5, 0, math.pi/2)
+ self.context.line_to(x0+5, y1)
+ self.context.arc(x0+5, y1-5, 5, math.pi/2, math.pi)
+ self.context.line_to(x0, y0+5)
+ self.context.close_path()
+
+ def render_ground(self):
+ self.draw_3d_rectangle_front(self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT],
+ self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10)
+ self.context.fill()
+
+ self.draw_3d_rectangle_side (self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT],
+ self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10)
+ self.context.fill()
+
+ self.draw_3d_rectangle_top (self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT],
+ self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10)
+ self.context.fill()
+
+ def render_labels(self):
+ self.context.set_font_size(self.font_size * 0.8)
+ if self.labels[HORZ]:
+ self.render_horz_labels()
+ if self.labels[VERT]:
+ self.render_vert_labels()
+
+ def render_legend(self):
+ cr = self.context
+ cr.set_font_size(self.font_size)
+ cr.set_line_width(self.line_width)
+
+ widest_word = max(self.series_labels, key = lambda item: self.context.text_extents(item)[2])
+ tallest_word = max(self.series_labels, key = lambda item: self.context.text_extents(item)[3])
+ max_width = self.context.text_extents(widest_word)[2]
+ max_height = self.context.text_extents(tallest_word)[3] * 1.1 + 5
+
+ color_box_height = max_height / 2
+ color_box_width = color_box_height * 2
+
+ #Draw a bounding box
+ bounding_box_width = max_width + color_box_width + 15
+ bounding_box_height = (len(self.series_labels)+0.5) * max_height
+ cr.set_source_rgba(1,1,1)
+ cr.rectangle(self.dimensions[HORZ] - self.border - bounding_box_width, self.border,
+ bounding_box_width, bounding_box_height)
+ cr.fill()
+
+ cr.set_source_rgba(*self.line_color)
+ cr.set_line_width(self.line_width)
+ cr.rectangle(self.dimensions[HORZ] - self.border - bounding_box_width, self.border,
+ bounding_box_width, bounding_box_height)
+ cr.stroke()
+
+ for idx,key in enumerate(self.series_labels):
+ #Draw color box
+ cr.set_source_rgba(*self.series_colors[idx][:4])
+ cr.rectangle(self.dimensions[HORZ] - self.border - max_width - color_box_width - 10,
+ self.border + color_box_height + (idx*max_height) ,
+ color_box_width, color_box_height)
+ cr.fill()
+
+ cr.set_source_rgba(0, 0, 0)
+ cr.rectangle(self.dimensions[HORZ] - self.border - max_width - color_box_width - 10,
+ self.border + color_box_height + (idx*max_height),
+ color_box_width, color_box_height)
+ cr.stroke()
+
+ #Draw series labels
+ cr.set_source_rgba(0, 0, 0)
+ cr.move_to(self.dimensions[HORZ] - self.border - max_width - 5, self.border + ((idx+1)*max_height))
+ cr.show_text(key)
+
+
+class HorizontalBarPlot(BarPlot):
+ def __init__(self,
+ surface = None,
+ data = None,
+ width = 640,
+ height = 480,
+ background = "white light_gray",
+ border = 0,
+ display_values = False,
+ grid = False,
+ rounded_corners = False,
+ stack = False,
+ three_dimension = False,
+ series_labels = None,
+ x_labels = None,
+ y_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ series_colors = None):
+
+ BarPlot.__init__(self, surface, data, width, height, background, border,
+ display_values, grid, rounded_corners, stack, three_dimension,
+ x_labels, y_labels, x_bounds, y_bounds, series_colors, HORZ)
+ self.series_labels = series_labels
+
+ def calc_vert_extents(self):
+ self.calc_extents(VERT)
+ if self.labels[HORZ] and not self.labels[VERT]:
+ self.borders[HORZ] += 10
+
+ def draw_rectangle_bottom(self, x0, y0, x1, y1):
+ self.context.arc(x0+5, y1-5, 5, math.pi/2, math.pi)
+ self.context.line_to(x0, y0+5)
+ self.context.arc(x0+5, y0+5, 5, -math.pi, -math.pi/2)
+ self.context.line_to(x1, y0)
+ self.context.line_to(x1, y1)
+ self.context.line_to(x0+5, y1)
+ self.context.close_path()
+
+ def draw_rectangle_top(self, x0, y0, x1, y1):
+ self.context.arc(x1-5, y0+5, 5, -math.pi/2, 0)
+ self.context.line_to(x1, y1-5)
+ self.context.arc(x1-5, y1-5, 5, 0, math.pi/2)
+ self.context.line_to(x0, y1)
+ self.context.line_to(x0, y0)
+ self.context.line_to(x1, y0)
+ self.context.close_path()
+
+ def draw_rectangle(self, index, length, x0, y0, x1, y1):
+ if length == 1:
+ BarPlot.draw_rectangle(self, x0, y0, x1, y1)
+ elif index == 0:
+ self.draw_rectangle_bottom(x0, y0, x1, y1)
+ elif index == length-1:
+ self.draw_rectangle_top(x0, y0, x1, y1)
+ else:
+ self.context.rectangle(x0, y0, x1-x0, y1-y0)
+
+ #TODO: Review BarPlot.render_grid code
+ def render_grid(self):
+ self.context.set_source_rgba(0.8, 0.8, 0.8)
+ if self.labels[HORZ]:
+ self.context.set_font_size(self.font_size * 0.8)
+ step = (self.dimensions[HORZ] - 2*self.borders[HORZ] - self.value_label)/(len(self.labels[HORZ])-1)
+ x = self.borders[HORZ]
+ next_x = 0
+ for item in self.labels[HORZ]:
+ width = self.context.text_extents(item)[2]
+ if x - width/2 > next_x and x - width/2 > self.border:
+ self.context.move_to(x, self.border)
+ self.context.line_to(x, self.dimensions[VERT] - self.borders[VERT])
+ self.context.stroke()
+ next_x = x + width/2
+ x += step
+ else:
+ lines = 11
+ horizontal_step = float(self.plot_dimensions[HORZ])/(lines-1)
+ x = self.borders[HORZ]
+ for y in xrange(0, lines):
+ self.context.move_to(x, self.border)
+ self.context.line_to(x, self.dimensions[VERT] - self.borders[VERT])
+ self.context.stroke()
+ x += horizontal_step
+
+ def render_horz_labels(self):
+ step = (self.dimensions[HORZ] - 2*self.borders[HORZ])/(len(self.labels[HORZ])-1)
+ x = self.borders[HORZ]
+ next_x = 0
+
+ for item in self.labels[HORZ]:
+ self.context.set_source_rgba(*self.label_color)
+ width = self.context.text_extents(item)[2]
+ if x - width/2 > next_x and x - width/2 > self.border:
+ self.context.move_to(x - width/2, self.dimensions[VERT] - self.borders[VERT] + self.max_value[HORZ] + 3)
+ self.context.show_text(item)
+ next_x = x + width/2
+ x += step
+
+ def render_vert_labels(self):
+ series_length = len(self.labels[VERT])
+ step = (self.plot_dimensions[VERT] - (series_length + 1)*self.space)/(len(self.labels[VERT]))
+ y = self.border + step/2 + self.space
+
+ for item in self.labels[VERT]:
+ self.context.set_source_rgba(*self.label_color)
+ width, height = self.context.text_extents(item)[2:4]
+ self.context.move_to(self.borders[HORZ] - width - 5, y + height/2)
+ self.context.show_text(item)
+ y += step + self.space
+ self.labels[VERT].reverse()
+
+ def render_values(self):
+ self.context.set_source_rgba(*self.value_label_color)
+ self.context.set_font_size(self.font_size * 0.8)
+ if self.stack:
+ for i,group in enumerate(self.series):
+ value = sum(group.to_list())
+ height = self.context.text_extents(str(value))[3]
+ x = self.borders[HORZ] + value*self.steps[HORZ] + 2
+ y = self.borders[VERT] + (i+0.5)*self.steps[VERT] + (i+1)*self.space + height/2
+ self.context.move_to(x, y)
+ self.context.show_text(str(value))
+ else:
+ for i,group in enumerate(self.series):
+ inner_step = self.steps[VERT]/len(group)
+ y0 = self.border + i*self.steps[VERT] + (i+1)*self.space
+ for number,data in enumerate(group):
+ height = self.context.text_extents(str(data.content))[3]
+ self.context.move_to(self.borders[HORZ] + data.content*self.steps[HORZ] + 2, y0 + 0.5*inner_step + height/2, )
+ self.context.show_text(str(data.content))
+ y0 += inner_step
+
+ def render_plot(self):
+ if self.stack:
+ for i,group in enumerate(self.series):
+ x0 = self.borders[HORZ]
+ y0 = self.borders[VERT] + i*self.steps[VERT] + (i+1)*self.space
+ for number,data in enumerate(group):
+ if self.series_colors[number][4] in ('radial','linear') :
+ linear = cairo.LinearGradient( data.content*self.steps[HORZ]/2, y0, data.content*self.steps[HORZ]/2, y0 + self.steps[VERT] )
+ color = self.series_colors[number]
+ linear.add_color_stop_rgba(0.0, 3.5*color[0]/5.0, 3.5*color[1]/5.0, 3.5*color[2]/5.0,1.0)
+ linear.add_color_stop_rgba(1.0, *color[:4])
+ self.context.set_source(linear)
+ elif self.series_colors[number][4] == 'solid':
+ self.context.set_source_rgba(*self.series_colors[number][:4])
+ if self.rounded_corners:
+ self.draw_rectangle(number, len(group), x0, y0, x0+data.content*self.steps[HORZ], y0+self.steps[VERT])
+ self.context.fill()
+ else:
+ self.context.rectangle(x0, y0, data.content*self.steps[HORZ], self.steps[VERT])
+ self.context.fill()
+ x0 += data.content*self.steps[HORZ]
+ else:
+ for i,group in enumerate(self.series):
+ inner_step = self.steps[VERT]/len(group)
+ x0 = self.borders[HORZ]
+ y0 = self.border + i*self.steps[VERT] + (i+1)*self.space
+ for number,data in enumerate(group):
+ linear = cairo.LinearGradient(data.content*self.steps[HORZ]/2, y0, data.content*self.steps[HORZ]/2, y0 + inner_step)
+ color = self.series_colors[number]
+ linear.add_color_stop_rgba(0.0, 3.5*color[0]/5.0, 3.5*color[1]/5.0, 3.5*color[2]/5.0,1.0)
+ linear.add_color_stop_rgba(1.0, *color[:4])
+ self.context.set_source(linear)
+ if self.rounded_corners and data.content != 0:
+ BarPlot.draw_round_rectangle(self,x0, y0, x0 + data.content*self.steps[HORZ], y0 + inner_step)
+ self.context.fill()
+ else:
+ self.context.rectangle(x0, y0, data.content*self.steps[HORZ], inner_step)
+ self.context.fill()
+ y0 += inner_step
+
+class VerticalBarPlot(BarPlot):
+ def __init__(self,
+ surface = None,
+ data = None,
+ width = 640,
+ height = 480,
+ background = "white light_gray",
+ border = 0,
+ display_values = False,
+ grid = False,
+ rounded_corners = False,
+ stack = False,
+ three_dimension = False,
+ series_labels = None,
+ x_labels = None,
+ y_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ series_colors = None):
+
+ BarPlot.__init__(self, surface, data, width, height, background, border,
+ display_values, grid, rounded_corners, stack, three_dimension,
+ x_labels, y_labels, x_bounds, y_bounds, series_colors, VERT)
+ self.series_labels = series_labels
+
+ def calc_vert_extents(self):
+ self.calc_extents(VERT)
+ if self.labels[VERT] and not self.labels[HORZ]:
+ self.borders[VERT] += 10
+
+ def draw_rectangle_bottom(self, x0, y0, x1, y1):
+ self.context.move_to(x1,y1)
+ self.context.arc(x1-5, y1-5, 5, 0, math.pi/2)
+ self.context.line_to(x0+5, y1)
+ self.context.arc(x0+5, y1-5, 5, math.pi/2, math.pi)
+ self.context.line_to(x0, y0)
+ self.context.line_to(x1, y0)
+ self.context.line_to(x1, y1)
+ self.context.close_path()
+
+ def draw_rectangle_top(self, x0, y0, x1, y1):
+ self.context.arc(x0+5, y0+5, 5, -math.pi, -math.pi/2)
+ self.context.line_to(x1-5, y0)
+ self.context.arc(x1-5, y0+5, 5, -math.pi/2, 0)
+ self.context.line_to(x1, y1)
+ self.context.line_to(x0, y1)
+ self.context.line_to(x0, y0)
+ self.context.close_path()
+
+ def draw_rectangle(self, index, length, x0, y0, x1, y1):
+ if length == 1:
+ BarPlot.draw_rectangle(self, x0, y0, x1, y1)
+ elif index == 0:
+ self.draw_rectangle_bottom(x0, y0, x1, y1)
+ elif index == length-1:
+ self.draw_rectangle_top(x0, y0, x1, y1)
+ else:
+ self.context.rectangle(x0, y0, x1-x0, y1-y0)
+
+ def render_grid(self):
+ self.context.set_source_rgba(0.8, 0.8, 0.8)
+ if self.labels[VERT]:
+ lines = len(self.labels[VERT])
+ vertical_step = float(self.plot_dimensions[self.main_dir])/(lines-1)
+ y = self.borders[VERT] + self.value_label
+ else:
+ lines = 11
+ vertical_step = float(self.plot_dimensions[self.main_dir])/(lines-1)
+ y = 1.2*self.border + self.value_label
+ for x in xrange(0, lines):
+ self.context.move_to(self.borders[HORZ], y)
+ self.context.line_to(self.dimensions[HORZ] - self.border, y)
+ self.context.stroke()
+ y += vertical_step
+
+ def render_ground(self):
+ self.draw_3d_rectangle_front(self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT],
+ self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10)
+ self.context.fill()
+
+ self.draw_3d_rectangle_side (self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT],
+ self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10)
+ self.context.fill()
+
+ self.draw_3d_rectangle_top (self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT],
+ self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10)
+ self.context.fill()
+
+ def render_horz_labels(self):
+ series_length = len(self.labels[HORZ])
+ step = float (self.plot_dimensions[HORZ] - (series_length + 1)*self.space)/len(self.labels[HORZ])
+ x = self.borders[HORZ] + step/2 + self.space
+ next_x = 0
+
+ for item in self.labels[HORZ]:
+ self.context.set_source_rgba(*self.label_color)
+ width = self.context.text_extents(item)[2]
+ if x - width/2 > next_x and x - width/2 > self.borders[HORZ]:
+ self.context.move_to(x - width/2, self.dimensions[VERT] - self.borders[VERT] + self.max_value[HORZ] + 3)
+ self.context.show_text(item)
+ next_x = x + width/2
+ x += step + self.space
+
+ def render_vert_labels(self):
+ self.context.set_source_rgba(*self.label_color)
+ y = self.borders[VERT] + self.value_label
+ step = (self.dimensions[VERT] - 2*self.borders[VERT] - self.value_label)/(len(self.labels[VERT]) - 1)
+ self.labels[VERT].reverse()
+ for item in self.labels[VERT]:
+ width, height = self.context.text_extents(item)[2:4]
+ self.context.move_to(self.borders[HORZ] - width - 5, y + height/2)
+ self.context.show_text(item)
+ y += step
+ self.labels[VERT].reverse()
+
+ def render_values(self):
+ self.context.set_source_rgba(*self.value_label_color)
+ self.context.set_font_size(self.font_size * 0.8)
+ if self.stack:
+ for i,group in enumerate(self.series):
+ value = sum(group.to_list())
+ width = self.context.text_extents(str(value))[2]
+ x = self.borders[HORZ] + (i+0.5)*self.steps[HORZ] + (i+1)*self.space - width/2
+ y = value*self.steps[VERT] + 2
+ self.context.move_to(x, self.plot_top-y)
+ self.context.show_text(str(value))
+ else:
+ for i,group in enumerate(self.series):
+ inner_step = self.steps[HORZ]/len(group)
+ x0 = self.borders[HORZ] + i*self.steps[HORZ] + (i+1)*self.space
+ for number,data in enumerate(group):
+ width = self.context.text_extents(str(data.content))[2]
+ self.context.move_to(x0 + 0.5*inner_step - width/2, self.plot_top - data.content*self.steps[VERT] - 2)
+ self.context.show_text(str(data.content))
+ x0 += inner_step
+
+ def render_plot(self):
+ if self.stack:
+ for i,group in enumerate(self.series):
+ x0 = self.borders[HORZ] + i*self.steps[HORZ] + (i+1)*self.space
+ y0 = 0
+ for number,data in enumerate(group):
+ if self.series_colors[number][4] in ('linear','radial'):
+ linear = cairo.LinearGradient( x0, data.content*self.steps[VERT]/2, x0 + self.steps[HORZ], data.content*self.steps[VERT]/2 )
+ color = self.series_colors[number]
+ linear.add_color_stop_rgba(0.0, 3.5*color[0]/5.0, 3.5*color[1]/5.0, 3.5*color[2]/5.0,1.0)
+ linear.add_color_stop_rgba(1.0, *color[:4])
+ self.context.set_source(linear)
+ elif self.series_colors[number][4] == 'solid':
+ self.context.set_source_rgba(*self.series_colors[number][:4])
+ if self.rounded_corners:
+ self.draw_rectangle(number, len(group), x0, self.plot_top - y0 - data.content*self.steps[VERT], x0 + self.steps[HORZ], self.plot_top - y0)
+ self.context.fill()
+ else:
+ self.context.rectangle(x0, self.plot_top - y0 - data.content*self.steps[VERT], self.steps[HORZ], data.content*self.steps[VERT])
+ self.context.fill()
+ y0 += data.content*self.steps[VERT]
+ else:
+ for i,group in enumerate(self.series):
+ inner_step = self.steps[HORZ]/len(group)
+ y0 = self.borders[VERT]
+ x0 = self.borders[HORZ] + i*self.steps[HORZ] + (i+1)*self.space
+ for number,data in enumerate(group):
+ if self.series_colors[number][4] == 'linear':
+ linear = cairo.LinearGradient( x0, data.content*self.steps[VERT]/2, x0 + inner_step, data.content*self.steps[VERT]/2 )
+ color = self.series_colors[number]
+ linear.add_color_stop_rgba(0.0, 3.5*color[0]/5.0, 3.5*color[1]/5.0, 3.5*color[2]/5.0,1.0)
+ linear.add_color_stop_rgba(1.0, *color[:4])
+ self.context.set_source(linear)
+ elif self.series_colors[number][4] == 'solid':
+ self.context.set_source_rgba(*self.series_colors[number][:4])
+ if self.rounded_corners and data.content != 0:
+ BarPlot.draw_round_rectangle(self, x0, self.plot_top - data.content*self.steps[VERT], x0+inner_step, self.plot_top)
+ self.context.fill()
+ elif self.three_dimension:
+ self.draw_3d_rectangle_front(x0, self.plot_top - data.content*self.steps[VERT], x0+inner_step, self.plot_top, 5)
+ self.context.fill()
+ self.draw_3d_rectangle_side(x0, self.plot_top - data.content*self.steps[VERT], x0+inner_step, self.plot_top, 5)
+ self.context.fill()
+ self.draw_3d_rectangle_top(x0, self.plot_top - data.content*self.steps[VERT], x0+inner_step, self.plot_top, 5)
+ self.context.fill()
+ else:
+ self.context.rectangle(x0, self.plot_top - data.content*self.steps[VERT], inner_step, data.content*self.steps[VERT])
+ self.context.fill()
+
+ x0 += inner_step
+
+class StreamChart(VerticalBarPlot):
+ def __init__(self,
+ surface = None,
+ data = None,
+ width = 640,
+ height = 480,
+ background = "white light_gray",
+ border = 0,
+ grid = False,
+ series_legend = None,
+ x_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ series_colors = None):
+
+ VerticalBarPlot.__init__(self, surface, data, width, height, background, border,
+ False, grid, False, True, False,
+ None, x_labels, None, x_bounds, y_bounds, series_colors)
+
+ def calc_steps(self):
+ other_dir = other_direction(self.main_dir)
+ self.series_amplitude = self.bounds[self.main_dir][1] - self.bounds[self.main_dir][0]
+ if self.series_amplitude:
+ self.steps[self.main_dir] = float(self.plot_dimensions[self.main_dir])/self.series_amplitude
+ else:
+ self.steps[self.main_dir] = 0.00
+ series_length = len(self.data)
+ self.steps[other_dir] = float(self.plot_dimensions[other_dir])/series_length
+
+ def render_legend(self):
+ pass
+
+ def ground(self, index):
+ sum_values = sum(self.data[index])
+ return -0.5*sum_values
+
+ def calc_angles(self):
+ middle = self.plot_top - self.plot_dimensions[VERT]/2.0
+ self.angles = [tuple([0.0 for x in range(len(self.data)+1)])]
+ for x_index in range(1, len(self.data)-1):
+ t = []
+ x0 = self.borders[HORZ] + (0.5 + x_index - 1)*self.steps[HORZ]
+ x2 = self.borders[HORZ] + (0.5 + x_index + 1)*self.steps[HORZ]
+ y0 = middle - self.ground(x_index-1)*self.steps[VERT]
+ y2 = middle - self.ground(x_index+1)*self.steps[VERT]
+ t.append(math.atan(float(y0-y2)/(x0-x2)))
+ for data_index in range(len(self.data[x_index])):
+ x0 = self.borders[HORZ] + (0.5 + x_index - 1)*self.steps[HORZ]
+ x2 = self.borders[HORZ] + (0.5 + x_index + 1)*self.steps[HORZ]
+ y0 = middle - self.ground(x_index-1)*self.steps[VERT] - self.data[x_index-1][data_index]*self.steps[VERT]
+ y2 = middle - self.ground(x_index+1)*self.steps[VERT] - self.data[x_index+1][data_index]*self.steps[VERT]
+
+ for i in range(0,data_index):
+ y0 -= self.data[x_index-1][i]*self.steps[VERT]
+ y2 -= self.data[x_index+1][i]*self.steps[VERT]
+
+ if data_index == len(self.data[0])-1 and False:
+ self.context.set_source_rgba(0.0,0.0,0.0,0.3)
+ self.context.move_to(x0,y0)
+ self.context.line_to(x2,y2)
+ self.context.stroke()
+ self.context.arc(x0,y0,2,0,2*math.pi)
+ self.context.fill()
+ t.append(math.atan(float(y0-y2)/(x0-x2)))
+ self.angles.append(tuple(t))
+ self.angles.append(tuple([0.0 for x in range(len(self.data)+1)]))
+
+ def render_plot(self):
+ self.calc_angles()
+ middle = self.plot_top - self.plot_dimensions[VERT]/2.0
+ p = 0.4*self.steps[HORZ]
+ for data_index in range(len(self.data[0])-1,-1,-1):
+ self.context.set_source_rgba(*self.series_colors[data_index][:4])
+
+ #draw the upper line
+ for x_index in range(len(self.data)-1) :
+ x1 = self.borders[HORZ] + (0.5 + x_index)*self.steps[HORZ]
+ y1 = middle - self.ground(x_index)*self.steps[VERT] - self.data[x_index][data_index]*self.steps[VERT]
+ x2 = self.borders[HORZ] + (0.5 + x_index + 1)*self.steps[HORZ]
+ y2 = middle - self.ground(x_index + 1)*self.steps[VERT] - self.data[x_index + 1][data_index]*self.steps[VERT]
+
+ for i in range(0,data_index):
+ y1 -= self.data[x_index][i]*self.steps[VERT]
+ y2 -= self.data[x_index+1][i]*self.steps[VERT]
+
+ if x_index == 0:
+ self.context.move_to(x1,y1)
+
+ ang1 = self.angles[x_index][data_index+1]
+ ang2 = self.angles[x_index+1][data_index+1] + math.pi
+ self.context.curve_to(x1+p*math.cos(ang1),y1+p*math.sin(ang1),
+ x2+p*math.cos(ang2),y2+p*math.sin(ang2),
+ x2,y2)
+
+ for x_index in range(len(self.data)-1,0,-1) :
+ x1 = self.borders[HORZ] + (0.5 + x_index)*self.steps[HORZ]
+ y1 = middle - self.ground(x_index)*self.steps[VERT]
+ x2 = self.borders[HORZ] + (0.5 + x_index - 1)*self.steps[HORZ]
+ y2 = middle - self.ground(x_index - 1)*self.steps[VERT]
+
+ for i in range(0,data_index):
+ y1 -= self.data[x_index][i]*self.steps[VERT]
+ y2 -= self.data[x_index-1][i]*self.steps[VERT]
+
+ if x_index == len(self.data)-1:
+ self.context.line_to(x1,y1+2)
+
+ #revert angles by pi degrees to take the turn back
+ ang1 = self.angles[x_index][data_index] + math.pi
+ ang2 = self.angles[x_index-1][data_index]
+ self.context.curve_to(x1+p*math.cos(ang1),y1+p*math.sin(ang1),
+ x2+p*math.cos(ang2),y2+p*math.sin(ang2),
+ x2,y2+2)
+
+ self.context.close_path()
+ self.context.fill()
+
+ if False:
+ self.context.move_to(self.borders[HORZ] + 0.5*self.steps[HORZ], middle)
+ for x_index in range(len(self.data)-1) :
+ x1 = self.borders[HORZ] + (0.5 + x_index)*self.steps[HORZ]
+ y1 = middle - self.ground(x_index)*self.steps[VERT] - self.data[x_index][data_index]*self.steps[VERT]
+ x2 = self.borders[HORZ] + (0.5 + x_index + 1)*self.steps[HORZ]
+ y2 = middle - self.ground(x_index + 1)*self.steps[VERT] - self.data[x_index + 1][data_index]*self.steps[VERT]
+
+ for i in range(0,data_index):
+ y1 -= self.data[x_index][i]*self.steps[VERT]
+ y2 -= self.data[x_index+1][i]*self.steps[VERT]
+
+ ang1 = self.angles[x_index][data_index+1]
+ ang2 = self.angles[x_index+1][data_index+1] + math.pi
+ self.context.set_source_rgba(1.0,0.0,0.0)
+ self.context.arc(x1+p*math.cos(ang1),y1+p*math.sin(ang1),2,0,2*math.pi)
+ self.context.fill()
+ self.context.set_source_rgba(0.0,0.0,0.0)
+ self.context.arc(x2+p*math.cos(ang2),y2+p*math.sin(ang2),2,0,2*math.pi)
+ self.context.fill()
+ '''self.context.set_source_rgba(0.0,0.0,0.0,0.3)
+ self.context.arc(x2,y2,2,0,2*math.pi)
+ self.context.fill()'''
+ self.context.move_to(x1,y1)
+ self.context.line_to(x1+p*math.cos(ang1),y1+p*math.sin(ang1))
+ self.context.stroke()
+ self.context.move_to(x2,y2)
+ self.context.line_to(x2+p*math.cos(ang2),y2+p*math.sin(ang2))
+ self.context.stroke()
+ if False:
+ for x_index in range(len(self.data)-1,0,-1) :
+ x1 = self.borders[HORZ] + (0.5 + x_index)*self.steps[HORZ]
+ y1 = middle - self.ground(x_index)*self.steps[VERT]
+ x2 = self.borders[HORZ] + (0.5 + x_index - 1)*self.steps[HORZ]
+ y2 = middle - self.ground(x_index - 1)*self.steps[VERT]
+
+ for i in range(0,data_index):
+ y1 -= self.data[x_index][i]*self.steps[VERT]
+ y2 -= self.data[x_index-1][i]*self.steps[VERT]
+
+ #revert angles by pi degrees to take the turn back
+ ang1 = self.angles[x_index][data_index] + math.pi
+ ang2 = self.angles[x_index-1][data_index]
+ self.context.set_source_rgba(0.0,1.0,0.0)
+ self.context.arc(x1+p*math.cos(ang1),y1+p*math.sin(ang1),2,0,2*math.pi)
+ self.context.fill()
+ self.context.set_source_rgba(0.0,0.0,1.0)
+ self.context.arc(x2+p*math.cos(ang2),y2+p*math.sin(ang2),2,0,2*math.pi)
+ self.context.fill()
+ '''self.context.set_source_rgba(0.0,0.0,0.0,0.3)
+ self.context.arc(x2,y2,2,0,2*math.pi)
+ self.context.fill()'''
+ self.context.move_to(x1,y1)
+ self.context.line_to(x1+p*math.cos(ang1),y1+p*math.sin(ang1))
+ self.context.stroke()
+ self.context.move_to(x2,y2)
+ self.context.line_to(x2+p*math.cos(ang2),y2+p*math.sin(ang2))
+ self.context.stroke()
+ #break
+
+ #self.context.arc(self.dimensions[HORZ]/2, self.dimensions[VERT]/2,50,0,3*math.pi/2)
+ #self.context.fill()
+
+
+class PiePlot(Plot):
+ #TODO: Check the old cairoplot, graphs aren't matching
+ def __init__ (self,
+ surface = None,
+ data = None,
+ width = 640,
+ height = 480,
+ background = "white light_gray",
+ gradient = False,
+ shadow = False,
+ colors = None):
+
+ Plot.__init__( self, surface, data, width, height, background, series_colors = colors )
+ self.center = (self.dimensions[HORZ]/2, self.dimensions[VERT]/2)
+ self.total = sum( self.series.to_list() )
+ self.radius = min(self.dimensions[HORZ]/3,self.dimensions[VERT]/3)
+ self.gradient = gradient
+ self.shadow = shadow
+
+ def sort_function(x,y):
+ return x.content - y.content
+
+ def load_series(self, data, x_labels=None, y_labels=None, series_colors=None):
+ Plot.load_series(self, data, x_labels, y_labels, series_colors)
+ # Already done inside series
+ #self.data = sorted(self.data)
+
+ def draw_piece(self, angle, next_angle):
+ self.context.move_to(self.center[0],self.center[1])
+ self.context.line_to(self.center[0] + self.radius*math.cos(angle), self.center[1] + self.radius*math.sin(angle))
+ self.context.arc(self.center[0], self.center[1], self.radius, angle, next_angle)
+ self.context.line_to(self.center[0], self.center[1])
+ self.context.close_path()
+
+ def render(self):
+ self.render_background()
+ self.render_bounding_box()
+ if self.shadow:
+ self.render_shadow()
+ self.render_plot()
+ self.render_series_labels()
+
+ def render_shadow(self):
+ horizontal_shift = 3
+ vertical_shift = 3
+ self.context.set_source_rgba(0, 0, 0, 0.5)
+ self.context.arc(self.center[0] + horizontal_shift, self.center[1] + vertical_shift, self.radius, 0, 2*math.pi)
+ self.context.fill()
+
+ def render_series_labels(self):
+ angle = 0
+ next_angle = 0
+ x0,y0 = self.center
+ cr = self.context
+ for number,key in enumerate(self.series_labels):
+ # self.data[number] should be just a number
+ data = sum(self.series[number].to_list())
+
+ next_angle = angle + 2.0*math.pi*data/self.total
+ cr.set_source_rgba(*self.series_colors[number][:4])
+ w = cr.text_extents(key)[2]
+ if (angle + next_angle)/2 < math.pi/2 or (angle + next_angle)/2 > 3*math.pi/2:
+ cr.move_to(x0 + (self.radius+10)*math.cos((angle+next_angle)/2), y0 + (self.radius+10)*math.sin((angle+next_angle)/2) )
+ else:
+ cr.move_to(x0 + (self.radius+10)*math.cos((angle+next_angle)/2) - w, y0 + (self.radius+10)*math.sin((angle+next_angle)/2) )
+ cr.show_text(key)
+ angle = next_angle
+
+ def render_plot(self):
+ angle = 0
+ next_angle = 0
+ x0,y0 = self.center
+ cr = self.context
+ for number,group in enumerate(self.series):
+ # Group should be just a number
+ data = sum(group.to_list())
+ next_angle = angle + 2.0*math.pi*data/self.total
+ if self.gradient or self.series_colors[number][4] in ('linear','radial'):
+ gradient_color = cairo.RadialGradient(self.center[0], self.center[1], 0, self.center[0], self.center[1], self.radius)
+ gradient_color.add_color_stop_rgba(0.3, *self.series_colors[number][:4])
+ gradient_color.add_color_stop_rgba(1, self.series_colors[number][0]*0.7,
+ self.series_colors[number][1]*0.7,
+ self.series_colors[number][2]*0.7,
+ self.series_colors[number][3])
+ cr.set_source(gradient_color)
+ else:
+ cr.set_source_rgba(*self.series_colors[number][:4])
+
+ self.draw_piece(angle, next_angle)
+ cr.fill()
+
+ cr.set_source_rgba(1.0, 1.0, 1.0)
+ self.draw_piece(angle, next_angle)
+ cr.stroke()
+
+ angle = next_angle
+
+class DonutPlot(PiePlot):
+ def __init__ (self,
+ surface = None,
+ data = None,
+ width = 640,
+ height = 480,
+ background = "white light_gray",
+ gradient = False,
+ shadow = False,
+ colors = None,
+ inner_radius=-1):
+
+ Plot.__init__( self, surface, data, width, height, background, series_colors = colors )
+
+ self.center = ( self.dimensions[HORZ]/2, self.dimensions[VERT]/2 )
+ self.total = sum( self.series.to_list() )
+ self.radius = min( self.dimensions[HORZ]/3,self.dimensions[VERT]/3 )
+ self.inner_radius = inner_radius*self.radius
+
+ if inner_radius == -1:
+ self.inner_radius = self.radius/3
+
+ self.gradient = gradient
+ self.shadow = shadow
+
+ def draw_piece(self, angle, next_angle):
+ self.context.move_to(self.center[0] + (self.inner_radius)*math.cos(angle), self.center[1] + (self.inner_radius)*math.sin(angle))
+ self.context.line_to(self.center[0] + self.radius*math.cos(angle), self.center[1] + self.radius*math.sin(angle))
+ self.context.arc(self.center[0], self.center[1], self.radius, angle, next_angle)
+ self.context.line_to(self.center[0] + (self.inner_radius)*math.cos(next_angle), self.center[1] + (self.inner_radius)*math.sin(next_angle))
+ self.context.arc_negative(self.center[0], self.center[1], self.inner_radius, next_angle, angle)
+ self.context.close_path()
+
+ def render_shadow(self):
+ horizontal_shift = 3
+ vertical_shift = 3
+ self.context.set_source_rgba(0, 0, 0, 0.5)
+ self.context.arc(self.center[0] + horizontal_shift, self.center[1] + vertical_shift, self.inner_radius, 0, 2*math.pi)
+ self.context.arc_negative(self.center[0] + horizontal_shift, self.center[1] + vertical_shift, self.radius, 0, -2*math.pi)
+ self.context.fill()
+
+class GanttChart (Plot) :
+ def __init__(self,
+ surface = None,
+ data = None,
+ width = 640,
+ height = 480,
+ x_labels = None,
+ y_labels = None,
+ colors = None):
+ self.bounds = {}
+ self.max_value = {}
+ Plot.__init__(self, surface, data, width, height, x_labels = x_labels, y_labels = y_labels, series_colors = colors)
+
+ def load_series(self, data, x_labels=None, y_labels=None, series_colors=None):
+ Plot.load_series(self, data, x_labels, y_labels, series_colors)
+ self.calc_boundaries()
+
+ def calc_boundaries(self):
+ self.bounds[HORZ] = (0,len(self.series))
+ end_pos = max(self.series.to_list())
+
+ #for group in self.series:
+ # if hasattr(item, "__delitem__"):
+ # for sub_item in item:
+ # end_pos = max(sub_item)
+ # else:
+ # end_pos = max(item)
+ self.bounds[VERT] = (0,end_pos)
+
+ def calc_extents(self, direction):
+ self.max_value[direction] = 0
+ if self.labels[direction]:
+ self.max_value[direction] = max(self.context.text_extents(item)[2] for item in self.labels[direction])
+ else:
+ self.max_value[direction] = self.context.text_extents( str(self.bounds[direction][1] + 1) )[2]
+
+ def calc_horz_extents(self):
+ self.calc_extents(HORZ)
+ self.borders[HORZ] = 100 + self.max_value[HORZ]
+
+ def calc_vert_extents(self):
+ self.calc_extents(VERT)
+ self.borders[VERT] = self.dimensions[VERT]/(self.bounds[HORZ][1] + 1)
+
+ def calc_steps(self):
+ self.horizontal_step = (self.dimensions[HORZ] - self.borders[HORZ])/(len(self.labels[VERT]))
+ self.vertical_step = self.borders[VERT]
+
+ def render(self):
+ self.calc_horz_extents()
+ self.calc_vert_extents()
+ self.calc_steps()
+ self.render_background()
+
+ self.render_labels()
+ self.render_grid()
+ self.render_plot()
+
+ def render_background(self):
+ cr = self.context
+ cr.set_source_rgba(255,255,255)
+ cr.rectangle(0,0,self.dimensions[HORZ], self.dimensions[VERT])
+ cr.fill()
+ for number,group in enumerate(self.series):
+ linear = cairo.LinearGradient(self.dimensions[HORZ]/2, self.borders[VERT] + number*self.vertical_step,
+ self.dimensions[HORZ]/2, self.borders[VERT] + (number+1)*self.vertical_step)
+ linear.add_color_stop_rgba(0,1.0,1.0,1.0,1.0)
+ linear.add_color_stop_rgba(1.0,0.9,0.9,0.9,1.0)
+ cr.set_source(linear)
+ cr.rectangle(0,self.borders[VERT] + number*self.vertical_step,self.dimensions[HORZ],self.vertical_step)
+ cr.fill()
+
+ def render_grid(self):
+ cr = self.context
+ cr.set_source_rgba(0.7, 0.7, 0.7)
+ cr.set_dash((1,0,0,0,0,0,1))
+ cr.set_line_width(0.5)
+ for number,label in enumerate(self.labels[VERT]):
+ h = cr.text_extents(label)[3]
+ cr.move_to(self.borders[HORZ] + number*self.horizontal_step, self.vertical_step/2 + h)
+ cr.line_to(self.borders[HORZ] + number*self.horizontal_step, self.dimensions[VERT])
+ cr.stroke()
+
+ def render_labels(self):
+ self.context.set_font_size(0.02 * self.dimensions[HORZ])
+
+ self.render_horz_labels()
+ self.render_vert_labels()
+
+ def render_horz_labels(self):
+ cr = self.context
+ labels = self.labels[HORZ]
+ if not labels:
+ labels = [str(i) for i in range(1, self.bounds[HORZ][1] + 1) ]
+ for number,label in enumerate(labels):
+ if label != None:
+ cr.set_source_rgba(0.5, 0.5, 0.5)
+ w,h = cr.text_extents(label)[2], cr.text_extents(label)[3]
+ cr.move_to(40,self.borders[VERT] + number*self.vertical_step + self.vertical_step/2 + h/2)
+ cr.show_text(label)
+
+ def render_vert_labels(self):
+ cr = self.context
+ labels = self.labels[VERT]
+ if not labels:
+ labels = [str(i) for i in range(1, self.bounds[VERT][1] + 1) ]
+ for number,label in enumerate(labels):
+ w,h = cr.text_extents(label)[2], cr.text_extents(label)[3]
+ cr.move_to(self.borders[HORZ] + number*self.horizontal_step - w/2, self.vertical_step/2)
+ cr.show_text(label)
+
+ def render_rectangle(self, x0, y0, x1, y1, color):
+ self.draw_shadow(x0, y0, x1, y1)
+ self.draw_rectangle(x0, y0, x1, y1, color)
+
+ def draw_rectangular_shadow(self, gradient, x0, y0, w, h):
+ self.context.set_source(gradient)
+ self.context.rectangle(x0,y0,w,h)
+ self.context.fill()
+
+ def draw_circular_shadow(self, x, y, radius, ang_start, ang_end, mult, shadow):
+ gradient = cairo.RadialGradient(x, y, 0, x, y, 2*radius)
+ gradient.add_color_stop_rgba(0, 0, 0, 0, shadow)
+ gradient.add_color_stop_rgba(1, 0, 0, 0, 0)
+ self.context.set_source(gradient)
+ self.context.move_to(x,y)
+ self.context.line_to(x + mult[0]*radius,y + mult[1]*radius)
+ self.context.arc(x, y, 8, ang_start, ang_end)
+ self.context.line_to(x,y)
+ self.context.close_path()
+ self.context.fill()
+
+ def draw_rectangle(self, x0, y0, x1, y1, color):
+ cr = self.context
+ middle = (x0+x1)/2
+ linear = cairo.LinearGradient(middle,y0,middle,y1)
+ linear.add_color_stop_rgba(0,3.5*color[0]/5.0, 3.5*color[1]/5.0, 3.5*color[2]/5.0,1.0)
+ linear.add_color_stop_rgba(1,*color[:4])
+ cr.set_source(linear)
+
+ cr.arc(x0+5, y0+5, 5, 0, 2*math.pi)
+ cr.arc(x1-5, y0+5, 5, 0, 2*math.pi)
+ cr.arc(x0+5, y1-5, 5, 0, 2*math.pi)
+ cr.arc(x1-5, y1-5, 5, 0, 2*math.pi)
+ cr.rectangle(x0+5,y0,x1-x0-10,y1-y0)
+ cr.rectangle(x0,y0+5,x1-x0,y1-y0-10)
+ cr.fill()
+
+ def draw_shadow(self, x0, y0, x1, y1):
+ shadow = 0.4
+ h_mid = (x0+x1)/2
+ v_mid = (y0+y1)/2
+ h_linear_1 = cairo.LinearGradient(h_mid,y0-4,h_mid,y0+4)
+ h_linear_2 = cairo.LinearGradient(h_mid,y1-4,h_mid,y1+4)
+ v_linear_1 = cairo.LinearGradient(x0-4,v_mid,x0+4,v_mid)
+ v_linear_2 = cairo.LinearGradient(x1-4,v_mid,x1+4,v_mid)
+
+ h_linear_1.add_color_stop_rgba( 0, 0, 0, 0, 0)
+ h_linear_1.add_color_stop_rgba( 1, 0, 0, 0, shadow)
+ h_linear_2.add_color_stop_rgba( 0, 0, 0, 0, shadow)
+ h_linear_2.add_color_stop_rgba( 1, 0, 0, 0, 0)
+ v_linear_1.add_color_stop_rgba( 0, 0, 0, 0, 0)
+ v_linear_1.add_color_stop_rgba( 1, 0, 0, 0, shadow)
+ v_linear_2.add_color_stop_rgba( 0, 0, 0, 0, shadow)
+ v_linear_2.add_color_stop_rgba( 1, 0, 0, 0, 0)
+
+ self.draw_rectangular_shadow(h_linear_1,x0+4,y0-4,x1-x0-8,8)
+ self.draw_rectangular_shadow(h_linear_2,x0+4,y1-4,x1-x0-8,8)
+ self.draw_rectangular_shadow(v_linear_1,x0-4,y0+4,8,y1-y0-8)
+ self.draw_rectangular_shadow(v_linear_2,x1-4,y0+4,8,y1-y0-8)
+
+ self.draw_circular_shadow(x0+4, y0+4, 4, math.pi, 3*math.pi/2, (-1,0), shadow)
+ self.draw_circular_shadow(x1-4, y0+4, 4, 3*math.pi/2, 2*math.pi, (0,-1), shadow)
+ self.draw_circular_shadow(x0+4, y1-4, 4, math.pi/2, math.pi, (0,1), shadow)
+ self.draw_circular_shadow(x1-4, y1-4, 4, 0, math.pi/2, (1,0), shadow)
+
+ def render_plot(self):
+ for index,group in enumerate(self.series):
+ for data in group:
+ self.render_rectangle(self.borders[HORZ] + data.content[0]*self.horizontal_step,
+ self.borders[VERT] + index*self.vertical_step + self.vertical_step/4.0,
+ self.borders[HORZ] + data.content[1]*self.horizontal_step,
+ self.borders[VERT] + index*self.vertical_step + 3.0*self.vertical_step/4.0,
+ self.series_colors[index])
+
+# Function definition
+
+def scatter_plot(name,
+ data = None,
+ errorx = None,
+ errory = None,
+ width = 640,
+ height = 480,
+ background = "white light_gray",
+ border = 0,
+ axis = False,
+ dash = False,
+ discrete = False,
+ dots = False,
+ grid = False,
+ series_legend = False,
+ x_labels = None,
+ y_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ z_bounds = None,
+ x_title = None,
+ y_title = None,
+ series_colors = None,
+ circle_colors = None):
+
+ '''
+ - Function to plot scatter data.
+
+ - Parameters
+
+ data - The values to be ploted might be passed in a two basic:
+ list of points: [(0,0), (0,1), (0,2)] or [(0,0,1), (0,1,4), (0,2,1)]
+ lists of coordinates: [ [0,0,0] , [0,1,2] ] or [ [0,0,0] , [0,1,2] , [1,4,1] ]
+ Notice that these kinds of that can be grouped in order to form more complex data
+ using lists of lists or dictionaries;
+ series_colors - Define color values for each of the series
+ circle_colors - Define a lower and an upper bound for the circle colors for variable radius
+ (3 dimensions) series
+ '''
+
+ plot = ScatterPlot( name, data, errorx, errory, width, height, background, border,
+ axis, dash, discrete, dots, grid, series_legend, x_labels, y_labels,
+ x_bounds, y_bounds, z_bounds, x_title, y_title, series_colors, circle_colors )
+ plot.render()
+ plot.commit()
+
+def dot_line_plot(name,
+ data,
+ width,
+ height,
+ background = "white light_gray",
+ border = 0,
+ axis = False,
+ dash = False,
+ dots = False,
+ grid = False,
+ series_legend = False,
+ x_labels = None,
+ y_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ x_title = None,
+ y_title = None,
+ series_colors = None):
+ '''
+ - Function to plot graphics using dots and lines.
+
+ dot_line_plot (name, data, width, height, background = "white light_gray", border = 0, axis = False, grid = False, x_labels = None, y_labels = None, x_bounds = None, y_bounds = None)
+
+ - Parameters
+
+ name - Name of the desired output file, no need to input the .svg as it will be added at runtim;
+ data - The list, list of lists or dictionary holding the data to be plotted;
+ width, height - Dimensions of the output image;
+ background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient.
+ If left None, a gray to white gradient will be generated;
+ border - Distance in pixels of a square border into which the graphics will be drawn;
+ axis - Whether or not the axis are to be drawn;
+ dash - Boolean or a list or a dictionary of booleans indicating whether or not the associated series should be drawn in dashed mode;
+ dots - Whether or not dots should be drawn on each point;
+ grid - Whether or not the gris is to be drawn;
+ series_legend - Whether or not the legend is to be drawn;
+ x_labels, y_labels - lists of strings containing the horizontal and vertical labels for the axis;
+ x_bounds, y_bounds - tuples containing the lower and upper value bounds for the data to be plotted;
+ x_title - Whether or not to plot a title over the x axis.
+ y_title - Whether or not to plot a title over the y axis.
+
+ - Examples of use
+
+ data = [0, 1, 3, 8, 9, 0, 10, 10, 2, 1]
+ CairoPlot.dot_line_plot('teste', data, 400, 300)
+
+ data = { "john" : [10, 10, 10, 10, 30], "mary" : [0, 0, 3, 5, 15], "philip" : [13, 32, 11, 25, 2] }
+ x_labels = ["jan/2008", "feb/2008", "mar/2008", "apr/2008", "may/2008" ]
+ CairoPlot.dot_line_plot( 'test', data, 400, 300, axis = True, grid = True,
+ series_legend = True, x_labels = x_labels )
+ '''
+ plot = DotLinePlot( name, data, width, height, background, border,
+ axis, dash, dots, grid, series_legend, x_labels, y_labels,
+ x_bounds, y_bounds, x_title, y_title, series_colors )
+ plot.render()
+ plot.commit()
+
+def function_plot(name,
+ data,
+ width,
+ height,
+ background = "white light_gray",
+ border = 0,
+ axis = True,
+ dots = False,
+ discrete = False,
+ grid = False,
+ series_legend = False,
+ x_labels = None,
+ y_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ x_title = None,
+ y_title = None,
+ series_colors = None,
+ step = 1):
+
+ '''
+ - Function to plot functions.
+
+ function_plot(name, data, width, height, background = "white light_gray", border = 0, axis = True, grid = False, dots = False, x_labels = None, y_labels = None, x_bounds = None, y_bounds = None, step = 1, discrete = False)
+
+ - Parameters
+
+ name - Name of the desired output file, no need to input the .svg as it will be added at runtim;
+ data - The list, list of lists or dictionary holding the data to be plotted;
+ width, height - Dimensions of the output image;
+ background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient.
+ If left None, a gray to white gradient will be generated;
+ border - Distance in pixels of a square border into which the graphics will be drawn;
+ axis - Whether or not the axis are to be drawn;
+ grid - Whether or not the gris is to be drawn;
+ dots - Whether or not dots should be shown at each point;
+ x_labels, y_labels - lists of strings containing the horizontal and vertical labels for the axis;
+ x_bounds, y_bounds - tuples containing the lower and upper value bounds for the data to be plotted;
+ step - the horizontal distance from one point to the other. The smaller, the smoother the curve will be;
+ discrete - whether or not the function should be plotted in discrete format.
+
+ - Example of use
+
+ data = lambda x : x**2
+ CairoPlot.function_plot('function4', data, 400, 300, grid = True, x_bounds=(-10,10), step = 0.1)
+ '''
+
+ plot = FunctionPlot( name, data, width, height, background, border,
+ axis, discrete, dots, grid, series_legend, x_labels, y_labels,
+ x_bounds, y_bounds, x_title, y_title, series_colors, step )
+ plot.render()
+ plot.commit()
+
+def pie_plot( name, data, width, height, background = "white light_gray", gradient = False, shadow = False, colors = None ):
+
+ '''
+ - Function to plot pie graphics.
+
+ pie_plot(name, data, width, height, background = "white light_gray", gradient = False, colors = None)
+
+ - Parameters
+
+ name - Name of the desired output file, no need to input the .svg as it will be added at runtim;
+ data - The list, list of lists or dictionary holding the data to be plotted;
+ width, height - Dimensions of the output image;
+ background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient.
+ If left None, a gray to white gradient will be generated;
+ gradient - Whether or not the pie color will be painted with a gradient;
+ shadow - Whether or not there will be a shadow behind the pie;
+ colors - List of slices colors.
+
+ - Example of use
+
+ teste_data = {"john" : 123, "mary" : 489, "philip" : 890 , "suzy" : 235}
+ CairoPlot.pie_plot("pie_teste", teste_data, 500, 500)
+ '''
+
+ plot = PiePlot( name, data, width, height, background, gradient, shadow, colors )
+ plot.render()
+ plot.commit()
+
+def donut_plot(name, data, width, height, background = "white light_gray", gradient = False, shadow = False, colors = None, inner_radius = -1):
+
+ '''
+ - Function to plot donut graphics.
+
+ donut_plot(name, data, width, height, background = "white light_gray", gradient = False, inner_radius = -1)
+
+ - Parameters
+
+ name - Name of the desired output file, no need to input the .svg as it will be added at runtim;
+ data - The list, list of lists or dictionary holding the data to be plotted;
+ width, height - Dimensions of the output image;
+ background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient.
+ If left None, a gray to white gradient will be generated;
+ shadow - Whether or not there will be a shadow behind the donut;
+ gradient - Whether or not the donut color will be painted with a gradient;
+ colors - List of slices colors;
+ inner_radius - The radius of the donut's inner circle.
+
+ - Example of use
+
+ teste_data = {"john" : 123, "mary" : 489, "philip" : 890 , "suzy" : 235}
+ CairoPlot.donut_plot("donut_teste", teste_data, 500, 500)
+ '''
+
+ plot = DonutPlot(name, data, width, height, background, gradient, shadow, colors, inner_radius)
+ plot.render()
+ plot.commit()
+
+def gantt_chart(name, pieces, width, height, x_labels, y_labels, colors):
+
+ '''
+ - Function to generate Gantt Charts.
+
+ gantt_chart(name, pieces, width, height, x_labels, y_labels, colors):
+
+ - Parameters
+
+ name - Name of the desired output file, no need to input the .svg as it will be added at runtim;
+ pieces - A list defining the spaces to be drawn. The user must pass, for each line, the index of its start and the index of its end. If a line must have two or more spaces, they must be passed inside a list;
+ width, height - Dimensions of the output image;
+ x_labels - A list of names for each of the vertical lines;
+ y_labels - A list of names for each of the horizontal spaces;
+ colors - List containing the colors expected for each of the horizontal spaces
+
+ - Example of use
+
+ pieces = [ (0.5,5.5) , [(0,4),(6,8)] , (5.5,7) , (7,8)]
+ x_labels = [ 'teste01', 'teste02', 'teste03', 'teste04']
+ y_labels = [ '0001', '0002', '0003', '0004', '0005', '0006', '0007', '0008', '0009', '0010' ]
+ colors = [ (1.0, 0.0, 0.0), (1.0, 0.7, 0.0), (1.0, 1.0, 0.0), (0.0, 1.0, 0.0) ]
+ CairoPlot.gantt_chart('gantt_teste', pieces, 600, 300, x_labels, y_labels, colors)
+ '''
+
+ plot = GanttChart(name, pieces, width, height, x_labels, y_labels, colors)
+ plot.render()
+ plot.commit()
+
+def vertical_bar_plot(name,
+ data,
+ width,
+ height,
+ background = "white light_gray",
+ border = 0,
+ display_values = False,
+ grid = False,
+ rounded_corners = False,
+ stack = False,
+ three_dimension = False,
+ series_labels = None,
+ x_labels = None,
+ y_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ colors = None):
+ #TODO: Fix docstring for vertical_bar_plot
+ '''
+ - Function to generate vertical Bar Plot Charts.
+
+ bar_plot(name, data, width, height, background, border, grid, rounded_corners, three_dimension,
+ x_labels, y_labels, x_bounds, y_bounds, colors):
+
+ - Parameters
+
+ name - Name of the desired output file, no need to input the .svg as it will be added at runtime;
+ data - The list, list of lists or dictionary holding the data to be plotted;
+ width, height - Dimensions of the output image;
+ background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient.
+ If left None, a gray to white gradient will be generated;
+ border - Distance in pixels of a square border into which the graphics will be drawn;
+ grid - Whether or not the gris is to be drawn;
+ rounded_corners - Whether or not the bars should have rounded corners;
+ three_dimension - Whether or not the bars should be drawn in pseudo 3D;
+ x_labels, y_labels - lists of strings containing the horizontal and vertical labels for the axis;
+ x_bounds, y_bounds - tuples containing the lower and upper value bounds for the data to be plotted;
+ colors - List containing the colors expected for each of the bars.
+
+ - Example of use
+
+ data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
+ CairoPlot.vertical_bar_plot ('bar2', data, 400, 300, border = 20, grid = True, rounded_corners = False)
+ '''
+
+ plot = VerticalBarPlot(name, data, width, height, background, border,
+ display_values, grid, rounded_corners, stack, three_dimension,
+ series_labels, x_labels, y_labels, x_bounds, y_bounds, colors)
+ plot.render()
+ plot.commit()
+
+def horizontal_bar_plot(name,
+ data,
+ width,
+ height,
+ background = "white light_gray",
+ border = 0,
+ display_values = False,
+ grid = False,
+ rounded_corners = False,
+ stack = False,
+ three_dimension = False,
+ series_labels = None,
+ x_labels = None,
+ y_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ colors = None):
+
+ #TODO: Fix docstring for horizontal_bar_plot
+ '''
+ - Function to generate Horizontal Bar Plot Charts.
+
+ bar_plot(name, data, width, height, background, border, grid, rounded_corners, three_dimension,
+ x_labels, y_labels, x_bounds, y_bounds, colors):
+
+ - Parameters
+
+ name - Name of the desired output file, no need to input the .svg as it will be added at runtime;
+ data - The list, list of lists or dictionary holding the data to be plotted;
+ width, height - Dimensions of the output image;
+ background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient.
+ If left None, a gray to white gradient will be generated;
+ border - Distance in pixels of a square border into which the graphics will be drawn;
+ grid - Whether or not the gris is to be drawn;
+ rounded_corners - Whether or not the bars should have rounded corners;
+ three_dimension - Whether or not the bars should be drawn in pseudo 3D;
+ x_labels, y_labels - lists of strings containing the horizontal and vertical labels for the axis;
+ x_bounds, y_bounds - tuples containing the lower and upper value bounds for the data to be plotted;
+ colors - List containing the colors expected for each of the bars.
+
+ - Example of use
+
+ data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
+ CairoPlot.bar_plot ('bar2', data, 400, 300, border = 20, grid = True, rounded_corners = False)
+ '''
+
+ plot = HorizontalBarPlot(name, data, width, height, background, border,
+ display_values, grid, rounded_corners, stack, three_dimension,
+ series_labels, x_labels, y_labels, x_bounds, y_bounds, colors)
+ plot.render()
+ plot.commit()
+
+def stream_chart(name,
+ data,
+ width,
+ height,
+ background = "white light_gray",
+ border = 0,
+ grid = False,
+ series_legend = None,
+ x_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ colors = None):
+
+ #TODO: Fix docstring for horizontal_bar_plot
+ plot = StreamChart(name, data, width, height, background, border,
+ grid, series_legend, x_labels, x_bounds, y_bounds, colors)
+ plot.render()
+ plot.commit()
+
+
+if __name__ == "__main__":
+ import tests
+ import seriestests